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ABSTRACT

The advances in neural networks have driven many companies to provide predic-
tion services to users in a wide range of applications. However, current prediction
systems raise privacy concerns regarding the user’s private data. A cryptographic
neural network inference service is an efficient way to allow two parties to execute
neural network inference without revealing either party’s data or model. Never-
theless, existing cryptographic neural network inference services suffer from huge
running latency; in particular, the latency of communication-expensive crypto-
graphic activation function is 3 orders of magnitude higher than plaintext-domain
activation function. And activations are the necessary components of the mod-
ern neural networks. Therefore, slow cryptographic activation has become the
primary obstacle of efficient cryptographic inference.
In this paper, we propose a new technique, called SAFENet, to enable a Secure,
Accurate and Fast nEural Network inference service. To speedup secure inference
and guarantee inference accuracy, SAFENet includes channel-wise activation ap-
proximation with multiple-degree options. This is implemented by keeping the
most useful activation channels and replacing the remaining, less useful, channels
with various-degree polynomials. SAFENet also supports mixed-precision acti-
vation approximation by automatically assigning different replacement ratios to
various layer; further increasing the approximation ratio and reducing inference
latency. Our experimental results show SAFENet obtains the state-of-the-art in-
ference latency without a decrease in accuracy, reducing latency by 38% ∼ 61%
over prior techniques on various encrypted datasets.

1 INTRODUCTION

Neural network inference as a service (NNaaS) is an effective method for users to acquire various
intelligent services from powerful servers. NNaaS includes many emerging, intelligent, client-server
applications such as smart speakers, voice assistants, and image classifications Mishra et al. (2020).
However, to complete the intelligent service, the clients need to upload their raw data to the model
holders. The network model holders in the server are able to access, process users’ confidential
data from the clients, and acquire the raw inference results, which potentially violates the privacy
of clients. So there is an urge requirement to ensure the confidentiality of users’ financial records,
healthy-care data and other sensitive information during NNaaS.

Modern cryptography such as Homomorphic Encryption (HE) and Multi-Party Computation (MPC)
enables secure inference services that protect the user’s private data. During secure inference ser-
vices, the provider’s model is not released to any users and the user’s private data is encrypted by
HE or MPC. CryptoNets Gilad-Bachrach et al. (2016) is the first HE-based secure neuron network
on encrypted data; however, its practicality is limited by huge computational overhead. For exam-
ple, CryptoNets takes ∼ 298 seconds to perform one secure MNIST image inference on a powerful
server; its latency is 6 orders of magnitude longer than the unencrypted inference. MiniONN Liu
et al. (2017) and Gazelle Juvekar et al. (2018) prove that using a hybrid of HE and MPC it is possible
to design a low-latency, secure inference. Although Gazelle significantly reduces the MNIST infer-
ence latency of CryptoNets into ∼ 0.3 seconds by using a hybrid of HE and MPC, it is still far from
practical on larger dataset such as CIFAR-10 and CIFAR-100, due to heavy HE encryption protocol
and expensive operations to support the non-linear activation function in a deep neural network. For
instance, Gazelle requires ∼ 240 seconds latency and ∼ 8.3 GB communication to perform ResNet-
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32 on the CIFAR-100 dataset Mishra et al. (2020). NASS Bian et al. (2020), CONAD Shafran et al.
(2019) and CryptoNAS Ghodsi et al. (2020) are proposed to design cryptography-friendly neural
network architectures, but they still suffer from heavy encryption protocol in the online phase. Del-
phi Mishra et al. (2020) significantly reduces the online latency by moving most heavy cryptography
computations into the offline phase. Offline computations can be pre-processed in advance.

State-of-the-art cryptographic inference service Delphi still suffers from huge online latency; this
is because a big communication overhead between the user and the service provider is required to
support cryptographic ReLU activations. Our experiments show that the communication overhead
is proportional to ReLU units in the whole neural network. Delphi attempts to reduce inference
latency by replacing expensive ReLU with cheap polynomial approximation. Unfortunately, most
ReLU units are found to be difficult to substitute without incurring a loss of accuracy. The accuracy
will be dramatically decreased as more ReLU units are approximated by polynomials. Specifically,
Delphi only replaces ∼ 42%ReLU numbers on a CNN-7 network (MiniONN Liu et al. (2017)
detailed in Section 6.2) and ∼ 20%ReLU numbers on ResNet-32 network, with < 1% accuracy
decrease. When Delphi approximates more ReLU units, > 3% inference accuracy will be lost
compared to an all-ReLU model. If accuracy loss is constrained, non-linear layers still occupy
almost 62% to 74% total latency in CNN-7 and ResNet-32 networks. Therefore, slow, non-linear
layers are still the obstacle of a fast and accurate secure inference.

Our contribution. One key observation is that the layer-wise activation approximation strategy in
Delphi is too coarse-grained to replace the bottleneck layers in which theReLU units are mainly lo-
cated, e.g. the first layer in CNN-7 occupies > 58% ReLU units. The channels in bottleneck layers
are difficult to completely replace without a small accuracy loss. To meet accuracy constraints and
speedup secure inference, SAFENet includes a more fine-grained channel-wise activation approx-
imation to keep the most useful activation channels within each layer and replace the remaining,
less important, activation channels by polynomials. In this way, only partial channels in each layer
will be approximated, which is approximate-friendly for bottleneck layers. Another contribution
of SAFENet is that automatic multiple-degree polynomial exploration in each layer is supported,
compared to prior works using only degree-2 polynomials. Additionally, SAFENet enables mixed-
precision activation approximation by assigning different approximation ratios to various layers,
which further replaces more ReLU units with cheap polynomials. Our results show that under the
same accuracy constraints, SAFENet obtains state-of-the-art inference latency, reducing latency by
38% ∼ 61% over the prior techniques.

2 BACKGROUND AND RELATED WORK

Threat Model and Cryptographic Primitives. Our threat model is the same as previous work
Delphi Mishra et al. (2020). More specifically, we consider the service holder as a semi-honest
cloud which attempts to infer clients input information but follows the protocol. The server holds
the Convolutional Neural Network (CNN) model and the client holds the input to the network. For
linear computations, the client encrypts input and sends it to the server using a HE scheme Mishra
et al. (2020), and then the server returns encrypted output to the client. The client decrypts and
decodes the received output. The secret sharing (SS) in Delphi is used to protect the privacy of
intermediate results in the hidden layers. Then garbled circuits (GC) guarantees the data privacy
in the activation layers, like ReLU , and SS is used to securely combine HE and GC. Other than
GC, Beaver’s multiplicative Triples (BT) proposed by Beaver (1995) can be used to implement
approximated activation using secure polynomials. BT-based polynomial approximation for ReLU
is 3-orders of magnitude cheaper than GC-based ReLU units on average, so it is used to design
approximated secure activation function. At the end of secure inference, the server has learned
nothing but the client learns the inference result. More details of cryptographic primitives can be
found in Appendix A.1.

2.1 CRYPTOGRAPHIC INFERENCE.

Modern neural networks usually consist of linear convolution layers and non-linear activation layers.
As Figure 1a shows, current state-of-the-art cryptographic inference, Delphi, has an offline phase
and an online phase. The offline phase is independent of input data and is used to prepare data for
the subsequent online phase. Each phase also has linear operations and non-linear operations.
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Figure 1: The secure inference scheme of CNN-7 on CIFAR-10 at a minimum of 84.5% accuracy.

1. Offline linear layer. During the offline linear process, the client samples a random matrix rt that
has the same shape with private input xt, and then sends its encryption [rt] to server. The server
processes homomorphic convolutions and returns [rt] ∗Wt − [ut] to client, where Wt is the t-layer
network weights and [ut] is a ciphertext of sampled matrix by server. The last step in the offline
linear layer is that client obtains Ct = rt ·Wt − ut which is one part of secret sharing of xt ·Wt.

2. Online linear layer. The online linear phase aims to let the server obtain St = (xt−rt) ·Wt+ut
which is the other secret sharing part of xt ·Wt. It is almost as fast as the unencrypted computation,
since the online input is a plaintext xt − rt.
3. Offline Layer-Wise Activation layer. Delphi supports a layer-wise activation function where
each activation layer either is ReLU based on GC or is the approximated polynomial based on BT.
During the offline phase, GC needs to generate and share the garbled circuits. BT needs to generate
and share the Beaver’s triples.

4. Online Layer-Wise Activation layer. During the online phase of layer-wise activation, ReLU
is either performed by GC or the approximated degree-2 polynomial. The latency of approximated
activation implemented by BT is 192× smaller than ReLU based on GC.

Latency Bottleneck and Motivation. Figure 1a shows our baseline Delphi suffers from long la-
tency and low accuracy under coarse-grained layer-wise activation approximation. Specifically, 0L
in Figure 1b means none of theReLU layers and 0%ReLU units are approximated by polynomials.
The activation latency takes 72.5% of total latency. For only the online phase, activation latency oc-
cupies∼ 99% of the online latency. Therefore, activation layers are the performance bottleneck. 0L
also shows the all-ReLU model achieves 85.1% accuracy. With increased approximation layer num-
bers, Delphi is able to improve the approximation ratios, but the inference accuracy is decreased at
the same time. With the 84.5% accuracy constraints, Delphi at most replaces 6-layer ReLU layers,
with an approximation ratio of ∼ 42% ReLU units. Figure 2 shows the reason why the approxi-
mation ratio is so low (42%); it is difficult to totally replace the ReLU units by polynomials in the
bottleneck layer that has > 58% ReLU units without a large decrease in accuracy. The layer-wise
activation approximation is too coarse-grained. If Delphi aims to replace > 42% ReLU units, the
first ReLU layer has to be replaced by polynomials, which brings a significant accuracy decrease.
The ReLU units in modern networks are mainly located in the first few layers, and the ReLU num-
bers are usually decreased exponentially as shown in Figure 2. Especially for much deeper neural
networks on a large dataset, replacing the first ReLU layer significantly decreases the accuracy.
To solve above problems, we propose a more fine-grained channel-wise activation approximation
method which is modelled as a hyper-parameter optimization problem.

2.2 POPULATION BASED TRAINING (PBT).
Inspired from evolutionary algorithms, Population Based Training (PBT) proposed by Jaderberg
et al. (2017) is a more efficient method to jointly optimize model weights and user-specified
hyper-parameters automatically during training. Many Reinforcement Learning (RL) based hyper-
parameter optimization algorithms (Wang et al. (2019) and Lou et al. (2020)) are not able to effi-
ciently optimize hyper-parameters, since they simply stop training prematurely and consider par-
tially trained accuracy as the final accuracy or reward. PBT is computationally efficient because
it adapts parallel scheme and weight sharing during the evolutionary process. Specifically, given a
pre-trained model, many workers are created and each worker shares the same pre-trained weights
and has unique hyper-parameters. Multiple workers are then independently trained for several iter-
ations and evaluated by the user-specified score function. In the exploitation, workers with better
scores will keep their parameters, and copy their weights and hyper-parameters to the other workers.
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Features Gazelle NASS CONAD Delphi CryptoNAS SAFENet
Optimized Activation 7 7 3 3 3 3
Channel-Wise 7 7 7 7 7 3
Mixed-Precision 7 7 7 7 7 3
Multiple-Degrees 7 7 7 7 7 3

Table 1: Cryptographic inference works.
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Figure 2: Neurons ratio.

Workers with worse scores will perform exploration to randomly scale their hyper-parameters. The
training, scoring, exploitation and exploration repeat until the score function is convergent. In this
paper, we model the channel-wise activation approximation task as a hyper-parameter optimization
problem.

2.3 COMPARISON WITH PRIOR WORKS.

Table 1 shows a comparison between prior works and SAFENet. Gazelle Juvekar et al. (2018)
and MiniONN prove the feasibility of the hybrid use of GC and HE, but they both suffer from
huge latency. NASS Bian et al. (2020), CONAD Shafran et al. (2019), and CryptoNAS Ghodsi
et al. (2020) try to improve Gazelle and MiniONN’s performance by the co-design of neural net-
work architectures and cryptographic protocol, but they all require a heavy, online, cryptographic
phase. Delphi Mishra et al. (2020) reduces online latency by moving some online operations into the
offline phase and replacing layer-wise activation by degree-2 polynomials. Only our SAFENet sup-
ports more fine-grained, channel-wise, activation approximation with multiple-degree polynomial
exploration, shown in Table 1. SAFENet also enables the mixed-precision approximation ratios for
different layers. Other works like XONN Riazi et al. (2019) and soteria Aggarwal et al. (2020) focus
on GC-based binary neural networks, thereby suffering from inference accuracy loss.

3 SAFENET

Overview. In order to replace expensive non-linear activations by cheap linear polynomial approx-
imations as much as possible, we mainly use three methods. Firstly, we use fine-grained activation
approximation in a channel-wise manner, instead of coarse-grained approximation in a layer-wise
manner. Secondly, since different layers in neural networks have different contributions on the
inference accuracy, we propose an automatic mixed-precision method to assign a proper approxi-
mation ratio for each layer. According to the assigned approximation ratio, SAFENet replaces the
corresponding channels in the ascending order of their channel important factors. Mixed-precision
further improves the total approximation ratio, given an accuracy threshold. Moreover, SAFENet’s
mixed-precision planner explores different polynomial approximations of various degrees.

SAFENet Methods Definition. Given an T -Layer CNN model, we define that {Wt}T−1
t=0 and

{At}T−1
t=0 are the model weights and activations, and let Wt ∈ Rcout×cin×ww×hw and At ∈

Rcin×wa×ha be the t-th layer model weights and activations, where cout is output channel number,
cin is input channel number, ww and hw are kernels’ width and height, wa and ha are activations’
width and height. The t-th layer output feature maps Ot ∈ Rcout×wo×ho can be derived by Equa-
tion 1, where Ot,i,:,: is the output feature map of t-th layer i-th channel, At,j,:,: is the t-th layer and
j-th channel activation, Wt,i,j,:,: is the model parameters of t-th layer, i-th output channel and j-th
input channel, wo and ho are output feature’s width and weight, and ∗ is the convolution operation.

Ot,i,:,: =

cin∑
j=1

At,j,:,: ∗Wt,i,j,:,:. (1)

Then the channel-wise activation approximation can be defined as Equation 2, where (t+1)-th layer
activationAt+1 of i-th channel is derived by expensiveReLU when the corresponding mask matrix,
mt+1,i = 0, otherwise the approximated activation.

At+1,i,:,: =

{
ReLU(Ot,i,:,:), if mt+1,i = 0.

Approx(Ot,i,:,:), if mt+1,i = 1.
(2)

mt+1,i =

{
0, if imp order(At+1,i) ≥ nt+1 × (1− αt+1).

1, Otherwise.
(3)
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Equation 3 defines the mask matrix mt+1,i. Here, imp order(At+1,i) ∈ [1, cout] is the importance
ascending order of i-th channel At+1,i in the layer (t+1), and imp order(At+1,i) can be derived by
sort(

∑Cin

j=1 |Wt,i,j,:,:|), where
∑Cin

j=1 |Wt,i,j,:,:| is the L-1 norm of i-th channel weight, and this L-1
norm is proven effective as the channel importance of At+1,i by prior works Li et al. (2017) and Liu
et al. (2019). nt+1 in Equation 3 is the neuron number in (t+1)-th layer and αt+1 is the activation
approximation ratio in the (t+1)-th layer. Equation 3 shows that channel-wise activation approxima-
tion in the (t+1)-th layer only approximate αt+1-ratio less important activations with polynomials
by setting their corresponding mask matrix entry mt+1,i = 1. Approx() activation function is
enabled by multiple options including degree-3 polynomial a1x3+a2x2+a3x+a4, degree-2 poly-
nomial b1x2 + b2x+ b3, and degree-0 pruning, where a1 to a4 and b1 to b3 values are derived from
the model training. The reason why we choose these three options is that our experiments show
larger degree (> 3) polynomial approximation is hardly convergent in training because of the un-
controllable gradient exploding, and smaller degree (< 2) polynomial approximation shows worse
performance. However, the proper insertions of degree-0 pruning may help on gradient exploding in
some layers. We use hyper-parameter βt ∈ {0, 2, 3} as the polynomial degree in theApprox() func-
tion. Channel-Wise Activation Approximation means T activation approximation ratios {αt}T−1

t=0
are designed in a hand-crafted manner with βt = 2. Mixed-Precision Activation Approxima-
tion automatically search the optimal combination of {αt}T−1

t=0 using our improved PBT algorithm
called BTPBT. BTPBT is described in Algorithm 1. Multiple-degree approximation means that
approximation options {βt}T−1

t=0 are searched with αt by BTPBT algorithm.
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Figure 3: The overview of SAFENet working scheme.

Working Flow. Figure 3 depicts the working flow of SAFENet. 1 At first, the mixed-precision
activation planner randomly initiates approximation parameters, {αt}T−1

t=1 and {βt}T−1
t=1 , to control

channel-wise activation approximation and approximation options for each layer. 2 Approximation
parameters including {αt}T−1

t=1 and {βt}T−1
t=1 are received by the neural network model to decide

which activation channels are approximated first, and then to decide which approximation method is
picked up. 3 In each t-th layer, nt · αt unimportant channels are approximated by polynomials and
nt · (1−αt) more important channels are kept as original activation function, e.g. ReLU , according
to Equation 2 and Equation 3. 4 The approximation methods for nt · αt unimportant ReLU units
are decided. The approximation option consists of multiple-degree polynomials, including degree-
βt polynomials, where βt ∈ {0, 2, 3}. 5 The neural network model with channel-wise activation
approximation is performed for several times and outputs its inference accuracy. 6 The mixed-
precision activation planner uses the BTPBT method to compute the optimizing score defined in
Equation 4, aware of accuracy and reduced latency at the same time. 7 The generated score is used
to guide the approximation parameters in the next iteration. These steps repeat until cryptographic
inference accuracy and latency threshold are satisfied.

Score. The goal of our SAFENet is to reduce cryptography latency by replacing expensive original
activation with cheap approximated activation as much as possible, given the user-defined accu-
racy threshold. Equation 4 is used to assign a score for the channel-wise activation approxima-
tion parameters αt and βt.

∑T
t=1 αt × nt is the number of ReLU units that are replaced. R(βt)

means the reduced time ratio using a degree-βt polynomial to replace ReLU units. For example,
R(βt = 3) = 1 − 0.2

20.1 = 99.9%, since amortized degree-3 polynomial and ReLU cost 0.2 us and
20.1 us, respectively. Therefore,

∑T
t=1 αt×nt×R(βt) represents the reduced ratio of total latency.

Our score keeps the balance of accuracy and efficiency, enabling users to replace more activation
neurons with multiple approximated polynomial degrees, while meeting the accuracy constraints.

score = accuracy × (1 +

T∑
t=1

αt × nt ×R(βt)) (4)
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Mixed-Precision Activation Planner. Finding appropriate parameters αt and βt to achieve a higher
score in Equation 4 is a typical hyper-parameter optimization problem. Hand-crafted optimization
for parameters is only practical to handle the search space of a single pair of α and β for all layers,
which confines the improvement effect on activation approximation. Therefore, mixed-precision
activation approximation is proposed to enable each layer to have unique αi and βi. However,
applying hyper-parameter optimization methods to automatically search mixed-precision activation
approximation is non-trivial. This is because of the huge search space of αi and βi for each layer.
Assume αi ∈ [0, 1] and it is discretized into the times of 0.05, therefore 21 options; βi ∈ {0, 2, 3},
has 3 options. If a neural network model has T layers, the search space is (3 × 21)T . For this
large search space, even PBT and Deep Reinforcement Learning (DRL) based methods (Wang et al.
(2020)) suffer from slow learning speed and low approximation ratio. Figure 4b shows PBT and
DRL methods cannot effectively reduce latency by mixed-precision activation approximation.

We propose Binary-Tree PBT algorithm (BTPBT) in Algorithm 1 to improve learning speed and
further reduce secure latency. The high-level idea is to divide and conquer the complex mixed-
precision search into an easier semi-mixed-precision search. This is implemented by iteratively
performing PBT in a binary tree order. Line 1 ∼ 3 show the process to construct a (levels + 1)-
layer binary tree. Each node has properties {α, β, n,W,A, S} about approximation ratio, degree,
total neuron numbers, model weights, accuracy and score. During nodes initialization, we define
α = 0, β = 2, and n,W,A parameters are derived from the pre-trained model, and S is acquired
by equation 4. Figure 4a shows a binary tree example for the CNN-7 network. The root node,
nd[0][0], consists of all neural networks layers, which means that its properties values, like α, are
shared by all layers. In line 3 of algorithm 1, PBT function is used to update parameters of the root
node. The lines from 4 ∼ 8 are used to perform PBT on the two sibling nodes simultaneously. If
the current level has multiple sibling nodes, PBT is performed on these sibling nodes sequentially
to avoid exploding search space. Line 6 ∼ 8 mean that the approximation neurons number of two
sibling nodes are larger than their parent node. The lines from 9 ∼ 10 aim to filter the levels with
lower accuracy than defined threshold Athreshold. Line 11 is used to select the the best candidate
with the maximum score S. If we still need to improve the current candidates, line 12 takes the
current best candidate as a good warm-starting point to globally search for better results.

1,2,3,4,5,6,7,-1,2,3,4,5,6,7,-

1,2,3,41,2,3,4 5,6,7,-5,6,7,-

1,21,2 3,43,4 5,65,6 7,-7,-

11 22 33 44 55 66 77 --

nd[0][0]: all layers in model

nd[1][0]

nd[2][0]

nd[3][0]

Each node has properties : nd[level][id].{α, b,n,W,A,S}

node[1][1]

nd[2][1]
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(a) Binary tree in BTPBT for CNN-7.
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Figure 4: A binary tree example and the learning curve of CNN-7 on CIFAR-10.

Algorithm 1 BTPBT(Athreshold)

1: levels = log2T
2: construct (levels+1)-layer binary tree and initialize all nodes nd[level][id].{α, β, n,W,A, S};
3: nd[0][0].{α, β, n,W,A, S} ← PBT(nd[0][0]);
4: for i = 0, i < levels− 1, i++ do
5: for j = 0, j < 2i, j ++ do
6: Limit child nodes’ search space by nd[i][j].α× nd[i][j].n >
7: nd[i+1][2j].α× nd[i+1][2j].n + nd[i+1][2j+1].α× nd[i+1][2j+1].n;
8: {nd[i+1][2j], nd[i+1][2j+1]}.{α, β, n,W,A, S}←PBT({nd[i+1][2j], nd[i+1][2j+1]});
9: if nd[i][2i − 1].A > Athreshold then

10: Store nd[i][0 : 2i − 1] into candidate lists;
11: Select the entry with the maximum score S from candidates, denoted as nd[level][0 : 2level−1];
12: Return nd[level][0 : 2level−1].{α, β, n,W,A, S} ← PBT(nd[level][0 : 2level−1]);

Figure 4 depicts the learning curves of PTB, DRL Wang et al. (2020), and our SAFENet, which
are used to search hyper-parameters αi and βi for the same score shown in Equation 4. Different
from PBT and DRL that directly search hyper-parameters for each layer, BTPBT first constructs a
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binary-tree structure shown in Figure 4a to iteratively search shared parameters by several layers.
After 200 training epochs, BTPBT is able to replace ∼ 80% neurons, but PBT and DRL only
replace < 30% neurons. In the beginning of training, baselines and BTPBT are given the same
pre-trained model. The DRL setting is specified in Wang et al. (2020). For PBT and our work, the
evolution cycle between two exploitations is 20 iterations, and 50 workers are used to simultaneously
search parameters. For BTPBT, each two sibling nodes and the root node require a PBT separately,
therefore 2levels PBT is required. We set 20 epochs for each above PBT. We also use 40 epochs to
globally search the last-level nodes. The total 200 epochs with 50 workers take ∼ 7 GPU hours.

4 EXPERIMENTAL METHODOLOGY

Benchmarks and Dataset. Our secure inference experiments rely on CIFAR-10 and CIFAR-100
datasets. Both CIFAR-10 and CIFAR-100 contain 50000 training images and 10000 testing images,
where each image size is 32×32×3. Images in CIFAR-10 are classified into 10 classes, but CIFAR-
100 has 100 classes. Our baseline Delphi shows that CIFAR-100 is the most difficult dataset in
the existing secure inference. We adopt CNN-7 specified in MiniONN Liu et al. (2017) to evaluate
CIFAR-10. This CNN-7 architecture is also used in Delphi Mishra et al. (2020). Moreover, a deeper
network VGG-16 Geifman (2017) is evaluated to further improve inference accuracy on CIFAR-10.
For CIFAR-100, ResNet-32 He et al. (2016) is evaluated.

Systems Setup. We ran the secure inference models on two instances. They are equipped with
an Intel Xeon E7-4850 CPU and 16 GB DRAM. The communication links between these two in-
stances are in the LAN setting, and each instance uses 4 threads, same as the previous works. The
hyper-parameters optimization for activation replacement requires an NVIDIA Tesla V100 GPU.
The SEAL library SEAL and Multi-Protocol fancy-garbling library Carmer et al. (2019) are used
to implement HE and garbled circuits functions. To avoid overflow, our experiments adopt 15-bit
fixed point representation and the Least Significant Bits of intermediate results are also truncated to
15 bits. The hyper-parameters selection is implemented in Python, and the BTPBT is constructed
based on regular PBT Jaderberg et al. (2017) in Tune platform Liaw et al. (2018).

5 RESULTS

0

20

40

60

80

100

1 2 3 4 5 6 7

Ap
pr

ox
. n

eu
ro

ns
 ra

tio
 (%

)

Layers

Delphi (Total: 41%) CW (Total: 50%)

CW-MP (Total: 71%) CW-MP-MD (Total: 81%)

(a) Approximated ratio ablation study.
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(b) Neurons distribution in various layers.
Figure 5: Approximated ratio ablation study of CNN-7 on CIFAR-10 at a minimum of 84.5% accu-
racy.

Ablation Effects. Figure 5 describes the ablation effects of proposed techniques on CIFAR-10
with CNN-7 and VGG-16. CW, MP, and MD mean Channel-Wise, Mixed-Precisicion and Multiple
Degrees, respectively. Square, triangle and cross marks in Figure 5 represent degree-3, degree-2
polynomial approximation and pruning, respectively. For the CNN-7 in Figure 5a, our baseline
Delphi approximates ∼ 41% activation by replacing the ReLU in the last 6 layers with degree-2
polynomials. Channel-wise (CW) activation approximation using α = 0.5 and β = 2 on all layers
is able to achieve the same inference accuracy, while replacing more expensive activation neurons.
Channel-wise under mixed precision (CW-MP) further improves the approximation ratio of the reg-
ular channel-wise method. Other than channel-wise approximation and mixed precision, Figure 5a
shows that the approximation ratio also benefits from exploring multiple degrees in various layers
(CW-MP-MD). Figure 5b depicts the ablation study of a deeper network VGG-16. Our SAFENet
with CW-MP-MD improves the approximation ReLU numbers of Delphi by 28% under the same
accuracy.
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CNN-7 Offline Online Total Accuracy
HE-Linear MPC-Act HE-Linear MPC-Act

Gazelle 0s 91s 37s 9s 137s 85.1%
Delphi 37s 53.4s 0s 5.3s 95.4s 84.6%
SAFENet 37s 18.2s 0s 1.8s 53.4s 85.1%

Table 2: The CNN-7 result on CIFAR-10.

VGG-16 Offline Online Total Accuracy
HE-Linear MPC-Act HE-Linear MPC-Act

Gazelle 0s 142s 45s 16s 203s 89.6%
Delphi 45s 114s 0s 13s 172s 88.1%
SAFENet 40.2s 56.8s 0s 6.5s 104s 88.9%

Table 3: The VGG-16 result on CIFAR-10.

CIFAR-10. Table 2 shows the comparisons of CNN-7 implemented by prior techniques and
SAFENet on CIFAR-10. Compared to Gazelle, Delphi not only moves the HE-based linear opera-
tions to the offline, but also reduces ∼ 41% online and offline activation latency without significant
accuracy loss. Our work SAFENet has similar latency with Delphi in the linear layer, but SAFENet
remarkably reduces latency at non-linear activation layers. More specifically, SAFENet eliminates
∼ 66% online and offline latency in activation layers, and reduces ∼ 61% total latency with higher
accuracy than Delphi. We also evaluated a deeper neural network VGG-16 on CIFAR-10 shown in
Table 3. When Gazelle and Delphi have similar accuracy, Delphi only reduces < 20% latency of
Gazelle on non-linear activation layer. This shows that Delphi benefits less from deeper neural net-
works. Compared to Gazelle, our work SAFENet is able to reduce ∼ 59.4% online latency, 48.7%
total latency. SAFENet has 50% less online latency and 39.5% less total latency with higher accu-
racy than Delphi, since SAFENet uses more find-grained channel-wise activation approximation.

ResNet-32 Offline Online Total Accuracy
HE-Linear MPC-Act HE-Linear MPC-Act

Gazelle 0s 158s 64s 18s 240s 67.9%
Delphi 64s 126.4s 0s 14.4s 204.8s 67.3%
SAFENet 57.6s 63.2s 0s 7.2s 128s 67.5%

Table 4: CIFAR-100 results using ResNet-32.

CIFAR-100. Table 4 shows the results of ResNet-32 evaluated on CIFAR-100. Gazelle achieves
67.9% inference accuracy, and each image inference consists of a 158-second offline phase and a
82-second online phase. Delphi is faster than Gazelle’s online latency by 67.6 seconds with only
a 0.4% accuracy decrease, but increases the offline latency by ∼ 30 seconds. The offline phase is
enlarged because Delphi moves most online HE operations to offline phase and only reduces few
GC operations offline. Compared to Gazelle, our work SAFENet is able to reduce both online and
offline latency since we significantly reduce the number of GC-based activations; SAFENet reduces
online latency by 91.2% and offline latency by 23.5%. Compared to Delphi, SAFENet has 50% less
online latency and 36.6% less offline latency. SAFENet reduces total latency by 46.7% and 37.5%
over Gazelle and Delphi, respectively.

6 CONCLUSION

In this paper, we propose SAFENet to enable a Fast, Accurate and Secure neural Network inference
service. SAFENet consists of three techniques including channel-wise activation, multiple-degree
polynomial approximation, and mixed-precision approximation ratios. The channel-wise activa-
tion approximation keeps the most useful activation channels and replaces the remaining less useful
channels with the various-degree polynomials. The mixed-precision activation approximation is im-
plemented by assigning various layers with different approximation ratios further increasing the ap-
proximation ratio and reducing inference latency. Our experimental results show SAFENet obtains
the state-of-the-art inference latency without accuracy reduction, decreasing latency by 38% ∼ 61%
over prior techniques.
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A APPENDIX

A.1 CRYPTOGRAPHIC PRIMITIVES.

Homomorphic Encryption (HE). Homomorphic Encryption (HE) is a cryptosystem that supports
computation on ciphertexts x without decryption or private key. Given public key pk, private key
sk, encryption function ε(), and decryption function σ(), we can define an homomorphic operation
× if there is an operation ⊗ such that σ(ε(x1, pk)⊗ ε(x2, pk), sk) = σ(ε(x1 × x2, pk), sk), where
x1 and x2 are sensitive plaintext from data holders, and only data holders have the private key sk.

Secret Sharing (SS) and Garbled Circuit (GC). Secret Sharing (SS) is usually based on additive
sharing private values between the parties. For example, one variable x can be shared into two parts:
〈x〉A1 in P1 and 〈x〉A2 in P2, and variable x can be reconstructed by x = 〈x〉A1 + 〈x〉A2 . In previous
secure inference schemes Juvekar et al. (2018), SS is used to protect the privacy of intermediate
results in the hidden layers. Garbled Circuit (GC) is a cryptographic protocol that enables two
parties (Garbler and Evaluator) to jointly compute a function over their private data without learning
the other party’s data. To use GC, the computed function should be represented into a Boolean
circuit. The Garbler firstly garbles the Boolean circuit and generates the garbled table. The Evaluator
receives the garbled table by the Oblivious Transfer Juvekar et al. (2018) and evaluates the table to
the result. Previous secure inference schemes Juvekar et al. (2018) show that GC is used to process
non-linear activation like ReLU function.

Beaver’s multiplicative Triples (BT). Beaver’s multiplicative Triples proposed by Beaver (1995)
can be considered as a secure two-party computation protocol. Assume two parties P1 and P2 have
variables x and y, respectively. BT protocol enables two parties to obtain the secret sharing of
product xy without revealing x and y. More details can be seen Mishra et al. (2020). BT-based
polynomial approximation for ReLU is 3-order magnitude cheaper than GC-based ReLU units on
average, so it is used to design approximated secure activation function.
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