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Abstract: Adaptable models could greatly benefit robotic agents operating in the1

real world, allowing them to deal with novel and varying conditions. While ap-2

proaches such as Bayesian inference are well-studied frameworks for adapting3

models to evidence, we build on recent advances in deep generative models which4

have greatly affected many areas of robotics. Harnessing modern GPU accelera-5

tion, we investigate how to quickly adapt the sample generation of neural network6

models to observations in robotic tasks. We propose a simple and general method7

that is applicable to various deep generative models and robotic environments.8

The key idea is to quickly fine-tune the model by fitting it to generated samples9

matching the observed evidence, using the cross-entropy method. We show that10

our method can be applied to both autoregressive models and variational autoen-11

coders, and demonstrate its usability in object shape inference from grasping, in-12

verse kinematics calculation, and point cloud completion.13

1 Introduction14

Humans and other animals maintain powerful mental models of the world [1] for navigation, object15

manipulation, social interaction and other day-to-day tasks. These mental models are imperfect and16

tend to be inaccurate. However, they are highly adaptable and are frequently updated upon arrival17

of new information. Robotic agents operating in diverse and unstructured environments may also be18

required to adjust their behavior, and would therefore benefit from adaptable models similar to the19

ones humans hold. Recent studies in robot manipulation and navigation have focused on scenarios20

where an accurate model can be learned and used as-is in downstream planning tasks [2, 3, 4].21

In contrast, inspired by biological mental models, this paper focuses on how to efficiently adapt a22

model to novel information.23

Natural approaches to updating models given new evidence such as Bayesian inference have been24

used extensively in computer vision and robotics [5, 6]. When the modelled probability distributions25

are low-dimensional, Bayesian inference may have closed form solutions or the posterior can be nu-26

merically estimated using methods such as Markov chain Monte Carlo (MCMC, [7]). However,27

there is growing interest in using high-dimensional deep generative models for robotics, which can28

represent complex and diverse data. Advances such as variational autoencoders [8] and diffusion29

models [9] make it possible to learn diverse and high-dimensional distributions. For such expressive30

models, Bayesian inference techniques are not suitable, and they cannot operate on the time-scale31

required for robotic tasks [10]. Another approach, which has been found effective with deep gener-32

ative models, is to train them to adapt by conditioning on possible observations [11, 12]. However,33

this paradigm may fall short when faced with out-of-distribution evidence at test-time.34

We propose a simple approach for updating the parameters of deep generative models given empir-35

ical observations, to approximate complex posterior distributions. Our method requires a forward36

simulation of the environment which can produce observations given a model, and a similarity func-37

tion for observations. We build on GPU-based physics simulation [13] and model training to perform38
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fast inference in a novel robotic scenario by fine-tuning the generative model weights. Consider-39

ing the parametric nature of deep generative models, we use a version of the cross-entropy method40

(CEM [14]) to quickly update the parameters to generate observations conforming with the available41

evidence. We dub our method MACE, for Model Adaptation with the Cross-Entropy method.42

To showcase MACE, we focus on robotic domains where the forward simulation step is easily per-43

formed using off-the-shelf physical simulators. We demonstrate the versatility of MACE on sev-44

eral robotic manipulation tasks that we frame as model adaptation, using two different types of45

deep generative models. In particular, we demonstrate results on object identification from position46

measurements of a multi-fingered robot gripper, on recovery of object point clouds given partial47

measurements (as generated by depth sensors) and on an inverse kinematics (IK) task in the pres-48

ence of obstacles. In all of these environments, the posterior has a rich multi-modal structure. We49

demonstrate that MACE is indeed capable of producing diverse posterior samples for a variety of50

observations, and that it outperforms baseline approaches in diversity and accuracy. In terms of51

speed, we show that by exploiting GPU-based simulation and inference, our fine-tuning can be pre-52

formed online in a competitive time frame. For example, in the IK tasks, we find that MACE can53

outperform the MoveIt [15] library in quickly finding IK solutions for complex scenarios.54

2 Related Work55

Bayesian inference is concerned with computing the posterior distribution of the model given obser-56

vations. Exact computation is possible for simple models that admit conjugate priors, and Markov57

chain Monte Carlo (MCMC) can be used for general models [7]. Approximate Bayesian compu-58

tation (ABC [16]) allows sampling from the posterior without an exact likelihood, but with some59

similarity function between observations. MACE is inspired by these approaches, and expedites the60

search for better samples using the cross-entropy method (CEM [14]). Recent work by Engel et al.61

[17] introduces a Bayesian model update scheme using CEM which is related to ours. However,62

Engel et al. [17] require the true likelihood, and their method is limited to relatively small models,63

while ours can be applied to deep generative models.64

Bayesian inference has been used extensively in robotics in the context of state estimation, localiza-65

tion, and mapping [5, 18]. In recent work, Marlier et al. [19] use Bayesian estimation of a posterior66

distribution of grasp poses for multi-finger object grasping, and Pastor et al. [10] use Bayesian67

inference with LSTM [20] to classify objects using tactile sensors. Both the above are application-68

specific, while MACE is a general approach applicable to a variety tasks and generative models.69

Another approach is to amortize inference by learning an approximate posterior using data from70

the joint distribution p(x,o) such as in the conditional variational autoencoder (CVAE) model71

[21]. We compare MACE with a CVAE baseline, and show that while our inference procedure is72

slower, MACE produces a more diverse posterior. Furthermore, since MACE leverages a similarity73

function between observations, it can work for observations that are out of distribution with respect74

to p(x,o), unlike the CVAE. Finally, MACE can tune the same prior model with different modalities75

of observations without retraining.76

Meta-learning, and meta-RL in particular, is an alternative approach to quickly adapt behavior to77

new evidence [22]. However, meta-RL is typically model-free, and learns how to adapt a policy [22,78

23]. Model-based meta-RL approaches such as Zintgraf et al. [12] use a CVAE to condition on the79

history of observations. Whether such methods could be improved using our inference method is an80

interesting direction for future research.81

3 Model Adaptation with the Cross-Entropy Method82

We now describe MACE, our method for adapting deep generative models to environment observa-83

tions using the cross-entropy method. We begin by describing the setup and the types of tasks we84

aim to solve; next, we discuss our update rule and present the full algorithm.85
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3.1 Problem Formulation86

In the robotics context, an inference problem involves the recovery of task parameters given obser-87

vations of the environment. We assume some distribution p(x) over task representations x ∈ X .88

A task description x could be a point cloud (PC) of an object as in a grasping task; an image input89

for more complex manipulation; or a desired joint configuration in a reaching task. MACE requires90

access to a generative model representing a parametric distribution over task representations p(x; θ).91

We assume the generative model is initially trained to represent the prior, i.e., for some initial pa-92

rameter θ0 it holds that p(x; θ0) = p(x).93

Although the task representation x is unknown, some information about it can be observed. We94

denote this information o ∈ O (for observation) and note that it can be of any form, For example,95

in a grasping task, o could be a partial PC obtained from a depth sensor (while x is the full object96

model); in a reaching task, o could represent obstacles for the robot to avoid.97

A central component of MACE is a simulator of the task. Exact environment simulators are often98

hard to design, leaving gaps to the reality they attempt to simulate [18]. However, for our purposes,99

we only require the simulator to emit observations of a similar modality to the ones emitted by the100

environment. Therefore, the simulator can be viewed as a probability distribution p̂(o|x), providing101

observations given task representations.102

The goal of the inference task is to train the parametric model p(x;θ) to produce a distribution103

closely resembling the posterior p(x|o).104

3.2 Updating the Model105

We aim to update the model parameters θ so that the generative model p(x;θ) more closely re-106

sembles the posterior p(x|o). We can do this by minimizing the Kullback-Leibler (KL) divergence107

between the posterior and the parametric model:108

argmin
θ

DKL (p(x|o)∥p(x;θ)) = argmin
θ

∫
p(x|o) log p(x|o)dx−

∫
p(x|o) log p(x;θ)dx.

The parametric model is only present in the second term, therefore we can maximize it109

to minimize the entire KL divergence. Since the posterior p(x|o) is unknown, we use110

Bayes’ rule to replace it with the likelihood p(o|x): argmaxθ
∫
p(x|o) log p(x;θ)dx =111

argmaxθ
∫ p(o|x)p(x)

p(o) log p(x;θ)dx = argmaxθ Ex∼p(x) [p(o|x) log p(x;θ)] .112

The likelihood of the observation p(o|x) is also an unknown quantity. However, we may estimate it113

using the forward simulator, which can produce observations o given x. We define a score function114

as any function S : O×O → [0, 1] indicating similarity between pairs of observations, and assume115

Eo′∼p̂(o|x)S(o
′,o) is an estimate of p(o|x). An intuitive case to justify this assumption is when116

observations o are discrete, and S(o′,o) = 1o′=o is an indicator of whether o′ is equal to the117

evidence o 1. In practice, as our simulators are deterministic, we replace the expectation with a single118

observation o′ per sample x. In the following, we abuse notation by referring to Eo′∼p̂(o|x)S(o
′,o)119

as S(o′,o). Plugging in the score function, the optimization problem becomes:120

argmax
θ

Ex∼p(x) [S(o
′,o) log p(x;θ)] . (1)

Recalling our assumption that p(x;θ0) = p(x), Eq. 1 can be optimized using importance sam-121

pling: argmaxθ
1
N

∑N
i=1

p(x;θ0)
p(x;θ) S(oi,o) log p(xi;θ), where xi ∼ p(x;θ), the sampling distri-122

bution. One question, however, is how to choose an effective sampling distribution which places123

enough mass on high-scoring x values. Inspired by the iterative approach of Engel et al. [17], we124

optimize this objective iteratively using stochastic gradient descent. At each iteration, we use the125

parametric model from the previous iteration as the sampling distribution and take a few gradient126

1For other examples of score functions, see the environment descriptions in Sec. 4.
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steps to obtain the next model parameters. The objective at iteration t is given by:127

argmax
θ

1

N

N∑
i=1

p(x;θ0)

p(x;θt−1)
S(oi,o) log p(xi;θ), (2)

with xi ∼ p(x;θt−1). In practice, we find that the importance sampling term in this objective makes128

it difficult to optimize due to large discrepancies between the parametric distributions2. Instead, we129

introduce another approximation and remove the importance sampling term p(x)
p(x;θ) from Eq. 2.130

Algorithm 1: MACE (Model Adaptation with the
Cross-Entropy method)
Input: Prior model p(x;θ0), simulator p̂(o|x),

observation o, quantile parameter q, gradient
steps parameter M

1 for t← 1, . . . , T do
2 Sample x1, . . . ,xN ∼ p(x;θt−1)
3 Obtain o1, . . . ,oN ∼ p̂(o|x) using the simulator
4 Calculate S(oi,o) for all o1, . . . ,oN
5 Select top qN samples, set δ = S(o⌊qN⌋,o)
6 Optimize

argmaxθ
∑N

i=1 1S(oi,o)≥δ log p(x;θt) using
M steps of SGD

7 return updated model p(x;θT )

To further improve performance and131

shorten training times, we follow the132

cross-entropy method (CEM) formu-133

lation described by Botev et al. [24].134

We view the objective in Eq. 1 as135

the problem of finding a distribu-136

tion p(x;θ) which produces samples137

with high scores S(o′,o). To op-138

timize S(o′,o) (which is implicitly139

a function of x through the simula-140

tor), we treat p(x;θ) as an impor-141

tance sampling distribution and ad-142

just it such that it samples values of143

x that are close to the ones implic-144

itly maximizing S(o′,o). At each it-145

eration t we sample a batch {xi ∼146

p(x;θt−1)}Ni=1, obtain observations using the simulator {oi ∼ p̂(o|xi)}Ni=1 and calculate their re-147

spective scores {S(oi,o)}Ni=1. The top qN samples with the best scores are selected, where q is a148

pre-selected quantile hyperparameter. We define δ = S(o⌊qN⌋,o), the score function value for the149

⌊qN⌋-th sample. The complete CEM-inspired MACE objective is given by:150

argmax
θ

N∑
i=1

1S(oi,o)≥δ log p(xi;θ). (3)

Botev et al. [24] solve a stochastic program for the each iteration of θ. Instead, we optimize this151

objective via stochastic gradient descent (SGD) as described above. The full MACE algorithm is152

shown in Alg. 1.153

3.2.1 Implementation154

Although MACE is suitable in principle for any generative model, some considerations must be155

made for specific types of models.156

Autoregressive models provide an explicit likelihood value for a sample x using the chain rule:157

p(x) =
∏

i p(xi|xi−1, . . . , x0). Therefore, they are straightforward to use with MACE by denoting158

the model weights as θ and directly optimizing the objective in Eq. 3.159

VAEs do not provide an explicit likelihood value p(x). However, they are trained160

with a lower bound estimate of p(x), namely the Evidence Lower Bound (ELBO)161

log p(x|z;ψ) − DKL (q(z|x;ϕ)∥p(z)), where p(x|z;ψ) is the VAE decoder parameter-162

ized by ψ, q(z|x;ϕ) is the encoder parameterized by ϕ and p(z) is the prior distri-163

bution of the latent space parameterized by µz,σz . We can use the ELBO in Eq. 3164

as a lower bound of the log-likelihood term log p(x;θ), optimizing the VAE parameters:165

argmaxψ,ϕ

∑N
i=1 1S(oi,o)≥δ [log p(xi|zi;ψ)−DKL (q(zi|xi;ϕ)∥p(z))] . We found the opti-166

mization of the entire set of VAE weights ψ,ϕ to be difficult. Instead, we use θ = {µz,σz} as our167

tuned parameters, and keep the encoder and decoder weights frozen. This choice of θ only affects the168

2We compare MACE to this objective as a baseline; see experiment results in Sec. 4.1 and Sec. 4.2
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second term of the objective, and specifically p(z). The objective of this version of MACE, which169

we dub MACE-VAE, then becomes: argmaxθ
∑N

i=1 1S(oi,o)≥δ [−DKL (q(zi|xi)∥p(z;θ))] .170

4 Experiments171

MACE is designed to allow deep generative models to adapt quickly to new evidence. To demon-172

strate the potential of MACE in robotic applications, we consider several domains in which these173

models are used to capture complex data distributions and show that MACE leads to practical solu-174

tions, improving on the alternatives. In the subsections below, we describe two of these environments175

and how they fit our setting, followed by a summary of experiment results. A third environment,176

in which we use MACE to recover object point clouds from partial point cloud observations, is177

described in Appendix C, due to lack of space.178

4.1 Inferring Object Shapes by Grasping179

Inferring object shapes from tactile measurements [10] is vital when visual sensors are unavailable180

or limited. We investigate whether details about an object can be inferred using only the contact181

points between it and the robot gripper fingertips. Differing from the approach of Pastor et al. [10],182

which aims to classify objects into 36 classes, we consider an expressive prior distribution over183

possible shapes represented by a deep generative model.184

(a) Average scores

(b) Sample diversity

Figure 1: Quantitative results for the multi-
fingered grasping experiments.

Dataset. We use the “airplane” class from the185

ShapeNet [25] dataset as a representative collection186

of objects with complex shapes. This class contains187

4045 objects, represented as 2048-point PCs.188

Model. The prior generative model p(x;θ0) is a VAE189

trained on full PCs of objects. We use MACE-VAE190

as described in Sec. 3.2.1. Our VAE architecture uses191

PointNet [26] in the encoder and a fully connected192

decoder, and is based on the implementation used in193

Daniel and Tamar [27]. Additional training details194

and hyperparameters can be found in Appendix A.195

Simulator. For ease of implementation, we use a sim-196

ple geometric simulator to calculate contact points.197

Details can be found in Appendix A.198

Score Function. The score function for k-fingered199

grasps, aggregating distances between contact points200

and clipped to the range of [0, 1], is defined as201

S(o′,o) = max
(
1− 1

k

∑k
j=1 ||p

(o′)
j − p

(o)
j ||, 0

)
,202

where p
(o)
j is the j-th contact point of observation o.203

Inferring Object Shapes by Grasping: Results204

We adapt the distribution of airplane models by ob-205

taining a single observation o representing contact206

points of k = 5 robot fingers with an unknown ob-207

ject. To evaluate the tuning process, we sample 49208

objects xi from the prior and another 49 from the posterior, and calculate the average score for the209

matching observations oi obtained from the simulator using S(oi,o). In addition, we compute the210

pairwise Chamfer distances between every two objects in each sampled set and take their mean as a211

measure of sample diversity. Scores and sample diversity are presented in Fig. 1.212

5



(a) Samples from the prior (b) Samples from the posterior (c) Samples from the CVAE

Figure 2: Tuning for the multi-finger grasping domain. Model samples are shown in white and finger
positions and contact points of the given observation o are represented by orange cylinders.

As a baseline, we conduct the same experiment using the importance sampling loss described in213

Eq. 2. We replace the log-likelihood term with the ELBO as in MACE-VAE (see Sec. 3.2.1), with214

the rest of the algorithm components as in Alg. 1. We find that this objective performs poorly215

compared to MACE (see Fig. 1). Moreover, optimizing it is an order of magnitude (up to 20×)216

slower than using MACE.217

As an additional baseline, we train a CVAE conditioned on contact points calculated by grasping218

each training-set object in simulation. Albeit its advantage of fast amortized inference, the CVAE219

is limited to observations seen in its training set. We demonstrate this disadvantage in the out-of-220

distribution experiment below. We tune our model and compare results to the CVAE baseline using221

100 objects from the held-out test set of the ShapeNet “airplane” class, all with the same observation222

o, in which the robot finger directions are the four diagonal corners of the xy plane, and a fifth along223

the x axis. Quantitative results can be seen in Fig. 1. The CVAE baseline outperforms the tuned224

posterior in scores, but produces a distribution with lower diversity.225

In addition to the quantitative results, we present samples from the prior, posterior and CVAE models226

in Fig. 2 . These showcase the diversity of the model tuned by MACE compared to the CVAE227

distribution. Additional samples and tuning hyperparameters can be found in Appendix A.228

Out-of-distribution experiment. We run the entire set of experiments a second time using a differ-229

ent observation, with the fifth finger pointing along the opposite direction of the x axis. This is out230

of the joint distribution p(x,o) which the CVAE baseline was trained on. Consequently, its results231

greatly deteriorate. Conversely, the model tuned by MACE outperforms it both in diversity and in232

scores. Results can be seen in Fig. 1. Visuals of samples from the CVAE and the MACE-tuned233

posterior model with the new OOD observation can be viewed in Fig. 4 in Appendix A.234

4.2 Inverse Kinematics with Obstacles235

Inverse kinematics (IK) is the calculation of the configuration of robot joints given a desired pose in236

Cartesian space. IK calculation is an especially challenging optimization problem when obstacles237

are involved and has no closed-form solution in the general case. While previous work has attempted238

to learn IK using generative models [28, 29, 30], we focus on tuning a pre-trained IK model to con-239

sider novel obstacles. We view the obstacle-constrained IK problem as an inference problem, where240

the prior p(x;θ0) is a generative model trained to represent a distribution of joint configurations241

conditioned on the end-effector position3 when no obstacles are present. Note that this is a complex242

and multi-modal distribution which accounts both for self-collisions and for the conditioning on the243

desired pose. The observation is an obstacle configuration, and the posterior captures a distribution244

over non-colliding joint configurations.245

Dataset. We collect 10M random valid configurations of a Franka Emika Panda 7-DoF robotic ma-246

nipulator using PyBullet physics simulation [31], and record their matching end-effector positions.247

3The pose can also include the end-effector orientation; in this work we focus on position-only IK.
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We collect these configurations in an environment with no obstacles present; therefore, valid con-248

figurations are ones which conform to the joint limits of the robot, and where the robot is not in249

collision with itself.250

Model. We train an autoregressive model with joint positions generated sequentially, conditioned251

on the previous joints as well as the end-effector position: p(q1|pee), p(q2|q1,pee) etc. Probability252

distributions for each joint are represented by Gaussian mixture models. Further architecture and253

training details can be found in Appendix B.254

Simulator. We use open-source physical simulation environments, optionally with obstacles in the255

robot workspace. The simulated robot can be set to a specific joint configuration q. The simulator256

returns whether the robot is in collision with itself or the obstacles, as well as the distance between257

the desired position and the actual end-effector position obtained by setting the robot to q.258

Score Function. We opt for a score function that penalizes collisions harshly, and therefore set259

S(o′,o) = 0 if the robot is in collision in a given configuration. Otherwise, the score is proportional260

to the distance between the generated end-effector position and the desired position: S(o′,o) =261

exp(−||pee,desired − pee,actual||).262

Inverse Kinematics with Obstacles: Results263

We run two experiments in this domain, with different types of obstacle in the workspace, both using264

the PyBullet simulation environment [31]. In the first experiment, the obstacle is a vertical window,265

with the desired end-effector positions located beyond it. A qualitative sample from the prior model266

p(x;θ0) (trained with no obstacles) can be viewed in Fig. 3a, where it is clear that many of the267

sampled configurations are in collision with the obstacle. Fig. 3b shows samples from the posterior268

model tuned with MACE, which almost never collide with the obstacle.269

Table 1: Inverse Kinematics Results

Model Score Success Rate

Prior 0.129± 0.015 0.132± 0.015
Posterior (MACE) 0.937± 0.079 0.941± 0.079
Posterior (IS) 0.317± 0.121 0.339± 0.122

To show that the result does not depend270

on obstacle shape, we conduct a simi-271

lar experiment with a wall obstacle, with272

the target end-effector position behind273

it. Samples from the model tuned by274

MACE can be seen in Fig. 3c, again di-275

verse and non-colliding. We verify this276

result quantitatively by sampling 10 goal end-effector positions behind the wall, and tuning the277

model with the respective score functions. As a baseline, we also tune the model with the impor-278

tance sampling (IS) objective of Eq. 2. We report the mean scores over 1000 samples from the279

prior, the posterior tuned with MACE and the posterior tuned with the IS baseline in Table 1. We280

additionally report the success rate, calculated as the percentage of sampled configurations which281

are not in a collision state. The results clearly show improvement when tuning with MACE. Tuning282

hyperparameters and additional samples can be found in Appendix B.283

Comparison to MoveIt Inverse Kinematics284

The MoveIt [15] motion planning framework included with ROS has a standard IK service, used to285

infer goal positions for motion planning algorithms. While it is a powerful tool, we demonstrate that286

MACE can improve on its solutions where it struggles to find them quickly. We construct a scenario287

of a box in front of the robot, with the desired end-effector position inside it (see Fig. 3d). Using288

our prior model only (no tuning steps, for maximal speed), we sample 20 batches and test them289

for collisions in the IsaacGym [13] GPU-based simulator, using our score function. We take the290

configurations with the maximum score as our IK solution. In Table 2, we report calculation time291

as well as solution accuracy for our method compared to MoveIt. In addition, since MoveIt depends292

on the initial robot position for the IK calculation, we use the position sampled from our model293

as an initial position for MoveIt, thus reaping the benefits of both methods. Time and accuracy294

for this setting are reported in the third column of Table 2. Experiment details (including a MACE295

adaptation experiment for the box domain) and additional visual results are available in Appendix B.296
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(a) Window task: prior (b) Window task: tuned (c) Wall task: tuned (d) Box task

Figure 3: Tuning for the robot inverse kinematics domain. The obstacle is shown in blue, while
the goal end-effector position is shown by a green ball. While Fig. 3a shows the prior distribution
overlayed with the window obstacle, the same prior was used for all tasks (conditioned on the ap-
propriate end-effector targets). Fig. 3b displays samples from the posterior distribution tuned with
MACE for the window obstacle, while Fig. 3c shows the same for the wall obstacle. In both cases,
the posterior rarely admits configurations colliding with the obstacles, while remaining diverse.

Table 2: Inverse Kinematics Comparison to MoveIt for the Box Task

MACE MoveIt MACE + MoveIt
Time (s) Acc. (cm) Time (s) Acc. (cm) Time (s) Acc. (cm)

0.106± 0.008 1.92± 3.01 1.553± 1.103 < 10−5 0.641± 0.925 < 10−5

5 Limitations297

Forward simulator. A simulator that emits observations similar to the environment may not always298

be available, causing a sim-to-real gap which may deteriorate results. Approaches such as domain299

randomization [32, 18] may mitigate this problem.300

Inference speed. In our experiments, MACE inference takes between 7−65 seconds (depending on301

the domain) which is still not fast enough for real-time inference applications. While the sequential302

nature of MACE optimization is an unavoidable computational limitation, code optimizations as303

well as faster hardware4 could dramatically speed up computation.304

Quality of the prior. The quality of the tuned posterior depends greatly on the quality of the pre-305

trained deep generative model: if high-scoring samples have low probability under the prior, MACE306

may not find them. In our experiments, we found that deep generative models provide priors accurate307

enough for the domains we investigated.308

6 Conclusion and Outlook309

We presented MACE, a method for adapting deep generative models using the cross-entropy method,310

and demonstrated its usage for multiple robotic tasks. MACE allows the model to quickly adapt to311

previously unseen conditions while producing diverse posterior distributions. Our promising results312

for inverse kinematics show that deep generative models, when tuned appropriately using MACE,313

may help speed up robotic problems that are typically solved using non-learning based approaches.314

In future work, we intend to explore ways to expedite the optimization process and improve the315

usability of MACE in robotic tasks. Additionally, in this work we only considered the inference316

problem. However, in a realistic scenario the agent may also have control over which observations317

to acquire. In this case, it would be interesting to extend MACE to an active sampling method. An-318

other related direction is to use MACE as an inference method for meta-RL, replacing the currently319

dominating CVAE-based approaches [12, 34].320

4our experiments used unoptimized PyTorch [33] code and a single Nvidia GTX 1080 Ti GPU
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