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Figure 1: INRAS learns an implicit neural representation for audio scenes such that given the
geometry of a scene, emitter and listener positions, INRAS renders the sound perceived by the
listener. See supplementary video of demonstration examples of spatial sound rendering.

Abstract

The spatial acoustic information of a scene, i.e., how sounds emitted from a partic-1

ular location in the scene are perceived in another location, is key for immersive2

scene modeling. Robust representation of scene’s acoustics can be formulated3

through a continuous field formulation along with impulse responses varied by4

emitter-listener locations. The impulse responses are then used to render sounds5

perceived by the listener. While such representation is advantageous, parame-6

terization of impulse responses for generic scenes presents itself as a challenge.7

Indeed, traditional acoustic field coding methods only implement parameteriza-8

tion at discrete probe points and rely on handcrafted features. In this work, we9

introduce a novel method for Implicit Neural Representation for Audio Scenes (IN-10

RAS) which renders high fidelity time-domain impulse responses at any arbitrary11

emitter-listener positions using neural network parameterization. Our experimental12

results show that INRAS outperforms existing approaches for representation and13

rendering of sounds for varying emitter-listener locations in all aspects, including14

the impulse response quality, inference speed, and storage requirements. INRAS15

achieves such enhancement in performance by introducing a novel audio scene16

feature decomposition, which leads to efficient reuse of scene-dependent features17

for any arbitrary emitter-listener positions. Furthermore, such a decomposition18

allows INRAS to generalize the representation from one scene to another with only19

a few additional parameters.20
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1 Introduction21

There are more than a billion buildings in the world, each of them with unique architecture, interior22

design and activities they are intended for. While vision is the primary sense for overall impression23

and navigation through the world’s interior scenes, hearing plays a key role for a full immersion in a24

scene. Indeed, many of our daily activities in an interior scene, such as having a conversation with25

someone somewhere in the scene, listening to music or watching TV, calling our pets and locating26

them, are dependent on the hearing function. Hearing is the sense that allows us to experience the27

scene and interact with it, and the sound quality and its synchronization with the scene, completes28

our audio-visual perception. Indeed, the selection of scene acoustics plays a significant role in the29

activities that the scene would be used for. For example, a dedicated IMAX theater with the latest30

surround sound system will draw audience to watch the latest movies, while educational activities31

will be held in quiet classrooms, and coffee shops with their energetic, but not noisy, environment32

will draw visitors to work on their laptops. In these examples, spatial sound perception is affected33

by the collection of the reflected sounds bounced off the floor, walls, ceiling, and other reflective34

surfaces in the scene.35

It is thus imperative to computationally model spatial audio aspects of interior scenes in order to36

adequately render a scene with spatial audio. However, computational modeling and representation of37

spatial audio in an arbitrary scene is a non-trivial task, and has been an ongoing research theme with38

long history in acoustics research [1]. Typically, the relationship between an arbitrary emitter sound39

and spatial sound can be represented by an impulse response, which is the function of time and the40

positions of the emitter and the listener [2]. For a real scene, an impulse response between the emitter41

and the listener can be usually measured by playing a sine sweep, using a loudspeaker at the emitter42

and recording the sound pressure with a microphone at the listener [3]. Alternatively, the impulse43

responses can be also simulated by computational geometry-based sound propagation techniques for44

a real or virtual scene [4, 5, 6, 7]. In both cases, it is time-consuming and computationally expensive45

to render impulse responses in a continuous space, and therefore prohibit more immersive, interactive46

spatial sound rendering in scenes. Classic encoding approaches parameterize the impulse responses47

using a few perceptual parameters that guide reproduction of reverberations [8, 9]. However, such48

features are typically custom and designed specifically for some scenes and therefore are difficult to49

reproduce impulse responses with high fidelity.50

In this work, we propose an Implicit Neural Representation for Audio Scenes, INRAS, for efficient51

representation of spatial audio fields with high fidelity. In recent years, neural networks have been52

shown to parameterize implicit, continuous representations and achieved remarkable progress in53

computer graphics [10]. The infinite resolution property of such representation could be advantageous54

for representing the acoustic field as well. Since the acoustic wave equation governs the sound55

propagation from an emitter in a scene and its solution can be considered as a continuous field56

of impulse responses, the acoustic field can be encoded via a smooth, continuous representation57

which can alleviate the drawbacks of the approaches that encode the impulse response in discrete58

positions and perform interpolation during rendering [8, 9]. Furthermore, our approach is motivated59

by interactive sound propagation techniques using precomputed acoustic transfer operator for the60

scene, where the transfer operator is dependent on the scene geometry and decoupled from the61

emitter and the listener positions to render impulse response efficiently in interactive sound rendering62

applications [11, 12]. INRAS integrates the benefits of implicit neural representations and interactive63

acoustic transfer to render high fidelity impulse responses in an efficient way.64

Specifically, INRAS is a light-weighted and efficient neural network model that can produce high65

fidelity spatial impulse responses at arbitrary emitter-listener positions. INRAS includes two main66

stages. In the first stage, it decomposes the audio scene features into three parallel modules: i) the67

Scatter module, ii) the Bounce module, and iii) the Gather module. Motivated by the disentangled68

procedures in the interactive acoustic radiance transfer techniques [11, 12], we design these three69

modules to generate independent features for the emitter, scene geometry, and listener, respectively.70

Indeed, disentangling the scene geometry features allows our model to generalize to multiple scenes71

by adding only a few trainable parameters. In the second stage, the listener module fuses the three72
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independent features and generates the directional and binaural impulse responses. We show an73

overview of INRAS in Figs 1 and 3. In summary, our main contributions in this work are: 1) We74

propose a novel approach, INRAS, to learn the implicit neural representation for audio scenes that75

produce high fidelity time-domain impulse responses at arbitrary emitter-listener positions in the76

scene. 2) INRAS outperforms existing approaches on all metrics of audio rendering, including the77

impulse response quality, inference speed, and storage requirements. 3) We show that INRAS is78

robust and capable of generalizing across multiple scenes with a few additional parameters.79

2 Related Work80

Scene Acoustics Modeling. Modeling scene acoustics can be divided into two categories, 1) wave-81

based and, 2) geometry-based approaches. The first type of wave-based algorithms aims to solve82

the acoustic wave equation using numerical techniques [13, 14, 15, 16]. Due to the computation83

complexity of the wave equation, these approaches are typically used for lower frequencies. While84

wave methods have become more utilized with advancement of CPU/GPU computing power [17,85

18], this cost directs existing methods to prefer geometric approximations of scene acoustics [19].86

This second type of geometry-based approaches assume that the sound travels along a straight87

line, and determine the path of sound propagation according to the energy attenuation. These88

methods are generally faster than wave-based methods and are suitable for high-frequency sound89

propagation. However, with such an approach, it is difficult to accurately simulate low-frequency90

acoustic phenomena such as edge diffractions and surface scattering of arbitrary order. The commonly91

used geometric approaches are image sources methods [4, 5], ray-tracing [6, 7, 20], radiosity [21],92

and acoustic radiance transfer [22].93

Furthermore, a general model of geometric room acoustics can be formulated as an integral equation.94

One of the first equations is the Kuttruff’s integral equation for diffuse reflections in a convex95

room [23]. Multiple extensions of this mathematical model have been proposed subsequently, such96

as the room acoustic rendering equation which provides a framework for most geometric acoustic97

methods for interiors [24]. These algorithms for sound propagation are limited to static sources and/or98

listeners. Interactive applications are usually achieved by precomputing sound propagation effects99

such as precomputing acoustic radiance transfer from static sources [11, 12, 25]. While our work100

aims to represent the scene acoustics instead of performing simulation from scratch, the proposed101

INRAS model is motivated by the interactive acoustic radiance transfer method [11, 12].102

Sound Field Encoding. Classical sound field encoding approaches represent the field around a103

listener point by capturing the sound from spatially distributed sources. For example, Ambisonics [26]104

represents the sound field around a point using spherical harmonic coefficients and independently of105

the reproduction setup (speakers or headphones). Parametric surround approaches, such as MPEG-106

Surround [27], assume a known speaker configuration around the listener. MPEG-H [28] extends the107

idea to allow encoding that is agnostic to the reproduction setup and supports higher-order Ambisonics108

and binaural rendering. The Spatial Decomposition Method (SDM) [29] fits an image source model109

to responses measured with a microphone array, approximating it at a point with multiple delayed110

spherical wavefronts. In Directional Audio Coding (DiRaC) [30], the input is the directional sound111

signal at a listener, which is a superposition of all sound source signals in a scene convolved with the112

corresponding directional impulse responses. DiRaC computes direction and a diffuseness parameter113

for each of many time-frequency bins. These approaches are static and do not allow the listener to114

navigate the scene and experience the change in sound while doing so. Several works for interactive115

sound field encoding propose to extract important features from precomputed impulse responses and116

synthesize them back using digital signal processing techniques [8, 31, 9]. However, these encodings117

typically cannot reproduce impulse responses with high fidelity.118

Deep Acoustics. In recent years, deep learning approaches have been applied and developed for119

various acoustics applications. These include neural sound spatialization from a mono audio [32],120

estimation of room geometry and reflection coefficients from impulse response [33], reverberation121

time and direct-to-reverberation ratio prediction [34, 35], and learning the head-related transfer122

functions (HRTFs) [36]. In relation to scene modeling, deep neural networks modeling room impulse123
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responses (RIR) have been studied extensively. A convolutional neural network model has been124

proposed to estimate room impulse response from reverberant speech [37]. Deep generative models125

such as IR-GAN [38] and fast-RIR [39] have been proposed to generate new realistic impulse126

responses. Recently, the emergence of implicit neural representations has shown great success in127

representing 3D geometry [40] and the appearance [10] of a scene. Such representation approach128

could be generalized to represent images, videos, and sounds [41] by learning a continuous mapping129

capable of capturing data at an "infinite resolution".130

Indeed, very recently, it has been proposed to learn an implicit neural function to represent the room131

impulse responses [42, 43]. The Impulse Response Multi-layer perceptrons (IR-MLP) approach132

predicts impulse responses from spatio-temporal coordinates using an MLP but it does not support133

both moving sources and moving listeners scenarios [42]. Such a problem has been approached by134

Neural Acoustic Fields (NAF) [43], which proposes to learn a continuously map from all emitter135

and listener location pairs to a neural impulse response function using the magnitude component of136

the frequency-time spectrogram representation after applying Short-time-Fourier-Transform. While137

the smooth nature of the time-frequency spectrogram can be beneficial for training deep neural138

networks, the smoothness and entanglement of the time-frequency representation prediction also139

leads to imprecise modeling of high peaks that appear less frequently. For example, the sparse high140

peaks in the early reflection part of impulse response play a dominant role in our perceptual feelings141

for sound source directions and clarity. Moreover, modeling using the spectrogram magnitude ignores142

the phase information and adding random phase which may distort the audio signal significantly.143

In our approach, we learn the neural representation of the sound field for both moving listeners144

and moving sources scenarios. We aim to learn such implicit neural representation for rendering145

time-domain impulse responses instead of spectrograms. Our results show that INRAS can generate146

higher fidelity impulse responses with even fewer trainable parameters.147

3 Methods148

Problem Setup. INRAS implements several deep neural networks to model the continuous implicit149

function that maps scene’s coordinates to the corresponding time-domain directional and binaural150

impulse responses of the sound field. More formally, for a given 3D scene D, we denote the sound151

emitter locations as s ∈ R3, the listener locations as l ∈ R3, and the listener head orientation152

θ ∈ R2. Then ∀(s, l, θ) ∈ R8 in the scene, there would be corresponding binaural impulse responses153

h ∈ R2×T where T indicates the time length. We model the continuous function f(s, l, θ) −→ h154

parameterized by a deep neural network that pairs s, l, θ with appropriate impulse response h. While155

the idea seems straightforward, training the network to learn the time domain impulse response from156

given coordinate inputs is challenging due to the typical long temporal length of impulse responses,157

and highly oscillating amplitude at different time samples, all which increase the training difficulty.158

One key insight is that while the scene geometry determines the impulse responses in the scene, it159

is always static no matter how emitter and listener positions vary and therefore the geometry based160

information could be shared with an arbitrary emitter and listener positions. Such an idea has been161

applied to interactive sound propagation based on acoustic radiance transfer [11, 12]. For training162

a neural network model, the approach would be to leverage the static scene geometry by learning163

reusable scene-dependent features, and associate with the emitter and the listener. This allows the164

model to realize that the differences between impulse responses at various emitter-listener locations165

are dependent on the scene geometry. Motivated by this approach, we propose two stage model. The166

first stage performs audio scenes feature decomposition to learn the independent scene geometric167

features and associate the emitter and listener to the scene. The second stage fuses these features to168

render the binaural impulse responses. In the following sections, we review the background of the169

interactive acoustic radiance transfer and then describe our model in detail.170

Background on Interactive Acoustic Radiance Transfer. The acoustic radiance transfer is a classical171

approach to model sound propagation in complex room models and it can be derived from the acoustic172

rendering equation [24]173

L(x,Ω, t) = L0(x,Ω, t) +
∫
S
R(x, x′,Ω, t)L(x′, x−x′

|x−x′| , t)dx
′, (1)
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Step 1: Scattering from Emitter Step 2: Acoustic Transfer Step 3: Gathering at Listener

Figure 2: Acoustic radiance transfer steps overview.

where S is the set of all surface points in the scene, L is the total outgoing acoustic radiance, L0 is174

the emitted acoustic radiance, Ω is the final radiance direction at x; the incident radiance direction at175

x is implicit in the specification of x′, and R is the reflection kernel, which describes how radiance176

at point x′ influences radiance at point x. The equation describes that the outgoing time-dependent177

radiance at any surface point is a combination of the reflected time-dependent radiance and the178

emitted time-dependent radiance.179

The acoustic radiance transfer algorithm can be summarized in three steps (See Fig. 2). In the first180

step, the scene’s boundary is divided into N bounce points, and energy is scattered from the emitter181

to all bounce points. In the second step, sound energy is emitted in all directions from a given182

bounce point. It propagates through the scene until the propagation is finally terminated upon an183

incidence at some other bounce point. The energy-time curve on each bounce point can be stored184

as an echogram. In the final step, the listener gathers energy responses from all bounce points.185

In interactive extensions [11, 12], a linear acoustic transfer operator is precomputed to model the186

propagation of acoustic radiance between bounce points distributed over the surface of the scene. In187

other words, the acoustic transfer operator can be seen as the scene-dependent features that are shared188

with all emitter-listener locations. Such disentanglement efficiently updates the impulse response at189

various emitter-listener positions by computing the propagation delay based on the relative distance190

to the bounce points. This motivates us to design a neural network model with similar decoupled191

modules to satisfy that the scene geometry information can be realized and reused by an arbitrary192

emitter and listener.193

Implicit Neural Representation for Audio Scenes. INRAS includes two main components:(a) audio194

scenes feature decomposition, and (b) spatial binaural impulse response prediction. In (a), there are195

three parallel modules: 1) the Scatter module learns features to associate the emitter with bounce196

points; 2) the Bounce module learns the scene-dependent features shared by all emitter and listener197

positions; 3) the Gather module learns features to associate the listener with the bounce points. In198

(b), we fuse the output features of the three parallel modules and render the directional and binaural199

impulse responses. A system overview is shown in Fig. 3.200

Scatter Module. Similar to computing the initial radiance scattering from the emitter to all bounce201

points in acoustic radiance transfer, the Scatter module is dependent on the relative distance between202

the emitter position and every bounce point position. We divide the surface of the scene into N203

bounce points with 3D locations {bi}Ni=1 ∈ R3. We compute the relative distance between the204

emitter position s to all bounce points {dsbi}
N
i=1. Using relative distance as input instead of absolute205

position enables the emitter to be aware of the scene geometry and allows the model to learn smooth206

continuous features for various emitter positions. We use the sinusoidal encoding to map the input207

{dsbi}
N
i=1 to a higher dimension, as also used in graphical implicit neural representation [10]. We208

learn a function FΘ parameterized by a fully connected network. We denote the output feature as209

I = FΘ({dsbi}
N
i=1) ∈ RN×D, where D indicates the feature dimension. In our experiments, we find210

that it is sufficient to use 40 to 60 bounce points to cover the scene structure. We perform more211

investigations of bounce points selection in ablation studies.212

Bounce Module. We design the bounce module to generate features representing the geometry of213

static scenes shared with arbitrary emitter and listener locations. To model such scene dependent214

features, we learn a function UΦ parameterized by a multi-layer perceptron (MLP) with residual215
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Figure 3: System Overview of INRAS. In audio scenes feature decomposition, inputs to scatter/gather
module are the relative distances between the emitter/listener locations and bounce points. The
bounce module takes all bounce points to generate scene-dependent features. In the second stage, the
decomposed features are stacked and fed to the listener module which generates the spatial binaural
impulse responses.

connections that takes all bounce points positions {bi}Ni=1 ∈ R3 as input and outputs the features216

Q = UΦ({bi}Ni=1) ∈ RN×D.217

Gather Module. This module is similar to the scatter module. We aim to associate the listener with218

the bounce points in the scene. We compute the relative distance between the listener position l to all219

bounce points: {dlbi}
N
i=1. We also use sinusoidal encoding and learn a function GΨ parameterized by220

a fully connected network to generate the output feature O = GΨ({dlbi}
N
i=1) ∈ RN×D.221

Spatial-Time Feature Composition. The modules do not incorporate the time-dependencies. Adding222

the time dimension in every module could significantly slow down the training procedure. Motivated223

by the acoustic operator decomposition in the interactive sound propagation [12], the energy-time224

echogram for a specific bounce point bi(t) can be represented by a set of time domain basis functions225

{τk(t)}Kk=1 via a linear combination: bi(t) =
∑K

k=1 αkτ
k(t), where α’s are coefficients in the226

basis space. Similarly, we learn a function Pτ through a fully connected network to obtain a set227

of time-domain basis functions which can be reused by all spatial features. We encode the time228

samples {tj}Tj=1 using sinusoidal encoding. The output is denoted as M = Pτ ({tj}Tj=1) ∈ RT×D.229

We then perform fast matrix multiplication to obtain spatial-time features Î = MI⊤, Q̂ = MQ⊤230

and Ô = MO⊤.231

Listener Module. In the stage of spatial binaural impulse response prediction, the listener module232

first performs feature fusions by concatenating the three features together E = {Î , Q̂, Ô} ∈ RT×3N ,233

where {Ebi}Ni=1 ∈ RT×3 represents fused spatial-time features for l and s associated with the bounce234

point bi. We feed E as input to the listener module and further takes care of the head orientation235

conditions θ encoded by a learnable embedding matrix. We model the listener module via MLP and236

generate binaural impulse responses in time-domain h = VΓ(E, θ).237

Training and Rendering. All components and modules of INRAS are trained jointly. We use a238

combination of mean square error loss Lmse = ∥h−ĥ∥22 and multi-resolution STFT loss Lmr_stft which239

has been shown effective in modeling audio signals in the time domain [44]. The multi-resolution240

STFT loss first converts the impulse response into frequency-time domain H = STFT(h) and241

computes the spectral convergence loss Lsc =
∥|H|−|Ĥ|∥2

∥|H|∥2
, the magnitude loss Lmag = ∥|H| − |Ĥ|∥1242

and the phase loss Lphase = ∥ϕ(H)− ϕ(Ĥ)∥, our total loss can be summarized as follow:243

Lmr_stft = Lsc + Lmag + Lphase, Ltotal_loss = Lmse + Lmr_stft (2)

Once we obtain the impulse response h, we can render sounds perceived at the listener location by244

convolving the impulse response with a sound source y. The final sound is denoted as ŷ = h⊛ y.245

Generalization to Multiple Scenes. The design of INRAS enables the emitter and the listener to246

be aware of scene geometry by computing the relative distance to the bounce points in scatter and247
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gather modules and the bounce module provides a static scene-dependent feature. Intuitively, we can248

include the collection of bounce points from multiple scenes and let the emitter and listener realize249

which scene they are in to achieve the generalization goal. Specifically, we normalize the coordinate250

space of multiple scenes and adapt the total number of bounce points Ntotal =
∑K

i=1 Ni for K scenes.251

When computing the relative distance and bounce points features for the emitter/listener in a specific252

scene, we mask the other irrelevant bounce points. Since all other components and feature dimension253

are kept the same, such operation adds a handful of trainable parameters due to the increased bounce254

points number and in turn enables the generalization from scene to scene.255

4 Experiments256

Datasets. To evaluate our method, we use the Soundspaces dataset which consists of dense pairs of257

impulse responses generated by geometric sound propagation methods [45]. All scenes have the same258

height and provide the binaural impulse responses for four different head orientations (0, 90, 180, 270259

degrees). For a fair comparison to the previous work [43], we re-sample all impulses responses260

to 22050 sampling rate and use the same 6 scenes including 2 multi-room layouts, 2 rooms with261

non-rectangular walls, and 2 single rooms with rectangular walls. For each scene, we use 90% data262

for training and hold 10% data for testing.263

Implementation Details. We use Pytorch to implement all INRAS models. For all scenes, we extract264

the bounce points from the mesh boundary, (40 to 60, depending on the scene). We encode the265

relative distance from emitter/listener to bounce points using sinusoidal encoding with 10 frequencies266

of sin and cos functions. We use a fully connected layer in the scatter module and gather module. In267

the bounce module, we use a 4-layer residual MLP. In the listener module, we use a 6-layer residual268

MLP. In all MLPs, we use 256 neurons and set PreLU as the activation function. We use AdamW269

optimizer [46] to train all models on a Tesla T4 GPU for 100 epochs with a batch size of 64. The270

initial learning rate is set as 5e-4 and is gradually decreased by a factor of 0.95.271

Baseline Methods. We compare our method to existing learning-based and classical approaches.272

For learning-based approaches, we compare INRAS with NAF [43]. We also compare two audio273

coding methods Advanced Audio Coding (AAC) and Xiph Opus by applying both linear and nearest274

neighbor interpolation to the coded acoustic fields.275

Evaluation Metrics. We evaluate all methods on three aspects: the impulse response quality, the276

storage requirements and inference speed. We first compute acoustic parameters to evaluate the277

impulse response quality. We use acoustic parameter Clarity (C50) to quantify the part of early278

reflections of the impulse response which is associated with music loudness, speech intelligibility,279

and clarity. To study the effects of the late reverberation parts, we use reverberation (T60) and early280

decay time (EDT) to illustrate the statistical portion of the impulse response. The reverberation281

time (T60) measures how long it takes for the acoustic energy to decay by 60 dB. EDT is closely282

related to the listener’s perception of reverberation but it is also affected by the early reflections of the283

impulse responses. We illustrate for the acoustic metrics can be found in Fig. 4. In addition, we also284

compute the storage requirements for saving audio scenes representations and the inference speed for285

rendering a binaural impulse response in the scene. For fair comparison, we test inference speed for286

all methods consistently on a Telsa T4 GPU.287

Results. The quantitative evaluation results are shown in Table 1. INRAS outperforms both traditional288

audio coding and learning-based methods in all metrics. In particular, C50 and EDT errors outperform289

NAF by 43% and 39%, indicating that the early reflection part of our rendered impulse responses is290

much closer to the ground truth. Fig. 4 illustrates comparison of two examples of rendered impulse291

responses waveforms of AAC-linear, NAF and INRAS method. On the top left of the figure, we292

visualize the impulse responses loudness map of INRAS where colors indicate the loudness amplitude.293

In the two right columns, the comparison shows that the AAC-linear results have large gaps from294

the ground truth. While NAF is able to capture the exponentially decay pattern for reverberation,295

it cannot capture the the early reflection part of impulse responses which include the high peaks296

that are important for clarity. In comparison, INRAS can render both the early reflections and late297
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Figure 4: Rendered Impulse Responses Waveform Visualization. The speaker indicates the emitter
location. We show examples of rendered waveforms at two listener locations (black square and
circle) demonstrating metrics upon which performance of is evaluated AAC-Linear, NAF and INRAS
rendering methods.

Model\Metric C50 error T60 error EDT error Parameters Storage Speed
(dB) ↓ (%) ↓ (sec) ↓ (Million) ↓ (MB) ↓ (ms) ↓

Opus-nearest 3.58 10.10 0.115 - 181.37 -
Opus-linear 3.13 8.64 0.097 - 181.37 -
AAC-nearest 1.67 9.35 0.059 - 346.74 -
AAC-linear 1.68 7.88 0.057 - 346.74 -
NAF 1.06 3.18 0.031 2.23 8.55 37.86
INRAS (Ours) 0.6 3.14 0.019 0.67 2.56 9.47

Table 1: Quantitative evaluation for impulse response quality, storage requirements and inference
speed. Results are in the average of six single scene models.

reverberation much closer to the ground truth impulse responses. For more qualitative visualization298

on loudness maps and waveforms, please refer to Suppl. Materials. Moreover, our INRAS model299

only takes about 0.65 million trainable parameters which results in less than 3MB storage and 4ms300

inference speed, indicating the INRAS is significantly light-weighted and efficient.301

Generalization to Multiple Scenes. As discussed in the method section, the effective audio scene302

feature decomposition allows us to train a single INRAS to generalize from scene to scene. We303

investigated this property by training a single INRAS model on three scenes with different types304

of layouts. We selected one multi-room layout, one room with non-rectangular walls, and one305

room with rectangular walls (See Fig. 5). As expected, INRAS can learn continuous implicit neural306

representations for all three scenes. We illustrate the loudness maps for all three scenes learned by307

one single model and in Table 2. We show quantitative results of the multi-scene model. For other308

methods, we compute the average values for the three scenes. In addition to the acoustic parameters309

that evaluate the impulse response quality, we further evaluate the quality of the final rendered audio310

signal after convolving the impulse response with a sound source. Specifically, we compute the311

Signal-to-Noise ratio (SNR) and audio Peak Signal to Noise Ratio (PSNR). The results in Table 2312

clearly shows that our generalized model can achieve high-quality results and better overall accuracy313

than NAF. Notably, the number of trainable parameters in INRAS increases by 0.1M to extend the314

single-scene to multi-scenes thus keeping the storage requirement less than 3MB. In comparison,315

other approaches have increased the storage size linearly.316

Ablation Studies. To show the effectiveness of INRAS v.s. similar variants, we use a representative317

scene to perform ablation studies. Table 3 shows comparison results of INRAS and its ablated variants.318
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Figure 5: Loudness map visualization comparing INRAS multi-scenes rendering on three scenes
(Top) with the ground truth using nearest neighbors (Bottom)

Model\Metric Multi-scenes SNR PSNR C50 error T60 error Storage
(dB) ↑ (dB) ↑ (dB) ↓ (%) ↓ (MB) ↓

Opus-nearest ✗ 3.18 13.35 3.6 10.1 544.11
Opus-linear ✗ 3.57 13.45 3.23 8.7 544.11
AAC-nearest ✗ 6.48 17.84 1.51 9.64 1040.31
AAC-linear ✗ 7.52 18.7 1.57 8.05 1040.31
NAF ✗ -1.54 11.25 1.05 3.01 25.65
INRAS (Ours) ✓ 8.06 18.80 0.68 4.09 2.99

Table 2: Quantitative evaluation of INRAS Multi-Scene generalization on three scene layouts. Results
for other methods are computed as an average of three scenes.

We first implement a brute-force model (Simple INRAS) using a residual MLP like NAF architecture319

and provide the normalized emitter and listener positions as input to predict the time domain impulse320

response using MSE loss only. The result turns out to be unsuccessfully in all metrics. We further321

show that adding the multi-resolution STFT loss can improve the T60 error but still fails to capture322

the early reflection part. Next, we show that without using the relative distance impairs the results323

since the emitter and the listener could not realize the scene geometry. Besides, removing the bounce324

module eliminates the static scene feature and therefore impairs the performance. We also investigate325

to the importance of bounce point selection. We sample two types of bounce points that both have326

the same total number as the original setting but they do not cover the whole scene, i.e., missing327

some boundaries. The results show that only using bounce points covered the full scene geometry328

can achieve the best performance in all results.329

Model\Metric C50 err (dB) ↓ T60 err (%) ↓ EDT err (sec) ↓
Simple INRAS w. Lmse 1.47 49.6 0.048
Simple INRAS w. Lmse + Lmr_stft 2.20 6.40 0.074
INRAS w.o. rel. dist. 1.12 3.52 0.038
INRAS w.o. bounce module 0.63 2.30 0.019
INRAS w. more incomplete bounce points 0.50 2.31 0.019
INRAS w. less incomplete bounce points 0.49 2.17 0.018
INRAS (Ours) 0.44 2.07 0.017

Table 3: Ablation Studies of INRAS variants.

5 Conclusion330

In conclusion, here we present INRAS, a novel implicit neural representation for audio scenes. INRAS331

is a light-weight, fast model that effectively renders high fidelity impulse responses for multiple audio332

scenes. We achieve such function by leveraging a novel reusable representation of scene-dependent333

features and associate them with emitter and listener. Experimental results demonstrate that INRAS334

outperforms other methods in all metrics and we further show that INRAS generalizes across scenes.335
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