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Figure 1: GeoMatch: Our method enables multi-emobdiment grasping by conditioning the grasp
selection on end-effector and object geometry.

Abstract: While significant progress has been made on the problem of generating1

grasps, many existing learning-based approaches still concentrate on a single em-2

bodiment, provide limited generalization to higher DoF end-effectors and cannot3

capture a diverse set of grasp modes. In this paper, we tackle the problem of grasp-4

ing multi-embodiments through the viewpoint of learning rich geometric represen-5

tations for both objects and end-effectors using Graph Neural Networks (GNN).6

Our novel method - GeoMatch - applies supervised learning on grasping data from7

multiple embodiments, learning end-to-end contact point likelihood maps as well8

as conditional autoregressive prediction of grasps keypoint-by-keypoint. We com-9

pare our method against 3 baselines that provide multi-embodiment support. Our10

approach performs better across 3 end-effectors, while also providing competitive11

diversity of grasps. Examples can be found at geo-match.github.io.12

Keywords: Multi-Embodiment, Dexterous Grasping, Graph Neural Networks13

1 Introduction14

Dexterous grasping remains an open and important problem for robotics manipulation. Many tasks15

where robots are involved, from the simplest to the most complex ones, at their core come down to16

some form of interacting with objects in their environment. This in turn, results in grasping objects17

with all kinds of different geometries. In addition, the large variety of robot and end-effector types18

necessitates that grasping should also be achievable with new and arbitrary end-effector geometries.19

However, the cross-embodiment gap between grippers does not permit simply applying grasping20

policies from one end-effector to another, while domain adaptation i.e. “translating” actions from21

one embodiment to another, is also not straightforward. In comparison, humans are extremely versa-22

tile: they can adapt the way they grasp objects based on what they know about object geometry even23

if the object class or instance is new to them, and they can do this in more than one ways efficiently.24

There has been much research in grasping thus far, with many works focusing on one embodiment25

at a time [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] and fewer looking at the multi-embodiment problem [12,26

13, 14]. Methods are divided between hand-agnostic or hand-aware, and experiment with different27

representations for grasping, such as contact maps [12], contact points [13] or even root pose and28
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z-offset [14]. Existing multi-embodiment approaches either require explicit representation of joint29

limits that becomes exponentially harder in higher DoF end-effectors, or expect heavy manual work30

to adapt to new end-effectors, or showcase mixed rates of success across different embodiments with31

some gripper/hand morphologies performing significantly better than others.32

Drawing inspiration from how humans seem to be adapt their grasps easily and successfully based on33

priors they have learned about 3D geometry of both objects in space and their own hands, we propose34

endowing robotic agents with a similar sense of geometry via a generalized geometry embedding35

that is able to represent both objects and end-effectors. This embedding can be used to predict grasps36

that demonstrate stability, diversity, generalizability, and robustness. More specifically, we propose37

to rely on Graph Neural Networks (GNN) to encode meaningful geometry representations and use38

them to predict keypoint contacts on the object surface in an autoregressive manner.39

In summary, our contributions are as follows:40

a) We propose formulating robot grasp learning as a geometry matching problem through learning41

correspondences between geometry features, where both end-effector and object geometries are42

encoded in rich embedding spaces.43

b) To solve the above problem formulation, we introduce a novel method, namely GeoMatch, that44

is trained end-to-end to learn expressive geometric embeddings, and autoregressive keypoint con-45

tacts via teacher forcing.46

c) We demonstrate that our method is competitive against baselines without any extra requirements47

to support higher DoF end-effectors and while also showcasing high performance across multiple48

embodiments.49

2 Related Work50

Dexterous Grasping. Many dexterous grasping works do not look into multi-embodiment and in-51

stead focus on diversity of objects using a single end-effector. Many grasping methods support52

2-finger parallel grippers [2, 3, 4, 5, 6, 7, 8, 15] with several others looking into high-DoF dexterous53

manipulation [9, 10, 1, 16]. Some work has also been conducted towards multi-embodiment grasp-54

ing. Several of those address the problem from the differentiable simulation grasp synthesis point55

of view [17, 11, 18]. GenDexGrasp [12] advocate for hand-agnostic contact maps generated by a56

trained cVAE [19] with a newly introduced align distance, and optimize matching of end-effectors57

against produced contact maps via a specialized Adam optimization method. This is the most re-58

cent work to our knowledge, attempting to tackle multi-embodiment grasping without extra steps59

to support higher DoF grippers. In contrast to them, we choose to operate on hand-specific contact60

maps as we are interested in learning both object and embodiment geometry conditioned grasps,61

and empirically found our method to perform more evenly well multi-embodiments. Intuitively, our62

work is closest to UniGrasp [13]. UniGrasp operates on object and end-effector point clouds to63

extract features and ultimately output contact points which are then fed into an Inverse Kinematics64

(IK) solver, similarly to us. Their encoder of choice is PointNet++ and the contact prediction is done65

through a Point Set Selection Network (PSSN) [20]. Their proposed architecture adds one stage per66

finger, which means supporting more than 3 finger grippers requires manually adding another stage.67

As a result, adapting the method to more than 2-finger and 3-finger grippers requires significant68

work, while also the need for explicit representation of boundary configurations can explode expo-69

nentially on higher DoF end-effectors. In contrast, we rely on learned geometry features to identify70

viable configurations as opposed to explicitly encoding them through joint limit representation, as71

well as on a small number of user-selected keypoints, same for all end-effectors, which disentangles72

the dependency between number of fingers and applicability of our method. Similarly to UniGrasp,73

EfficientGrasp [21] also uses PointNet++ and a PSSN model for contact point prediction and further74

generates a pose with RL. TAX-Pose [22] is another recent work that shares some high level con-75

cepts. Instead of encoding the end-effector, authors look at the problem of tasks involving objects76

that interact with each other in a particular way. They proceed with encoder objects or object parts77

using DGCNN and learn a cross-attention model that predicts relative poses of objects that accom-78

plish a task. AdaGrasp [14] uses 3D Convolutional Neural Networks to learn a scoring function for79

possible generated grasps, and finally executes the best one. Many of the methods mentioned, rely80

on deterministic solvers which can result in decreased diversity of generated grasps. Even though81

we also rely on a deterministic solver, we address this issue by leveraging the scoring we obtain by82
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Figure 2: Object and end-effector inputs. Objects are initially represented as regularly sampled
point clouds which are converted into a graph for further processing. End-effector geometries are
given as meshes and converted to coarser graphs by randomly sampling points from the mesh as an
intermediate step. User-selected keypoints are highlighted in red.

the learned full unnormalized distribution of contacts to select a first keypoint that will guide the83

remaining contact point prediction. This permits higher diversity without having to sample a large84

number of grasps.85

Graph Neural Networks. Graph Neural Networks were first introduced by Scarselli et al. [23] as86

a proposed framework to operate on structured graph data. Since then, many advancements have87

been made towards extending their capabilities and expressivity [24]. Specifically in the grasping88

literature, there have also been multiple instances of use of GNN. More specifically, Huang et al. [25]89

propose learning a GNN to predict 3D stress and deformation fields based on finite element method90

based grasp simulations. The use of GNNs for end-effector parameterization has been proposed91

before in [26] where tactile sensor data is fed into a GNN to represent the end-effector as part of grasp92

stability prediction, however we propose applying GNN as a more general geometry representation93

that encompases both objects and end-effectors jointly. Lou et al. [27] leverage GNN to represent94

the spacial relation between objects in a scene and suggest optimal 6-DoF grasping poses. Unlike95

previous methods, we aim to use GNN as a general geometry representation for any rigid body,96

including both objects and end-effectors. For the purposes of this work, we leverage the GNN97

implementation by [28] due to the readily available and easily adaptable code base.98

Geometry-Aware Grasping. In the topic of geometry-aware grasping, several works have advo-99

cated for the importance of geometry in the grasping problem. Yan et al. [29] encodes RGBD input100

via generative 3D shape modeling and 3D reconstruction, then based on this learned geometry-101

aware representation grasping outcomes are predicted with solutions coming out of an analysis-by-102

synthesis optimization. In the same vein, Van et al. [30] proposed leveraging learned 3D reconstruc-103

tion as a means of understanding geometry, and further rely on this for grasp success classification104

as an auxiliary objective function for grasp optimization and boundary condition checking. Bohg et105

al. [31] introduced a supervised learning method where a classifier trained on labeled images pre-106

dicts grasps via shape context based representations. Finally, Jiang et al. [6] learn grasp affordances107

and 3D reconstruction as an auxiliary task, through the use of implicit functions. Unlike these works,108

we suggest looking at geometry itself directly from 3D as a feature representation without imposing109

any 3D reconstruction constraints.110

3 Method111

In this work, we aim to learn robust and performant grasping prediction via embeddings of geometry112

for both objects and end-effectors. We are given point cloud representations of object and end-113

effector geometries. These are converted into graphs which allows to utilize GNNs to learn features114

across both.115

Assume an object geometry represented as a graph GO = (VO, EO) and an end-effector geometry116

also represented as a graph GG = (VG, EG) where VO, VG, EO, EG are the object and end-effector117

vertices and edges respectively. The edges are represented by adjacency matricesAdjO, AdjG for the118

object and end-effector graphs respectively, which are row normalized symmetric binary matrices119

3



(a) Full overview of GeoMatch. (b) Autoregressive modules.

Figure 3: GeoMatch architecture. The object and gripper graphs are passed through the two
encoders followed by linear layers. The gripper keypoint embeddings are gathered and are passed
as input along with the object embeddings in the autoregressive modules.

with a unitary diagonal. Given GO and GG, we seek to learn feasible and stable contact points120

between a subset of VO and VG.121

3.1 Object and End-effector Representations122

Each end-effector is represented by its surface geometry in the form of a graph. Additionally, we123

require a small number of canonical user-selected keypoints that will be the ones matched with object124

vertices when calculating contacts. We select these once for each end-effector we are working with125

visually, and store them. It is recommended to selected keypoints having good coverage of each126

gripper with respect to its morphology and its grasping behavior. To construct the graph, we sample127

a point cloud of 1000 surface points from the end-effector mesh in a canonical rest pose:128

qrest = (t, R, θ0, ..., θN−1)rest, (1)

where t ∈ R3 is the root translation, R ∈ R6 is the root rotation in continuous 6D representation129

as introduced in [32], and θ0, . . . , θN−1 are the joint angles of the end-effector. We chose the rest130

pose to be a vector with all joint angles in middle range of their respective joint limits, zero root131

translation, and identity root rotation. For creating the graph, we consider each of the points a vertex132

and create edges between each point and its K closest points.133

For our experiments, we empirically choseK = 8 to capture local geometry. This is a hyperaparam-134

eter that depends on point cloud density and object structure. The canonical keypoints were selected135

manually at the rest pose of each hand to represent points of contact. We empirically chose 6 so that136

for all end-effectors in our dataset, each finger and the palm is represented by at least one keypoint.137

Choosing the same number of keypoints for different embodiments is technically not a requirement138

as lower degree of freedom end-effectors may have good enough coverage with less, but we chose to139

use a constant number multi-embodiments to simplify our training process. A sample of the object140

and end-effector representations is shown in Fig. 2.141

Each object is also represented by its surface geometry in the form of a graph. More specifically, the142

same process is utilized to convert a object point cloud of 2048 points to a graph. The point cloud143

and adjacency matrix together describe the graph. For the purposes of this work, we use a subset of144

the MultiDex dataset introduced by [12] and used by them to train the CMap-VAE model of their145

approach. The dataset is comprised of 5 end-effectors - one 2-finger, two 3-finger, one 4-finger, and146

one 5-finger, as well as 58 common objects from YCB [33] and ContactDB [34]. It contains 50,802147

diverse grasps over the set of hands and objects, each represented by an object name, an end-effector148

name, and the end-effector pre-grasp pose in the form of Eq. 1.149

3.2 Learning Setup150

At the core of our hypothesis is that learning rich geometry features for objects and end-effectors151

jointly can be a powerful tool for dexterous and diverse grasp prediction multi-embodiments. Thus,152

we seek an architecture that can embed local geometry information well. From the architecture153

choices that demonstrate such properties, we chose Graph Neural Neural Networks (GNN) [28].154

Our overall model architecture can be seen in Fig. 3a and is designed to learn a) an independent un-155

normalized prior distribution of contacts between each object and gripper keypoint, and b) marginal156
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distributions of contact for each keypoint, conditioned upon the above likelihood map and previously157

predicted keypoint contacts.158

3.2.1 Independent unnormalized priors of object-keypoint contacts159

Ideally, what we would like to calculate is the full joint distribution of vertex-to-vertex contact, i.e.160

P (vi, vj) for all vertices of the object vi, and all vertices of the end-effector vj . This is typically161

intractable. We reduce the complexity by only focusing on n landmark keypoints k0, . . . , kn on the162

end-effector and we try to approximate P (vo, k0, ..., kn) through learning a set of factorizations by163

applying the Bayes rule. This yields164

P (vo, k0, ..., kn) = Πn
i=1PMi

(vo, ki|k0, ..., ki−1) = Πn
i=1PMi

(vo, ki|k<i)), (2)

where vo ∈ VO, (k0, ..., kn) ⊂ VG , and PMi
(vo, ki|k0, ..., ki−1) are the factorized marginals to165

be learned in an autoregressive manner, as discussed in the following subsection. As a first step,166

we aim to associate a likelihood of contact for a sparse set of keypoints ki per each object vertex167

vo. We first pass the object and end-effector graphs through GNN encoders that output the same168

number of features. The embeddings obtained are L2 normalized. We then gather the embeddings169

on the canonical user-selected keypoints as the vertices of interest on the hand. It is noted that170

we still compute the embedding for all hand vertices even though for contact areas, we focus on171

the embedding of the canonical keypoints. This unnormalized likelihood map of object-keypoint172

contacts intuitively represents a score that a given object vertex is in contact with a given gripper173

keypoint and is given by174

PIi(vo, ki) = EO(vo) · EG(vg)[ki]. (3)
This is optimized against the dot product of the hand-specific object contact map CO(vo, ki) via a175

binary cross-entropy loss176

LPI0,...,n
= Σni=1BCEλa

(PIi(vo, ki), CO(vo, ki)), (4)

where λa is the positive weight hyperparameter used to address the class imbalance.177

3.2.2 Autoregressive marginals with teacher forcing178

As discussed in the previous paragraph, we seek to estimate the joint distribution of contacts by179

estimating a set of factorizations. We further proceed with the estimation of factors:180

PMi
(vo, ki|k0, ..., ki−1) ∀i ∈ [0, n). (5)

Both, object and gripper embeddings are projected down to a lower dimension with a simple linear181

layer without bias, and passed into 5 layers, each responsible for predicting the index of the object182

vertex von where keypoint kn makes contact, given keypoints k0...(n−1).183

Each layer n concatenates the embedding of the n-th keypoint of the end-effector along with the184

object embedding. Then, it calculates the relative distance map of each object vertex to each of the185

n−1 object vertices where the previous n−1 keypoints make contact. Note that is done via teacher186

forcing: instead of using the predictions of each n − 1 layer, we use the previous n − 1 ground187

truth contact points. This avoids error propagation during training. The relative distance maps are188

stacked and concatenated with the object and n-th keypoint embeddings. This constitutes the input189

to an MLP that predicts a binary classification prediction over the object vertices that indicates the190

predicted n-th contact point.191

This is again optimized against the ground truth binary contact map label of the n-th gripper key-192

point, contributing to a second binary cross-entropy loss term193

LPM0,...,n
= Σni=1BCEλb

(PMi
(vo, ki|k0, ..., ki−1), CO(vo, ki)), (6)

where, similarly, λb is the positive weight hyperparameter used to address the class imbalance. A194

visual representation of the autoregressive layers can be seen in 3b. Note that for i = 0, PI0(vo, k0)195

constitutes the first marginal for k0 and thus: PI0(vo, k0) = PM0
(vo, k0).196

3.3 Likelihood Maps197

In order to learn the above, we assumed access to grouth truth likelihood maps used for supervised198

learning which we obtain as follows. For each grasp in our dataset, instead of an object contact map,199
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we generate a (2048, 6) per-gripper-keypoint proximity map where the nearest areas are calculated200

as a fixed number of M closest points in Euclidean distance, to each of the canonical keypoints:201

Po(vo, ki) =

{
1, vo ∈ arg minM ||VO − VG(ki)||2 for each ki,
0, otherwise.

(7)

We also generate a gripper contact map for the selected keypoints where the contacts are defined as202

the keypoints closer than a given threshold, to the object point cloud:203

Cg(ki) =

{
1, ∃vo, ||VO − VG(ki)||2 < threshold,
0, otherwise.

(8)

where Po(vo, ki) is the object proximity map, Cg(ki) is the gripper contact map, O(vo) is the object204

point on index vo and G(ki) is the gripper point on the canonical keypoint index ki. For this work,205

we empirically assumed M = 20 and a threshold of 0.04. Finally, the hand-specific object contact206

map can be obtained as CO(vo, ki) = Po(vo, ki) · Cg(ki).207

For training speed considerations, we preprocess the dataset prior to training, and save each grasp in208

this new form.209

We finally represent our full training objective with the total loss being:210

Ltotal = α · LPI0,...,n
+ β · LPM0,...,n

(9)

For our experiments, we used the Graph Convolutional Networks (GCN) implementation by Kipf et211

al. [28] with 3 hidden layers of size 256, λa = 500, λb = 200, 512 output embedding dimension,212

one for objects and one for end-effectors. The linear projection for each encoder was of size 64213

without bias. We also used α = β = 0.5.214

3.4 Grasp Prediction at Inference215

At test time, the independent unnormalized distribution for k = 0 is leveraged to sample keypoint216

0 which will commence the autoregressive inference. More specifically, we use the 0-th dimension217

as a scoring mechanism for sampling high likelihood points where keypoint 0 makes contact. This218

is then passed into the model as the previous contact of keypoint 1. At inference time, at the n-th219

step, teacher forcing is substituted with passing in the (n − 1) predicted contact vertices. Finally,220

the end result is a tensor of 6 coordinates of the object graph. As previously mentioned, grasping221

is a multi-modal distribution and our model should be able to sample from the various modes. In222

our method, this can be achieved straightforwardly by sampling a variety of starting top-K points223

for keypoint 0. The intuition behind this is that diverse, yet likely starting points for keypoint 0 will224

condition subsequent predicted points differently, and ultimately yield different grasp modes. For225

our experiments, we sampled 4 such top-K points, namely top-0, 20, 50, 100, in order to explore the226

capacity of our method to generate diverse grasps. A more sophisticated sampling algorithm such as227

Beam search, could be applied here, however we empirically achieved sufficient diversity through228

multimodal sampling of keypoint 0. Here it should be noted that this autoregressive representation229

does present some limitations. More specifically, the ordering with which the keypoint contacts are230

being learning and ultimately selected could vastly change the result. However, we refrain from231

experimenting with all possible combinations of keypoint ordering in the scope of this work.232

The end-effector joint angles are then inferred by feeding the predicted contact points into an In-233

verse Kinematics (IK) solver. For our purposes, we used SciPy’s Trust Region Reflective algo-234

rithm (TRF) [35]. The initial pose given to IK is a heuristic pose calculated by applying a rota-235

tion/translation that aligns the palm with the closest object vertex while keeping all non-root joints236

at their rest pose configuration. It should be noted that any other IK solution and initial pose guess237

strategy could be leveraged instead. Further implementation details can be found in Appendix B.238

4 Experiments239

We evaluate our method through the lens of a number of research questions.240

Q1: How successful is the model at producing stable and diverse grasps for various embodi-241

ments? We train our method with a training set containing samples of 5 end-effectors and 38 objects.242
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Figure 4: Qualitative results. Generated grasps using GeoMatch on unseen objects with ezgripper,
barrett, robotiq-3finger, allegro and shadowhand. For each grasp, another perspective is included
where the GeoMatch predicted keypoints on each object are marked with purple and the gripper
user selected keypoints matching these, are marked with yellow.

We then generate grasps on each of the 5 end-effectors but 10 new unseen objects, and evaluate them243

in Isaac Gym [36], specifically the Isaac Gym based environment proposed by [12]. Similarly, we244

apply a consistent 0.5ms−2 acceleration on the object from all xyz directions sequentially, for 1245

second each. If the object moves more than 2cm after every such application, the grasp is declared246

as a failure. We also follow the same contact-aware refinement paradigm, which applies force clo-247

sure via a single step of Adam with step size 0.05. In addition, we provide calculated diversity as248

the standard deviation of the joint angles of all successful grasps, comparably to [12]. We compare249

our method to GenDexGrasp [12], AdaGrasp (initOnly as it is the closest setup to our task) [14], and250

DFC [17]. Results can be found in Tab. 1. In addition, we provide a number of qualitative results in251

Fig. 4.252

Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand Mean ezgripper barrett shadowhand

DFC [17] 58.81 85.48 72.86 72.38 0.3095 0.3770 0.3472
AdaGrasp [14] 60.0 80.0 - 70.0 0.0003 0.0002 -

GenDexGrasp [12] 43.44 71.72 77.03 64.01 0.238 0.248 0.211
GeoMatch (Ours) 75.0 90.0 72.5 79.17 0.188 0.249 0.205

Table 1: Success and diversity comparisons. GeoMatch performs more evenly well across end-
effectors with a varied DoF number while maintaining diversity of grasp configurations.

In our experiments, we observed that GeoMatch is performing slightly worse (-2%) on the 5-finger253

gripper Shadowhand than the best performing baseline, however performance for the 2-finger and254

3-finger grippers increases by 5-30% compared to other methods. Diversity remains competitive to255

other methods. Overall, the minimum performance observed for GeoMatch is significantly higher256

than baselines and the average performance multi-embodiments beats all baselines we compared257

against.258

Q2: Is the multi-embodiment model performing better than a model trained on individual em-259

bodiments? We hypothesize that training our method on data containing a variety of end-effectors260

will result in learning better geometry representations. To investigate this, we train our method on261

each single embodiment separately by filtering our dataset for each given end-effector. We then com-262

pare against the multi-embodiment model. Each of the single end-effector models is trained only on263

grasp instances of that gripper while the multi-embodiment model is trained on all 5 end-effectors264

and objects in the training set. The validation set in all cases contains 10 unseen objects. We provide265

results in Tab. 2. The model trained on multi-embodiment data is indeed performing 20%-35%266

better than single end-effector models which advocates for the value of multi-embodiment grasping267

policies as opposed to single model policies trained on more data.268

Q3: How robust is the learned model under relaxed assumptions? While our method demon-269

strates compelling results, it has been trained on full point clouds. Acknowledging that this is often270

a strict assumption, especially when considering real-world environments, we evaluate robustness271

of the approach under conditions more similar to real-world robotic data. We experiment with grasp272

generation using: a) noisy point clouds, b) partial point clouds, and c) partial point clouds including273
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Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand ezgripper barrett shadowhand

Single embodiment 40.0 70.0 40.0 0.157 0.175 0.154
Multi embodiment 75.0 90.0 72.5 0.188 0.249 0.205

Table 2: Comparisons between the Multi-embodiment model and models trained on individual grip-
pers.

noise. For each of these, we perturbed the object point clouds accordingly, and collected grasps274

using our method zero-shot. Success rate was 77.5%, 66.7%, and 67.5% across end-effectors for275

each type of augmentation respectively. As demonstrated, our method shows reasonable robustness.276

Experiment details and a breakdown of numbers can be found at Appendix A.277

Q4: How important are various components of the design? Finally, we investigate the design278

decisions of our approach and how they affect performance. More specifically, we perform two279

ablations:280

PointNet++ as the encoder of choice instead of GNN. We evaluate our choice towards GNN by281

swapping out the two GNN encoders with PointNet++[20], a popular encoder architecture for point282

clouds. Our results show that GNN was indeed a good choice as it performs better than the Point-283

Net++ ablation, by 10% averaging across end-effectors. In addition, we empirically observed a 12x284

slow down when using PointNet++ due to the difference in model parameters number, which also285

makes GNN more light weight and fast. A breakdown per end-effector can be found in Appendix A.286

Non-shared weights between keypoint encoders. We hypothesize that a shared encoder among all287

end-effectors is beneficial for learning features that represent local geometry and this subsequently,288

informs autoregressive prediction of keypoints. To validate this hypothesis, we conducted an abla-289

tion where we separated the end-effector encoder to 6 separate identical encoders, one per keypoint.290

Our main model with shared weights across all end-effectors and keypoints outperforms the split291

encoders by 9%. Further analysis per end-effector can be found in Appendix A.292

5 Limitations293

While this method showcased that grasp learning can benefit from multi-embodiment data in terms294

of generalization to new objects as well as robustness, obtaining large amounts of such multi-295

embodiment grasping data, especially in real world setups can be challenging, time consuming and296

expensive. However, given that a single embodiment grasping policy was shown to require more297

data to perform comparably, we argue that spending resources on a multi-embodiment dataset to298

yield a policy that performs well across a variety of grippers is a better choice. Lastly, our method299

relies on the robustness of the IK solution. We empirically observed cases where there was a rea-300

sonable grasp solution for a set of predicted keypoints, however the chosen IK solution terminated301

in some suboptimal configuration.302

6 Conclusion303

This work presented a novel multi-embodiment grasping method that leverages GNN to learn pow-304

erful geometry features for object and embodiment representation. Our approach demonstrates that a305

joint encoder trained on multiple embodiments can better embed geometry in a generalizable fashion306

and ultimately result in higher grasping success rate on unseen objects. The proposed framework307

also showcased robustness to more realistic point cloud inputs. Diversity of generated grasps re-308

mains competitive while producing such diverse grasps is as simple as conditioning with a different309

high likelihood starting contact point for the first keypoint. Code and models will be released on310

acceptance.311
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