INRAS: Implicit Neural Representation for Audio
Scenes
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Figure 1: INRAS learns an implicit neural representation for audio scenes such that given the
geometry of a scene, emitter and listener positions, INRAS renders the sound perceived by the
listener. See supplementary video of demonstration examples of spatial sound rendering.
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Abstract

The spatial acoustic information of a scene, i.e., how sounds emitted from a partic-
ular location in the scene are perceived in another location, is key for immersive
scene modeling. Robust representation of scene’s acoustics can be formulated
through a continuous field formulation along with impulse responses varied by
emitter-listener locations. The impulse responses are then used to render sounds
perceived by the listener. While such representation is advantageous, parame-
terization of impulse responses for generic scenes presents itself as a challenge.
Indeed, traditional acoustic field coding methods only implement parameteriza-
tion at discrete probe points and rely on handcrafted features. In this work, we
introduce a novel method for Implicit Neural Representation for Audio Scenes (IN-
RAS) which renders high fidelity time-domain impulse responses at any arbitrary
emitter-listener positions using neural network parameterization. Our experimental
results show that INRAS outperforms existing approaches for representation and
rendering of sounds for varying emitter-listener locations in all aspects, including
the impulse response quality, inference speed, and storage requirements. INRAS
achieves such enhancement in performance by introducing a novel audio scene
feature decomposition, which leads to efficient reuse of scene-dependent features
for any arbitrary emitter-listener positions. Furthermore, such a decomposition
allows INRAS to generalize the representation from one scene to another with only
a few additional parameters.

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.
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1 Introduction

There are more than a billion buildings in the world, each of them with unique architecture, interior
design and activities they are intended for. While vision is the primary sense for overall impression
and navigation through the world’s interior scenes, hearing plays a key role for a full immersion in a
scene. Indeed, many of our daily activities in an interior scene, such as having a conversation with
someone somewhere in the scene, listening to music or watching TV, calling our pets and locating
them, are dependent on the hearing function. Hearing is the sense that allows us to experience the
scene and interact with it, and the sound quality and its synchronization with the scene, completes
our audio-visual perception. Indeed, the selection of scene acoustics plays a significant role in the
activities that the scene would be used for. For example, a dedicated IMAX theater with the latest
surround sound system will draw audience to watch the latest movies, while educational activities
will be held in quiet classrooms, and coffee shops with their energetic, but not noisy, environment
will draw visitors to work on their laptops. In these examples, spatial sound perception is affected
by the collection of the reflected sounds bounced off the floor, walls, ceiling, and other reflective
surfaces in the scene.

It is thus imperative to computationally model spatial audio aspects of interior scenes in order to
adequately render a scene with spatial audio. However, computational modeling and representation of
spatial audio in an arbitrary scene is a non-trivial task, and has been an ongoing research theme with
long history in acoustics research [1]. Typically, the relationship between an arbitrary emitter sound
and spatial sound can be represented by an impulse response, which is the function of time and the
positions of the emitter and the listener [2]]. For a real scene, an impulse response between the emitter
and the listener can be usually measured by playing a sine sweep, using a loudspeaker at the emitter
and recording the sound pressure with a microphone at the listener [3]]. Alternatively, the impulse
responses can be also simulated by computational geometry-based sound propagation techniques for
a real or virtual scene [4} |5} 16} [7]]. In both cases, it is time-consuming and computationally expensive
to render impulse responses in a continuous space, and therefore prohibit more immersive, interactive
spatial sound rendering in scenes. Classic encoding approaches parameterize the impulse responses
using a few perceptual parameters that guide reproduction of reverberations [8} 9]. However, such
features are typically custom and designed specifically for some scenes and therefore are difficult to
reproduce impulse responses with high fidelity.

In this work, we propose an Implicit Neural Representation for Audio Scenes, INRAS, for efficient
representation of spatial audio fields with high fidelity. In recent years, neural networks have been
shown to parameterize implicit, continuous representations and achieved remarkable progress in
computer graphics [10]]. The infinite resolution property of such representation could be advantageous
for representing the acoustic field as well. Since the acoustic wave equation governs the sound
propagation from an emitter in a scene and its solution can be considered as a continuous field
of impulse responses, the acoustic field can be encoded via a smooth, continuous representation
which can alleviate the drawbacks of the approaches that encode the impulse response in discrete
positions and perform interpolation during rendering [8} 9]]. Furthermore, our approach is motivated
by interactive sound propagation techniques using precomputed acoustic transfer operator for the
scene, where the transfer operator is dependent on the scene geometry and decoupled from the
emitter and the listener positions to render impulse response efficiently in interactive sound rendering
applications [[11,[12]. INRAS integrates the benefits of implicit neural representations and interactive
acoustic transfer to render high fidelity impulse responses in an efficient way.

Specifically, INRAS is a light-weighted and efficient neural network model that can produce high
fidelity spatial impulse responses at arbitrary emitter-listener positions. INRAS includes two main
stages. In the first stage, it decomposes the audio scene features into three parallel modules: 7) the
Scatter module, i7) the Bounce module, and 4i¢) the Gather module. Motivated by the disentangled
procedures in the interactive acoustic radiance transfer techniques [[11} [12]], we design these three
modules to generate independent features for the emitter, scene geometry, and listener, respectively.
Indeed, disentangling the scene geometry features allows our model to generalize to multiple scenes
by adding only a few trainable parameters. In the second stage, the listener module fuses the three



73
74
75
76
77
78
79

80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

119
120
121
122
123

independent features and generates the directional and binaural impulse responses. We show an
overview of INRAS in Figs[I]and 3] In summary, our main contributions in this work are: 1) We
propose a novel approach, INRAS, to learn the implicit neural representation for audio scenes that
produce high fidelity time-domain impulse responses at arbitrary emitter-listener positions in the
scene. 2) INRAS outperforms existing approaches on all metrics of audio rendering, including the
impulse response quality, inference speed, and storage requirements. 3) We show that INRAS is
robust and capable of generalizing across multiple scenes with a few additional parameters.

2 Related Work

Scene Acoustics Modeling. Modeling scene acoustics can be divided into two categories, 1) wave-
based and, 2) geometry-based approaches. The first type of wave-based algorithms aims to solve
the acoustic wave equation using numerical techniques [13} [14} 15 [16]. Due to the computation
complexity of the wave equation, these approaches are typically used for lower frequencies. While
wave methods have become more utilized with advancement of CPU/GPU computing power [17,
18], this cost directs existing methods to prefer geometric approximations of scene acoustics [19].
This second type of geometry-based approaches assume that the sound travels along a straight
line, and determine the path of sound propagation according to the energy attenuation. These
methods are generally faster than wave-based methods and are suitable for high-frequency sound
propagation. However, with such an approach, it is difficult to accurately simulate low-frequency
acoustic phenomena such as edge diffractions and surface scattering of arbitrary order. The commonly
used geometric approaches are image sources methods [4, 5], ray-tracing [6, [7] [20], radiosity [21],
and acoustic radiance transfer [22].

Furthermore, a general model of geometric room acoustics can be formulated as an integral equation.
One of the first equations is the Kuttruff’s integral equation for diffuse reflections in a convex
room [23]]. Multiple extensions of this mathematical model have been proposed subsequently, such
as the room acoustic rendering equation which provides a framework for most geometric acoustic
methods for interiors [24]. These algorithms for sound propagation are limited to static sources and/or
listeners. Interactive applications are usually achieved by precomputing sound propagation effects
such as precomputing acoustic radiance transfer from static sources [[11} 12} [25]. While our work
aims to represent the scene acoustics instead of performing simulation from scratch, the proposed
INRAS model is motivated by the interactive acoustic radiance transfer method [[L1} [12]].

Sound Field Encoding. Classical sound field encoding approaches represent the field around a
listener point by capturing the sound from spatially distributed sources. For example, Ambisonics [26]
represents the sound field around a point using spherical harmonic coefficients and independently of
the reproduction setup (speakers or headphones). Parametric surround approaches, such as MPEG-
Surround [27], assume a known speaker configuration around the listener. MPEG-H [28]] extends the
idea to allow encoding that is agnostic to the reproduction setup and supports higher-order Ambisonics
and binaural rendering. The Spatial Decomposition Method (SDM) [29] fits an image source model
to responses measured with a microphone array, approximating it at a point with multiple delayed
spherical wavefronts. In Directional Audio Coding (DiRaC) [30], the input is the directional sound
signal at a listener, which is a superposition of all sound source signals in a scene convolved with the
corresponding directional impulse responses. DiRaC computes direction and a diffuseness parameter
for each of many time-frequency bins. These approaches are static and do not allow the listener to
navigate the scene and experience the change in sound while doing so. Several works for interactive
sound field encoding propose to extract important features from precomputed impulse responses and
synthesize them back using digital signal processing techniques [8, 31} 9]. However, these encodings
typically cannot reproduce impulse responses with high fidelity.

Deep Acoustics. In recent years, deep learning approaches have been applied and developed for
various acoustics applications. These include neural sound spatialization from a mono audio [32],
estimation of room geometry and reflection coefficients from impulse response [33], reverberation
time and direct-to-reverberation ratio prediction [34, |35], and learning the head-related transfer
functions (HRTFs) [36]. In relation to scene modeling, deep neural networks modeling room impulse
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responses (RIR) have been studied extensively. A convolutional neural network model has been
proposed to estimate room impulse response from reverberant speech [37]]. Deep generative models
such as IR-GAN [38] and fast-RIR [39] have been proposed to generate new realistic impulse
responses. Recently, the emergence of implicit neural representations has shown great success in
representing 3D geometry [40]] and the appearance [10]] of a scene. Such representation approach
could be generalized to represent images, videos, and sounds [41] by learning a continuous mapping
capable of capturing data at an "infinite resolution".

Indeed, very recently, it has been proposed to learn an implicit neural function to represent the room
impulse responses [42| |43]]. The Impulse Response Multi-layer perceptrons (IR-MLP) approach
predicts impulse responses from spatio-temporal coordinates using an MLP but it does not support
both moving sources and moving listeners scenarios [42]. Such a problem has been approached by
Neural Acoustic Fields (NAF) [43]], which proposes to learn a continuously map from all emitter
and listener location pairs to a neural impulse response function using the magnitude component of
the frequency-time spectrogram representation after applying Short-time-Fourier-Transform. While
the smooth nature of the time-frequency spectrogram can be beneficial for training deep neural
networks, the smoothness and entanglement of the time-frequency representation prediction also
leads to imprecise modeling of high peaks that appear less frequently. For example, the sparse high
peaks in the early reflection part of impulse response play a dominant role in our perceptual feelings
for sound source directions and clarity. Moreover, modeling using the spectrogram magnitude ignores
the phase information and adding random phase which may distort the audio signal significantly.
In our approach, we learn the neural representation of the sound field for both moving listeners
and moving sources scenarios. We aim to learn such implicit neural representation for rendering
time-domain impulse responses instead of spectrograms. Our results show that INRAS can generate
higher fidelity impulse responses with even fewer trainable parameters.

3 Methods

Problem Setup. INRAS implements several deep neural networks to model the continuous implicit
function that maps scene’s coordinates to the corresponding time-domain directional and binaural
impulse responses of the sound field. More formally, for a given 3D scene D, we denote the sound
emitter locations as s € R3, the listener locations as [ € R3, and the listener head orientation
6 € R2. Then V(s,1,0) € R in the scene, there would be corresponding binaural impulse responses
h € R**T where T indicates the time length. We model the continuous function f(s,l,8) — h
parameterized by a deep neural network that pairs s, [, § with appropriate impulse response h. While
the idea seems straightforward, training the network to learn the time domain impulse response from
given coordinate inputs is challenging due to the typical long temporal length of impulse responses,
and highly oscillating amplitude at different time samples, all which increase the training difficulty.
One key insight is that while the scene geometry determines the impulse responses in the scene, it
is always static no matter how emitter and listener positions vary and therefore the geometry based
information could be shared with an arbitrary emitter and listener positions. Such an idea has been
applied to interactive sound propagation based on acoustic radiance transfer [11}|12]]. For training
a neural network model, the approach would be to leverage the static scene geometry by learning
reusable scene-dependent features, and associate with the emitter and the listener. This allows the
model to realize that the differences between impulse responses at various emitter-listener locations
are dependent on the scene geometry. Motivated by this approach, we propose two stage model. The
first stage performs audio scenes feature decomposition to learn the independent scene geometric
features and associate the emitter and listener to the scene. The second stage fuses these features to
render the binaural impulse responses. In the following sections, we review the background of the
interactive acoustic radiance transfer and then describe our model in detail.

Background on Interactive Acoustic Radiance Transfer. The acoustic radiance transfer is a classical
approach to model sound propagation in complex room models and it can be derived from the acoustic
rendering equation [24]]

L(z,Q,t) = Lo(z,Q,t) + [ R(z,2',Q,t)L(a’, 222, t)d, (1)

9 ‘I,z/‘ )
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Step 1: Scattering from Emitter Step 2: Acoustic Transfer Step 3: Gathering at Listener

Figure 2: Acoustic radiance transfer steps overview.

where S is the set of all surface points in the scene, L is the total outgoing acoustic radiance, Lg is
the emitted acoustic radiance, €2 is the final radiance direction at x; the incident radiance direction at
x is implicit in the specification of ’, and R is the reflection kernel, which describes how radiance
at point 2" influences radiance at point z. The equation describes that the outgoing time-dependent
radiance at any surface point is a combination of the reflected time-dependent radiance and the
emitted time-dependent radiance.

The acoustic radiance transfer algorithm can be summarized in three steps (See Fig.[2). In the first
step, the scene’s boundary is divided into N bounce points, and energy is scattered from the emitter
to all bounce points. In the second step, sound energy is emitted in all directions from a given
bounce point. It propagates through the scene until the propagation is finally terminated upon an
incidence at some other bounce point. The energy-time curve on each bounce point can be stored
as an echogram. In the final step, the listener gathers energy responses from all bounce points.
In interactive extensions [[11} [12]], a linear acoustic transfer operator is precomputed to model the
propagation of acoustic radiance between bounce points distributed over the surface of the scene. In
other words, the acoustic transfer operator can be seen as the scene-dependent features that are shared
with all emitter-listener locations. Such disentanglement efficiently updates the impulse response at
various emitter-listener positions by computing the propagation delay based on the relative distance
to the bounce points. This motivates us to design a neural network model with similar decoupled
modules to satisfy that the scene geometry information can be realized and reused by an arbitrary
emitter and listener.

Implicit Neural Representation for Audio Scenes. INRAS includes two main components:(a) audio
scenes feature decomposition, and (b) spatial binaural impulse response prediction. In (a), there are
three parallel modules: 1) the Scatter module learns features to associate the emitter with bounce
points; 2) the Bounce module learns the scene-dependent features shared by all emitter and listener
positions; 3) the Gather module learns features to associate the listener with the bounce points. In
(b), we fuse the output features of the three parallel modules and render the directional and binaural
impulse responses. A system overview is shown in Fig.[3]

Scatter Module. Similar to computing the initial radiance scattering from the emitter to all bounce
points in acoustic radiance transfer, the Scatter module is dependent on the relative distance between
the emitter position and every bounce point position. We divide the surface of the scene into [NV
bounce points with 3D locations {b;}}¥., € R3. We compute the relative distance between the
emitter position s to all bounce points {dgi 1V . Using relative distance as input instead of absolute
position enables the emitter to be aware of the scene geometry and allows the model to learn smooth
continuous features for various emitter positions. We use the sinusoidal encoding to map the input
{dgq_ N | to a higher dimension, as also used in graphical implicit neural representation [10]. We
learn a function Feg parameterized by a fully connected network. We denote the output feature as
I =Fo({d; }X,) € RN*P, where D indicates the feature dimension. In our experiments, we find
that it is sufficient to use 40 to 60 bounce points to cover the scene structure. We perform more
investigations of bounce points selection in ablation studies.

Bounce Module. We design the bounce module to generate features representing the geometry of
static scenes shared with arbitrary emitter and listener locations. To model such scene dependent
features, we learn a function Uy parameterized by a multi-layer perceptron (MLP) with residual
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Figure 3: System Overview of INRAS. In audio scenes feature decomposition, inputs to scatter/gather
module are the relative distances between the emitter/listener locations and bounce points. The
bounce module takes all bounce points to generate scene-dependent features. In the second stage, the
decomposed features are stacked and fed to the listener module which generates the spatial binaural
impulse responses.

connections that takes all bounce points positions {b;}2¥; € R? as input and outputs the features
Q = Us({b:}}L,) € RM*P.

Gather Module. This module is similar to the scatter module. We aim to associate the listener with
the bounce points in the scene. We compute the relative distance between the listener position [ to all
bounce points: {déi 1 . We also use sinusoidal encoding and learn a function Gy parameterized by
a fully connected network to generate the output feature O = Gy ({d}, }Y.,) € RV*P.

Spatial-Time Feature Composition. The modules do not incorporate the time-dependencies. Adding
the time dimension in every module could significantly slow down the training procedure. Motivated
by the acoustic operator decomposition in the interactive sound propagation [[12], the energy-time
echogram for a specific bounce point b;(¢) can be represented by a set of time domain basis functions
{7*(t)}/<, via a linear combination: b;(t) = S, a,7¥(t), where a’s are coefficients in the
basis space. Similarly, we learn a function P, through a fully connected network to obtain a set
of time-domain basis functions which can be reused by all spatial features. We encode the time
samples {¢; }]T:l using sinusoidal encoding. The output is denoted as M = P, ({t; }JT:l) € RT*D,
We then perform fast matrix multiplication to obtain spatial-time features I=MIT,Q=MQT
and O = MOT.

Listener Module. In the stage of spatial binaural impulse response prediction, the listener module
first performs feature fusions by concatenating the three features together £ = {f , Q, O} € RT*3N,
where {Ej, }; € RT*3 represents fused spatial-time features for / and s associated with the bounce
point b;. We feed E as input to the listener module and further takes care of the head orientation
conditions 6 encoded by a learnable embedding matrix. We model the listener module via MLP and
generate binaural impulse responses in time-domain h = Vi(E, 6).

Training and Rendering. All components and modules of INRAS are trained jointly. We use a
combination of mean square error 10ss Ly = || —h||3 and multi-resolution STFT 10ss Ly, g5 which
has been shown effective in modeling audio signals in the time domain [44]. The multi-resolution
STFT loss first converts the impulse response into frequency-time domain H = STFT(h) and
%, the magnitude loss Ly, = ||| H| — [H]||x
and the phase 10ss Lphase = ||¢(H) — ¢(H)||, our total loss can be summarized as follow:

Lmr_stfl = Ly + Lmag + Lphase7 Llotal_loss = Lige + Lmr_slft 2

Once we obtain the impulse response h, we can render sounds perceived at the listener location by
convolving the impulse response with a sound source y. The final sound is denoted as § = h ® y.

computes the spectral convergence loss Ly, =

Generalization to Multiple Scenes. The design of INRAS enables the emitter and the listener to
be aware of scene geometry by computing the relative distance to the bounce points in scatter and
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gather modules and the bounce module provides a static scene-dependent feature. Intuitively, we can
include the collection of bounce points from multiple scenes and let the emitter and listener realize
which scene they are in to achieve the generalization goal. Specifically, we normalize the coordinate
space of multiple scenes and adapt the total number of bounce points Ny = Zfil N; for K scenes.
When computing the relative distance and bounce points features for the emitter/listener in a specific
scene, we mask the other irrelevant bounce points. Since all other components and feature dimension
are kept the same, such operation adds a handful of trainable parameters due to the increased bounce
points number and in turn enables the generalization from scene to scene.

4 Experiments

Datasets. To evaluate our method, we use the Soundspaces dataset which consists of dense pairs of
impulse responses generated by geometric sound propagation methods [45]. All scenes have the same
height and provide the binaural impulse responses for four different head orientations (0, 90, 180, 270
degrees). For a fair comparison to the previous work [43], we re-sample all impulses responses
to 22050 sampling rate and use the same 6 scenes including 2 multi-room layouts, 2 rooms with
non-rectangular walls, and 2 single rooms with rectangular walls. For each scene, we use 90% data
for training and hold 10% data for testing.

Implementation Details. We use Pytorch to implement all INRAS models. For all scenes, we extract
the bounce points from the mesh boundary, (40 to 60, depending on the scene). We encode the
relative distance from emitter/listener to bounce points using sinusoidal encoding with 10 frequencies
of sin and cos functions. We use a fully connected layer in the scatter module and gather module. In
the bounce module, we use a 4-layer residual MLP. In the listener module, we use a 6-layer residual
MLP. In all MLPs, we use 256 neurons and set PreLLU as the activation function. We use AdamW
optimizer [46] to train all models on a Tesla T4 GPU for 100 epochs with a batch size of 64. The
initial learning rate is set as Se-4 and is gradually decreased by a factor of 0.95.

Baseline Methods. We compare our method to existing learning-based and classical approaches.
For learning-based approaches, we compare INRAS with NAF [43]]. We also compare two audio
coding methods Advanced Audio Coding (AAC) and Xiph Opus by applying both linear and nearest
neighbor interpolation to the coded acoustic fields.

Evaluation Metrics. We evaluate all methods on three aspects: the impulse response quality, the
storage requirements and inference speed. We first compute acoustic parameters to evaluate the
impulse response quality. We use acoustic parameter Clarity (C50) to quantify the part of early
reflections of the impulse response which is associated with music loudness, speech intelligibility,
and clarity. To study the effects of the late reverberation parts, we use reverberation (T60) and early
decay time (EDT) to illustrate the statistical portion of the impulse response. The reverberation
time (T60) measures how long it takes for the acoustic energy to decay by 60 dB. EDT is closely
related to the listener’s perception of reverberation but it is also affected by the early reflections of the
impulse responses. We illustrate for the acoustic metrics can be found in Fig.[d] In addition, we also
compute the storage requirements for saving audio scenes representations and the inference speed for
rendering a binaural impulse response in the scene. For fair comparison, we test inference speed for
all methods consistently on a Telsa T4 GPU.

Results. The quantitative evaluation results are shown in Table[T] INRAS outperforms both traditional
audio coding and learning-based methods in all metrics. In particular, C50 and EDT errors outperform
NAF by 43% and 39%, indicating that the early reflection part of our rendered impulse responses is
much closer to the ground truth. Fig. |4|illustrates comparison of two examples of rendered impulse
responses waveforms of AAC-linear, NAF and INRAS method. On the top left of the figure, we
visualize the impulse responses loudness map of INRAS where colors indicate the loudness amplitude.
In the two right columns, the comparison shows that the AAC-linear results have large gaps from
the ground truth. While NAF is able to capture the exponentially decay pattern for reverberation,
it cannot capture the the early reflection part of impulse responses which include the high peaks
that are important for clarity. In comparison, INRAS can render both the early reflections and late
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Figure 4: Rendered Impulse Responses Waveform Visualization. The speaker indicates the emitter
location. We show examples of rendered waveforms at two listener locations (black square and
circle) demonstrating metrics upon which performance of is evaluated AAC-Linear, NAF and INRAS
rendering methods.

Model\Metric C50 error T60 error EDT error | Parameters Storage  Speed
(dB) | (%) | (sec) | Million) |  (MB)|  (ms) |
Opus-nearest 3.58 10.10 0.115 - 18137 -
Opus-linear 3.13 8.64 0.097 - 181.37 -
AAC-nearest 1.67 9.35 0.059 - 346.74 -
AAC-linear 1.68 7.88 0.057 - 346.74 -
NAF 1.06 3.18 0.031 2.23 8.55 37.86
INRAS (Ours) | 0.6 3.14 0.019 0.67 2.56 9.47

Table 1: Quantitative evaluation for impulse response quality, storage requirements and inference
speed. Results are in the average of six single scene models.

reverberation much closer to the ground truth impulse responses. For more qualitative visualization
on loudness maps and waveforms, please refer to Suppl. Materials. Moreover, our INRAS model
only takes about 0.65 million trainable parameters which results in less than 3MB storage and 4ms
inference speed, indicating the INRAS is significantly light-weighted and efficient.

Generalization to Multiple Scenes. As discussed in the method section, the effective audio scene
feature decomposition allows us to train a single INRAS to generalize from scene to scene. We
investigated this property by training a single INRAS model on three scenes with different types
of layouts. We selected one multi-room layout, one room with non-rectangular walls, and one
room with rectangular walls (See Fig.[5). As expected, INRAS can learn continuous implicit neural
representations for all three scenes. We illustrate the loudness maps for all three scenes learned by
one single model and in Table[2] We show quantitative results of the multi-scene model. For other
methods, we compute the average values for the three scenes. In addition to the acoustic parameters
that evaluate the impulse response quality, we further evaluate the quality of the final rendered audio
signal after convolving the impulse response with a sound source. Specifically, we compute the
Signal-to-Noise ratio (SNR) and audio Peak Signal to Noise Ratio (PSNR). The results in Table 2]
clearly shows that our generalized model can achieve high-quality results and better overall accuracy
than NAF. Notably, the number of trainable parameters in INRAS increases by 0.1M to extend the
single-scene to multi-scenes thus keeping the storage requirement less than 3MB. In comparison,
other approaches have increased the storage size linearly.

Ablation Studies. To show the effectiveness of INRAS v.s. similar variants, we use a representative
scene to perform ablation studies. Table[3|shows comparison results of INRAS and its ablated variants.
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Figure 5: Loudness map visualization comparing INRAS multi-scenes rendering on three scenes
(Top) with the ground truth using nearest neighbors (Bottom)

Model\Metric Multi-scenes | SNR PSNR | C50error T60 error | Storage
(dB)T (@B)T | dB)| (%) | (MB) |
Opus-nearest X 3.18 1335 | 3.6 10.1 544.11
Opus-linear X 3.57 1345 | 3.23 8.7 544.11
AAC-nearest X 6.48 17.84 | 1.51 9.64 1040.31
AAC-linear X 7.52 18.7 1.57 8.05 1040.31
NAF X -1.54 11.25 | 1.05 3.01 25.65
INRAS (Ours) v 8.06 18.80 | 0.68 4.09 2.99

Table 2: Quantitative evaluation of INRAS Multi-Scene generalization on three scene layouts. Results
for other methods are computed as an average of three scenes.

We first implement a brute-force model (Simple INRAS) using a residual MLP like NAF architecture
and provide the normalized emitter and listener positions as input to predict the time domain impulse
response using MSE loss only. The result turns out to be unsuccessfully in all metrics. We further
show that adding the multi-resolution STFT loss can improve the T60 error but still fails to capture
the early reflection part. Next, we show that without using the relative distance impairs the results
since the emitter and the listener could not realize the scene geometry. Besides, removing the bounce
module eliminates the static scene feature and therefore impairs the performance. We also investigate
to the importance of bounce point selection. We sample two types of bounce points that both have
the same total number as the original setting but they do not cover the whole scene, i.e., missing
some boundaries. The results show that only using bounce points covered the full scene geometry
can achieve the best performance in all results.

Model\Metric C50err (dB)| T60err (%)) EDT err(sec) |
Simple INRAS w. Lmse 1.47 49.6 0.048
Simple INRAS w. Lmse + Lmr st 2.20 6.40 0.074
INRAS w.o. rel. dist. 1.12 3.52 0.038
INRAS w.o. bounce module 0.63 2.30 0.019
INRAS w. more incomplete bounce points | 0.50 2.31 0.019
INRAS w. less incomplete bounce points 0.49 2.17 0.018
INRAS (Ours) 0.44 2.07 0.017

Table 3: Ablation Studies of INRAS variants.

5 Conclusion

In conclusion, here we present INRAS, a novel implicit neural representation for audio scenes. INRAS
is a light-weight, fast model that effectively renders high fidelity impulse responses for multiple audio
scenes. We achieve such function by leveraging a novel reusable representation of scene-dependent
features and associate them with emitter and listener. Experimental results demonstrate that INRAS
outperforms other methods in all metrics and we further show that INRAS generalizes across scenes.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , , Or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

* Did you include the license to the code and datasets? [Yes] See Section ??.
* Did you include the license to the code and datasets? The code and the data are
proprietary.

* Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The sections of Methods and Experiments clearly
describe the claims we made.

(b) Did you describe the limitations of your work? [Yes] We describe the limitations of
our work in the supplementary material.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
describe such impacts in the supplementary material.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The inference
code is available in the supplementary material. The full code will be available in the
Github after the review process.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] We describe the training details in the implementation details
section and more details can be found in the supplementary material.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? No. We fix the random seed for reproduction purpose.
The errors bars are not reported because it would be too computationally expensive.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We describe resources in the
implementation details section.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite all the
existing assets used in our work.

(b) Did you mention the license of the assets? [Yes] we mention the license of the assets
in the supplementary material.

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
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509 (d) Did you discuss whether and how consent was obtained from people whose data you’re
510 using/curating? [N/A]

511 (e) Did you discuss whether the data you are using/curating contains personally identifiable
512 information or offensive content? [ Yes] We discuss it in the supplementary material.
513 5. If you used crowdsourcing or conducted research with human subjects...

514 (a) Did you include the full text of instructions given to participants and screenshots,
515 if applicable? [Yes] The human evaluation is fully described in the supplementary
516 material.

517 (b) Did you describe any potential participant risks, with links to Institutional Review
518 Board (IRB) approvals, if applicable? [N/A] there is no potential risk in our human
519 evaluation.
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