
Under review as a conference paper at ICLR 2022

SIMPLE GNN NOISE REGULARISATION FOR 3D
MOLECULAR PROPERTY PREDICTION AND BEYOND

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have been proven effective across a wide range of
molecular property prediction and structured learning problems. However, their
efficiency is known to be hindered by practical challenges such as oversmoothing.
We introduce “Noisy Nodes”, a very simple technique for improved training of
GNNs, in which we corrupt the input graph with noise, and add a noise correcting
node-level loss. Adding noise helps overfitting, and the noise correction loss helps
ameliorate oversmoothing by encouraging diverse node latents. Our regulariser
applies well-studied methods in simple, straightforward ways which allows even
generic architectures not designed for quantum chemistry to achieve state of the
art results. We also demonstrate the effectiveness of Noisy Nodes with non-spatial
architectures on Open Graph Benchmark (OGB) datasets. Our results suggest
Noisy Nodes can serve as a complementary building block in the GNN toolkit for
3D molecular property prediction and beyond.

1 INTRODUCTION

While Graph Neural Networks have demonstrated success in a wide variety of tasks (Zhou et al.,
2020a; Wu et al., 2020; Bapst et al., 2020; Schütt et al., 2017; Klicpera et al., 2020a), it has been
proposed that in practice “oversmoothing” (Chen et al., 2019) limits their ability to benefit from
overparametrization. Here we propose a simple noise regulariser, Noisy Nodes, and demonstrate how
it overcomes these challenges across a range of datasets and architectures, achieving top results on
OC20 IS2RS & IS2RE direct, QM9 and OGBG-PCQM4Mv1.

Graph Neural Networks (GNNs) are a family of neural networks that operate on graph structured data
by iteratively passing learned messages over the graph’s structure (Scarselli et al., 2009; Bronstein
et al., 2017; Gilmer et al., 2017; Battaglia et al., 2018; Shlomi et al., 2021). Oversmoothing is a
phenomenon where a GNN’s latent node representations become increasing indistinguishable over
successive steps of message passing (Chen et al., 2019). Once these representations are oversmoothed,
further message-passing cannot improve expressive capacity, and so performance does not improve.
We speculate that GNN architectures applied on the benchmarks we study here suffer from these
effects and could have improved accuracy if ameliorated.

Our “Noisy Nodes” method is an elegant, i.e. extremely simple, technique for regularising GNNs and
associated training procedures. During training, our noise regularisation approach corrupts the input
graph’s attributes with noise, and adds a per-node noise correction term. We posit that our Noisy
Nodes approach is effective because the model is rewarded for maintaining and refining distinct node
representations through message passing to the final output, which causes it to resist oversmoothing.
Like denoising autoencoders, it may also encourage the model to explicitly learn the manifold on
which the uncorrupted input graph’s features lie, analogous to a form of representation learning.
When applied to 3D molecular prediction tasks, it encourages the model to distinguish between low
and high energy states. We find that applying Noisy Nodes reduces oversmoothing for shallower
networks, and allows us to see improvements with added depth for some architectures, even on tasks
for which depth was assumed to be unhelpful.

This study’s approach is to investigate the combination of Noisy Nodes with generic, popular baseline
GNN architectures. For 3D Molecular prediction we use a standard architecture working on 3D
points developed for particle fluid simulations, the Graph Net Simulator (GNS) (Sanchez-Gonzalez*
et al., 2020), which has also been used for molecular property prediction (Hu et al., 2021b). Without

1

Under review as a conference paper at ICLR 2022

using Noisy Nodes the GNS is not a competitive model, but using Noisy Nodes allows the GNS to
achieve top performance on three 3D molecular property prediction tasks: the OC20 IS2RE direct
task by 43% over previous work, 12% on OC20 IS2RS direct, and top results on 3 out of 12 of the
QM9 tasks. For non-spatial GNN benchmarks we test a Message Passing Neural Network (MPNN)
with Virtual Node (Gilmer et al., 2017) on OGBG-MOLPCBA and OGBG-PCQM4M (Hu et al.,
2021a) and again see significant improvements. Finally, we applied Noisy Nodes to a GCN (Kipf &
Welling, 2016), arguably the most popular and simple GNN, trained on OGBN-Arxiv and see similar
results. These results suggest Noisy Nodes can serve as a complementary GNN building block for
3D molecular property prediction and beyond.

2 RELATED WORK

Oversmoothing. Recent work has aimed to understand why it is challenging to realise the benefits of
training deeper GNNs (Wu et al., 2021). A key contribution has been the analysis of “oversmoothing”
which describes how all node features become almost identical in GCNs after a few layers. Since
first being noted in (Li et al., 2018) oversmoothing has been studied extensively and regularisation
techniques have been suggested to overcome it (Chen et al., 2019; Cai & Wang, 2020; Rong et al.,
2019; Zhou et al., 2020b; Yang et al., 2020). A recent paper, (Li et al., 2021), finds, as in previous
work, (Li et al., 2019; 2020), the optimal depth for some datasets they evaluate on to be far lower (5
for OGBN-Arxiv from the Open Graph Benchmark (Hu et al., 2020a), for example) than the 1000
layers possible.

Denoising Models. Training neural networks with noise has a long history (Sietsma & Dow, 1991;
Bishop, 1995). Of particular relevance are Denoising Autoencoders (Vincent et al., 2008) in which
an autoencoder is trained to map corrupted inputs x̃ to uncorrupted inputs x. Denoising Autoencoders
have found particular success as a form of pre-training for representation learning (Vincent et al.,
2010). More recently, in research applying GNNs to simulation (Sanchez-Gonzalez et al., 2018;
Sanchez-Gonzalez* et al., 2020; Pfaff et al., 2020) Gaussian noise is added during training to input
positions of a ground truth simulator to mimic the distribution of errors of the learned simulator.
Pre-training methods (Devlin et al., 2019; You et al., 2020; Thakoor et al., 2021) are another similar
approach; most similarly to our method Hu et al. (2020b) apply a reconstruction loss to graphs with
masked nodes to generate graph embeddings for use in downstream tasks. FLAG (Kong et al., 2020)
adds adversarial noise during to input node features as a form of data augmentation for GNNs that
demonstrates improved performance for many tasks. It does not add an additional auxiliary loss,
which we find is essential for addressing oversmoothing.

Machine Learning for 3D Molecular Property Prediction. One application of GNNs is to speed
up quantum chemistry calculations which operate on 3D positions of a molecule (Duvenaud et al.,
2015; Gilmer et al., 2017; Schütt et al., 2017; Hu et al., 2021b). In these graphs atoms are nodes and
edges are constructed between close 3D neighbours. Common goals are the prediction of molecular
properties (Ramakrishnan et al., 2014), forces (Chmiela et al., 2017), energies (Chanussot* et al.,
2020) and charges (Unke & Meuwly, 2019). These datasets have spurred the development of GNNs
that embed 3D physical symmetry inductive biases such as the rotation equivariance of forces. Such
inductive biases typically improve performance and sample complexity.

A common approach to embed physical symmetries is to design a network that predicts a rotation and
translation invariant energy (Schütt et al., 2017; Klicpera et al., 2020a; Liu et al., 2021). The input
features of such models include distances (Schütt et al., 2017), angles (Klicpera et al., 2020b;a) or
torsions and higher order terms (Liu et al., 2021). An alternative approach to embedding symmetries
is to design a rotation equivariant neural network that use equivariant representations (Thomas et al.,
2018; Köhler et al., 2019; Kondor et al., 2018; Fuchs et al., 2020; Batzner et al., 2021; Anderson
et al., 2019; Satorras et al., 2021).

Machine Learning for Bond and Atom Molecular Graphs. Predicting properties from molecular
graphs without 3D points, such as graphs of bonds and atoms, is studied separately and often used
to benchmark generic graph property prediction models such as GCNs (Hu et al., 2020a) or GATs
(Veličković et al., 2018). Models developed for 3D molecular property prediction cannot be applied to
bond and atom graphs and vice versa. Common datasets that contain such data are OGBG-MOLPCBA
and OGBG-MOLHIV.

2

Under review as a conference paper at ICLR 2022

3 PRELIMINARIES: GRAPH PREDICTION PROBLEM

Let G = (V,E, g) be an input graph. The nodes are V = {v1, . . . , v|V |}, where vi ∈ Rdv . The
directed, attributed edges are E = {e1, . . . , e|E|}: each edge includes a sender node index, receiver
node index, and edge attribute, ek = (sk, rk, ek), respectively, where sk, rk ∈ {1, . . . , |V |} and
ek ∈ Rde . The graph-level property is g ∈ Rdg .

The goal is to predict a target graph, G′, with the same structure as G, but different node, edge,
and/or graph-level attributes. We denote Ĝ′ as a model’s prediction of G′. Some error metric defines
quality of Ĝ′ with respect to the target G′, Error(Ĝ′, G′), which the training loss terms are defined to
optimize. In this paper the phrase “message passing steps” is synonymous with “GNN layers”.

4 NOISY NODES

One way to incentivise diverse node representations is to have diverse node-level targets; in order to
do well on such a task, the GNN must have diverse latents at the penultimate layer of the network.
However, many problems are not node level prediction tasks, or do not contain sufficiently diverse
node targets.

Noisy Nodes tackles this problem by adding a diverse noise correction auxiliary target. It modifies the
original graph prediction problem definition in several ways. It introduces a graph corrupted by noise,
G̃ = (Ṽ , Ẽ, g̃), where ṽi ∈ Ṽ is constructed by adding noise, σi, to the input nodes, ṽi = vi + σi.
The edges, Ẽ, and graph-level attribute, g̃, can either be uncorrupted by noise (i.e., Ẽ = E, g̃ = g),
calculated from the noisy nodes (for example in a nearest neighbors graph), or corrupted independent
of the nodes—these are minor choices that can be informed by the specific problem setting.

Our method requires a noise correction target to prevent oversmoothing by enforcing diversity in
the last layers of the GNN. For problems where the Error is defined with respect to graph-level
predictions (e.g., predict the minimum energy value of some molecular system), a second output head
can be added to the GNN architecture which requires denoising the inputs as targets, analogous to an
auxiliary denoising autoencoder head and training objective. Because the v′i ∈ V ′ is not specified by
the goal, we can set v′i = vi and train the model to predict the uncorrupted input nodes.

The added noise prevents overfitting, and the denoising loss ensures a diverse node level target. Such
a recipe also encourages the model to take advantage of message passing. For example, consider a
group of three atoms corrupted by noise, leading to two atoms being very close together (and so with
a very high interatomic force). To denoise the interatomic distances correctly the GNN must use
message passing to triangulate between the three atoms.

In Figure 2 we illustrate the impact of Noisy Nodes on oversmoothing by plotting the Mean Absolute
Distance (MAD) (Chen et al., 2020) of the residual updates of each layer of a GNN trained on the
QM9 (Ramakrishnan et al., 2014) dataset. MAD is a measure of the diversity of graph node features,
often used to quantify oversmoothing, the higher the number the more diverse the node features, the
lower the number the less diverse. In this plot we can see that for Noisy Nodes the node updates
remain diverse for all of the layers, whereas without Noisy Nodes diversity is lost after 3 layers.

The Graph Manifold Learning Perspective. By using an implicit mapping from corrupted data
to clean data, the Noisy Nodes objective encourages the model to learn the manifold on which the
clean data lies—the GNN learns to go from low probability graphs to high probability graphs. In the
autoencoder case the GNN learns the manifold of the input data. When node targets are provided,
the GNN learns the manifold of the target data (e.g. the manifold of atoms at equilibrium). Such a
manifold may include commonly repeated substructures that are useful for downstream prediction
tasks.

The Energy Perspective for Molecular Property Prediction. Local, random distortions of the
geometry of a molecule at a local energy minimum are almost certainly higher energy configurations.
As such, a task that maps from a noised molecule to a local energy minimum is learning a mapping
from high energy to low energy. Data such as QM9 contains molecules at local minima.

Some problems have input data that is already high energy, and targets that are at equilibrium. For
these datasets we can generate new high energy states by adding noise to the inputs but keeping the

3

Under review as a conference paper at ICLR 2022

Figure 1: 3D Noisy Node mechanics during
training. Input positions are corrupted with
noise σ, and the training objective is to node-
level difference between target positions and
the noisy inputs. When the inputs are the tar-
gets (∆ = 0), this is equivalent to a denoising
auto-encoder.

Figure 2: Per layer node latent diversity, mea-
sured by MAD on a 10 layer GNS. We can
see that Noisy Nodes encourages the model to
make diverse residual updates per node - ame-
liorating oversmoothing. For Noisy Nodes
layer MAD remains much higher as depth
increases.

equilibrium target the same, Figure 1 demonstrates this approach. To preserve translation invariance
we use displacements between input and target ∆, the corrected target after noise is ∆− σ.

5 3D MOLECULAR PROPERTY PREDICTION EXPERIMENTS AND RESULTS

In this section we evaluate how a popular, simple model, the GNS (Sanchez-Gonzalez* et al., 2020)
performs on 3D molecular prediction tasks when combined with Noisy Nodes. The GNS was
originally developed for particle fluid simulations, but has recently been adapted for molecular
property prediction (Hu et al., 2021b). We find that Without Noisy Nodes the GNS architecture is
not competitive, but by using Noisy Nodes we see improved performance comparable to the use of
specialised architectures.

We made minor changes to the GNS architecture; we featurize the distance input features using radial
basis functions, use the concept of “grouping” from Li et al. (2021), and finally we find that adding a
loss after each group aids training stability.

We tested this architecture on three challenging molecular property prediction benchmarks:
OC20 (Chanussot* et al., 2020) IS2RS & IS2RE, and QM9 (Ramakrishnan et al., 2014). These
benchmarks are detailed below, but as general distinctions, OC20 tasks use graphs 2-20x larger than
QM9. While QM9 always requires graph-level prediction, one of OC20’s two tasks (IS2RS) requires
node-level predictions while the other (IS2RE) requires graph-level predictions.

5.1 TRAINING

We minimise the mean squared error loss on mean and standard deviation normalised targets and use
the Adam (Kingma & Ba, 2015) optimiser with warmup and cosine decay. For OC20 IS2RE energy
prediction we subtract a learned reference energy, computed using an MLP with atom types as input.

For the GNS model the node and edge latents as well as MLP hidden layers were sized 512, with 3
layers per MLP and using shifted softplus activations throughout. OC20 & QM9 Models were trained
on 8 TPU devices and evaluated on a single V100 GPUs. We provide the full set of hyper-parameters
and computational resources used separately for each dataset in the Appendix. All noise levels were
determined by sweeping a small range of of values (≈ 10) informed by the noised feature covariance.

Our code base is implemented in JAX using Haiku and Jraph for GNNs, and Optax for training
(Bradbury et al., 2018; Babuschkin et al., 2020; Godwin* et al., 2020; Hennigan et al., 2020). Model
selection used early stopping.

4

Under review as a conference paper at ICLR 2022

Figure 3: Validation curves, OC20 IS2RE ID. A) Without any node targets our model has poor
performance and realises no benefit from depth. B) After adding a position node loss, performance
improves as depth increases. C) As we add Noisy Nodes and parameters the model achieves SOTA,
even with 3 layers, and stops overfitting. D) Adding Noisy Nodes allows a model with even fully
shared weights to achieve SOTA.

5.2 OPEN CATALYST 2020

Dataset. The OC20 dataset (Chanussot* et al., 2020) (CC Attribution 4.0) describes the interaction
of a small molecule (the adsorbate) and a large slab (the catalyst), with total systems consisting of
20-200 atoms simulated until equilibrium is reached.

We focus on two tasks; the Initial Structure to Resulting Energy (IS2RE) task which takes the initial
structure of the simulation and predicts the final energy, and the Initial Structure to Resulting Structure
(IS2RS) which takes the initial structure and predicts the relaxed structure. Note that we train the more
common “direct” prediction task that map directly from initial positions to target in a single forward
pass, and compare against other models trained for direct prediction. We do not train “relaxation”
models, which have reported fewer results and use far more data.

Models are evaluated on 4 held out test sets; a set of In Distribution (ID) catalysts and adsorbates,
Out of Distribution (OOD) catalysts and ID adsorbates, ID catalysts and OOD adsorbates and finally
a set of both OOD catalysts and adsorbates. Four canonical validation datasets are also provided. Test
sets are evaluated on a remote server hosted by the dataset authors with a very limited number of
submissions per team.

During training we first sample uniformly from a point in the relaxation trajectory or interpolation,
and then add I.I.D Gaussian noise with mean zero and σ = 0.3. The Noisy Node target is the relaxed
structure.

We first convert to fractional coordinates (i.e. use the periodic unit cell as the basis) which render
the predictions of our model invariant to rotations, and append the following rotation and translation
invariant vector (αβT , βγT , αγT , |α|, |β|, |γ|) ∈ R6 to the edge features where α, β, γ are vectors
of the unit cell. This additional vector provides rotation invariant angular and extent information to
the GNN.

5

https://opencatalystproject.org/

Under review as a conference paper at ICLR 2022

Table 1: OC20 ISRE Validation, eV MAE, ↓.
“GNS-Shared” indicates shared weights. “GNS-10” indicates a group size of 10.

Model Layers OOD Both OOD Adsorbate OOD Catalyst ID

GNS 50 0.59 ±0.01 0.65 ±0.01 0.55 ±0.00 0.54 ±0.00
GNS-Shared + Noisy Nodes 50 0.49 ±0.00 0.54 ±0.00 0.51 ±0.01 0.51 ±0.01
GNS + Noisy Nodes 50 0.48 ±0.00 0.53 ±0.00 0.49 ±0.01 0.48 ±0.00
GNS-10 + Noisy Nodes 100 0.46±0.00 0.51 ±0.00 0.48 ±0.00 0.47 ±0.00

Table 2: Results OC20 IS2RE Test

eV MAE ↓
SchNet DimeNet++ SpinConv SphereNet GNS + Noisy Nodes

OOD Both 0.704 0.661 0.674 0.638 0.485 (-24.0%)
OOD Adsorbate 0.734 0.725 0.723 0.703 0.543 (-22.8%)
OOD Catalyst 0.662 0.576 0.569 0.571 0.473 (-17.2%)
ID 0.639 0.562 0.558 0.563 0.457 (-18.8%)

Average Energy within Threshold (ADwT) ↑
SchNet DimeNet++ SpinConv SphereNet GNS + Noisy Nodes

OOD Both 0.0221 0.0241 0.0233 0.0241 0.0392 (+61.8%)
OOD Adsorbate 0.0233 0.0207 0.026 0.0229 0.0434 (+89.5%)
OOD Catalyst 0.0294 0.0410 0.0382 0.0409 0.0565 (+38.1%)
ID 0.0296 0.0425 0.0408 0.0447 0.0648 (+45.0%)

IS2RE Results. In Figure 3 we show how using Noisy Nodes allows the GNS to achieve state of the
art performance. Figure 3 A shows that without any auxiliary node target, an IS2RE GNS achieves
poor performance even with increased depth. As we add a node level position in B) target we see
better performance, and improvement as depth increases, validating our hypothesis that node level
targets are key to addressing oversmoothing. In C) we add noisy nodes and parameters, and see
that the increased diversity of the node level predictions leads to very significant improvements and
SOTA, even for a shallow 3 layer network. D) demonstrates this effect is not just due to increased
parameters - SOTA can still be achieve with shared layer weights .

In Table 1 we conduct an ablation on our hyperparameters, and again demonstrate the improved
performance of using Noisy Nodes. Results were averaged over 3 seeds and standard errors on the
best obtained checkpoint show little sensitivity to initialisation. We conducted an ablation on ID
comparing sampling from a relaxation trajectory and interpolating between initial & final positions,
which found that interpolation improved our score from 0.48 to 0.45.

Our best hyperparameter setting was 100 layers which achieved a 43.3% relative performance
improvement against SOTA results (Table 2). Due to limited permitted test submissions, results
presented here were from one test upload of our best performing validation seed.

IS2RS Results. In Table 3 we perform the same ablation studies on the IS2RS validation set using
the Average Distance within Threshold (ADwT) metric and observe the same relative effects. In
Table 4 we see that GNS + Noisy Nodes is significantly better than the only other reported IS2RS
direct result, ForceNet, itself a GNS variant. Similarly, to IS2RE, we tried an ablation using random
interpolated positions between input and target instead of sampling from mid trajectory, and noted an
improvement from 54.3% to 54.5% on OOD both validation.

We note a drop between the validation and test sets, which we speculate is due to distribution shift.
We also notice a consistent pattern that having energy predictions as an auxiliary loss inhibits both
relaxation and direct IS2RE predictions, we speculate that adding more capacity to the positional
decoder head may help ameliorate such effects.

6

Under review as a conference paper at ICLR 2022

Table 3: OC20 IS2RS Validation, ADwT, ↑

Model Layers Group Size OOD Both OOD Adsorbate OOD Catalyst ID

GNS 50 Unshared 43.0%±0.0 38.0%±0.0 37.5% 0.0 40.0%±0.0
+ Noisy Nodes 50 Shared 49.2%±0.0 42.6%±0.0 42.5%±0.0 43.6% ±0.01
+ Noisy Nodes 50 Unshared 50.1%±0.0 44.3%±0.0 44.1%±0.0 46.1% ±0.0
+ Noisy Nodes 50 10 52.0%±0.0 46.2%±0.0 46.1% ±0.0 48.3% ±0.0

++ Pos only 100 10 54.3%±0.0 48.3%±0.0 48.2% ±0.0 50.0% ±0.0

Table 4: OC20 IS2RS Test, ADwT, ↑

Model OOD Both OOD Adsorbate OOD Catalyst ID

ForceNet 46.9% 37.7% 43.7% 44.9%
GNS + Noisy Nodes 52.7% 43.9% 48.4% 50.9%
Relative Improvement +12.4% +16.4% +10.7% +13.3%

5.3 QM9

Dataset. The QM9 benchmark (Ramakrishnan et al., 2014) contains 134k molecules in equilibrium
with up to 9 heavy C, O, N and F atoms, targeting 12 associated chemical properties (License: CCBY
4.0). We use 114k molecules for training, 10k for validation and 10k for test. All results are on the
test set. We subtract a fixed per atom energy from the target values computed from linear regression
to reduce variance. We perform training in eV units for energetic targets, and evaluate using MAE.
We summarise the results across the targets using mean standardised MAE (std. MAE) in which
MAEs are normalised by their standard deviation, and mean standardised logMAE. Std. MAE is
dominated by targets with high relative error such as ∆ε, whereas logMAE is sensitive to outliers
such as

〈
R2
〉
. As is standard for this dataset, a model is trained separately for each target.

For this dataset we add I.I.D Gaussian noise with mean zero and σ = 0.02 to the input atom positions.
A denoising autoencoder loss is used.

Results In Table 6 we can see that adding Noisy Nodes significantly improves results by 23.1%
relative for GNS, making it competitive with specialised architectures. To understand the effect of
adding a denoising loss, we tried just adding noise and found no where near the same improvement
(Table 6).

A GNS + Noisy Nodes with 30 layers achieves top results on 3 of the 12 targets and comparable
performance on the remainder (Table 6). On the std. MAE aggregate metric GNS + Noisy Nodes
performs better than all other reported results, showing that Noisy Nodes can make even a generic
model competitive with models hand-crafted for molecular property prediction. The same trend is
repeated for an rotation invariant version of this network that uses the principle axes of inertia ordered
by eigenvalue as the co-ordinate frame (Table 5).〈
R2
〉
, the electronic spatial extent, is an outlier for GNS + Noisy Nodes. Interestingly, we found

that without noise GNS + Noisy Nodes achieves 0.33 for this target. We speculate that this target is

Table 5: QM9, Impact of Noisy Nodes on GNS architecture.

Layers std. MAE % Change logMAE

GNS 10 1.17 - -5.39
GNS + Noise But No Node Target 10 1.16 -0.9% -5.32
GNS + Noisy Nodes 10 0.90 -23.1% -5.58
GNS-10 + Noisy Nodes 20 0.89 -23.9% -5.59
GNS-10 + Noisy Nodes + Invariance 30 0.92 -21.4% -5.57
GNS-10 + Noisy Nodes 30 0.88 -24.8% -5.60

7

Under review as a conference paper at ICLR 2022

Table 6: QM9, Test MAE, Mean & Standard Deviation of 3 Seeds Reported.

Target Unit SchNet E(n)GNN DimeNet++ SphereNet PaiNN GNS + Noisy Nodes
µ D 0.033 0.029 0.030 0.027 0.012 0.025 ±0.01
α a0

3 0.235 0.071 0.043 0.047 0.045 0.052 ±0.00
εHOMO meV 41 29.0 24.6 23.6 27.6 20.4 ±0.2
εLUMO meV 34 25.0 19.5 18.9 20.4 18.6 ±0.4
∆ε meV 63 48.0 32.6 32.3 45.7 28.6 ±0.1〈
R2
〉

a0
2 0.07 0.11 0.33 0.29 0.07 0.70 ±0.01

ZPVE meV 1.7 1.55 1.21 1.12 1.28 1.16 ±0.01
U0 meV 14.00 11.00 6.32 6.26 5.85 7.30 ±0.12
U meV 19.00 12.00 6.28 7.33 5.83 7.57 ±0.03
H meV 14.00 12.00 6.53 6.40 5.98 7.43±0.06
G meV 14.00 12.00 7.56 8.0 7.35 8.30 ±0.14
cv

cal
mol K 0.033 0.031 0.023 0.022 0.024 0.025 ±0.00

std. MAE % 1.76 1.22 0.98 0.94 1.00 0.88
logMAE -5.17 -5.43 -5.67 -5.68 -5.85 -5.60

Table 7: OGBG-PCQM4M Results

Model Number of Layers Using Noisy Nodes MAE

MPNN + Virtual Node 16 Yes 0.1249 ± 0.0003
MPNN + Virtual Node 50 No 0.1236 ± 0.0001

Graphormer (Ying et al., 2021) - - 0.1234
MPNN + Virtual Node 50 Yes 0.1218 ± 0.0001

particularly sensitive to noise, and the best noise value for this target would be significantly lower
than for the dataset as a whole.

6 NON-SPATIAL TASKS

The previous experiments use the 3D geometries of atoms, and models that operate on 3D points.
However, the recipe adding a denoising autoencoder auxiliary loss can be applied to other graphs
with different types of features. In this section we apply Noisy Nodes to additional datasets with no
3D points, using different GNNs, and show analagous effects to the 3D case. All results reported as
an average of 10 random seeds. OGBG-PCQM4M & OGBG-MOLPCBA were trained with 16 TPUs
and evaluated with a single V100 GPU. OGBN-Arxiv was trained and evalated with a single TPU.

6.1 OGBG-PCQM4M

This dataset from the OGB benchmarks consists of molecular graphs which consist of bonds and
atom types, and no 3D or 2D coordinates. To adapt Noisy Nodes to this setting, we randomly flip
node and edge features at a rate of 5% and add a reconstruction loss. We evaluate Noisy Nodes using
MPNN with Virtual Node as a base model. The test set is not currently available for this dataset.
Version 2 of this dataset, with different splits, was released shortly before submission and we plan to
update our results with the final test figures when we have the opportunity.

In Table 7 we see that for this task Noisy Nodes enables a 50 layer MPNN to reach state of the art
results. Before adding Noisy Nodes, adding capacity beyond 16 layers did not improve results.

6.2 OGBG-MOLPCBA

The OGBG-MOLPCBA dataset contains molecular graphs with no 3D points, with the goal of
predicting 128 biological activities. On the OGBG-MOLPCBA dataset we again use an MPNN with
Virtual Node and random flipping noise. In Figure 4 we see that adding Noisy Nodes improves the

8

Under review as a conference paper at ICLR 2022

Figure 4: Adding Noisy Nodes with random
flipping of input categories improves the per-
formance of MPNNs, and we observe that
performance improves with depth.

Figure 5: Validation curve comparing with
and without noisy nodes. Using Noisy Nodes
leads to a consistent improvement.

performance of the base model, and that the benefits are most visible on deep networks. Our 16 layer
network improved from 26.9% ± 0.002 to 27.7% ± 0.002. Figure 5 demonstrates how Noisy Nodes
improves performance during training. Of the reported leaderboard results, MPNNs are most similar
to GCNs1 + Virtual Node and GIN + Virtual Node (Xu et al., 2018) which report which report results
of 24.2% ± 0.003 and 27.03% ± 0.003 respectively.

6.3 OGBN-ARXIV

The above results use models with explicit edge updates, and are reported for graph prediction. To
test the effectiveness with Noisy Nodes with GCNs, arguably the simplest and most popular GNN,
we use OGBN-ARXIV, a citation network with the goal of predicting the arxiv category of each paper.
Adding Noisy Nodes, with noise as input dropout of 0.1, to 4 layer GCN with residual connections
improves from 72.39% ± 0.002 accuracy to 72.52% ± 0.003 accuracy. A baseline 4 layer GCN on
this dataset reports 71.71% ± 0.002. The SOTA for this dataset is 74.31% (Sun & Wu, 2020).

6.4 LIMITATIONS

We have not demonstrated the effectiveness of Noisy Nodes in small data regimes, which may be
important for learning from experimental data. The representation learning perspective requires
access to a local minimum configuration, which is not the case for all quantum modeling datasets. We
have also not demonstrated the combination of Noisy Nodes with more sophisticated 3D molecular
property prediction models such as DimeNet++(Klicpera et al., 2020a). We leave this to future work.

Noisy Nodes requires careful selection of the form of noise, and a balance between the auxiliary and
primary losses. This can require hyper parameter tuning, and models can be sensitive to the choice
of these parameters. Noisy Nodes has a particular effect for deep GNNs, but depth is not always an
advantage. There are situations, for example molecular dynamics, which place a premium on very
fast inference time. However even at 3 layers (a comparable depth to alternative architectures) the
GNS architecture achieves state of the art validation OC20 IS2RE predictions (Figure 3).

7 CONCLUSIONS

In this work we present Noisy Nodes, a novel regularisation technique for GNNs with particular
focus on 3D molecular property prediction. Noisy nodes helps address common challenges around
oversmoothed node representations, shows benefits for GNNs of all depths, but in particular improves
performance for deeper GNNs. We demonstrate results on challenging 3D molecular property
prediction tasks, and some generic GNN benchmark datasets. We believe these results demonstrate
Noisy Nodes could be a useful building block for GNNs for molecular property prediction and
beyond.

1The GCN implemented in the official OGB code base has explicit edge updates, akin to the MPNN. The
only difference between an MPNN and GCN in this case is the adjacency matrix normalization.

9

Under review as a conference paper at ICLR 2022

8 REPRODUCIBILITY STATEMENT

Code for reproducing OGB-PCQM4M results using Noisy Nodes is available on github, and was
prepared as part of a leaderboard submission. We withhold the link here to preserve the double blind
review process but will provide the link for camera ready.

We provide detailed hyper parameter settings for all our experiments in the appendix, in addition to
formulae for computing the encoder and decoder stages of the GNS.

9 ETHICS STATEMENT

Who may benefit from this work? Molecular property prediction with GNNs is a fast-growing
area with applications across domains such as drug design, catalyst discovery, synthetic biology, and
chemical engineering. Noisy Nodes could aid models applied to these domains. We also demonstrate
on OC20 that our direct state prediction approach is nearly as accurate as learned relaxed approaches
at a small fraction of the computational cost, which may support material design which requires many
predictions.

Finally, Noisy Nodes could be adapted and applied to many areas in which GNNs are used—for
example, knowledge base completion, physical simulation or traffic prediction.

Potential negative impact and reflection. Noisy Nodes sees improved performance from depth, but
the training of very deep GNNs could contribute to global warming. Care should be taken when
utilising depth, and we note that Noisy Nodes settings can be calibrated at shallow depth.

REFERENCES

Brandon M. Anderson, T. Hy, and R. Kondor. Cormorant: Covariant molecular neural networks. In
NeurIPS, 2019.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin, Chris Jones,
Tom Hennigan, Matteo Hessel, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King,
Lena Martens, Vladimir Mikulik, Tamara Norman, John Quan, George Papamakarios, Roman Ring,
Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
Srinivasan, Wojciech Stokowiec, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/deepmind.

V. Bapst, T. Keck, Agnieszka Grabska-Barwinska, C. Donner, E. D. Cubuk, S. Schoenholz, A. Obika,
Alexander W. R. Nelson, T. Back, D. Hassabis, and P. Kohli. Unveiling the predictive power of
static structure in glassy systems. Nature Physics, 16:448–454, 2020.

P. Battaglia, Jessica B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, Mateusz Malinowski,
Andrea Tacchetti, David Raposo, A. Santoro, R. Faulkner, Çaglar Gülçehre, H. Song, A. J. Ballard,
J. Gilmer, George E. Dahl, Ashish Vaswani, Kelsey R. Allen, Charlie Nash, Victoria Langston,
Chris Dyer, N. Heess, Daan Wierstra, P. Kohli, M. Botvinick, Oriol Vinyals, Y. Li, and Razvan
Pascanu. Relational inductive biases, deep learning, and graph networks. ArXiv, abs/1806.01261,
2018.

Simon Batzner, T. Smidt, L. Sun, J. Mailoa, M. Kornbluth, N. Molinari, and B. Kozinsky. Se(3)-
equivariant graph neural networks for data-efficient and accurate interatomic potentials. ArXiv,
abs/2101.03164, 2021.

Charles M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation,
7:108–116, 1995.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

10

http://github.com/deepmind
http://github.com/google/jax

Under review as a conference paper at ICLR 2022

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. CoRR,
abs/2006.13318, 2020. URL https://arxiv.org/abs/2006.13318.

Lowik Chanussot*, Abhishek Das*, Siddharth Goyal*, Thibaut Lavril*, Muhammed Shuaibi*,
Morgane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and Zachary
Ulissi. Open catalyst 2020 (oc20) dataset and community challenges. ACS Catalysis, 0(0):
6059–6072, 2020. doi: 10.1021/acscatal.0c04525. URL https://doi.org/10.1021/
acscatal.0c04525.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. CoRR, abs/1909.03211,
2019. URL http://arxiv.org/abs/1909.03211.

Deli Chen, Yankai Lin, W. Li, Peng Li, J. Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. In AAAI, 2020.

Stefan Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, Kristof T. Schütt, and K. Müller.
Machine learning of accurate energy-conserving molecular force fields. Science Advances, 3, 2017.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15, pp. 2224–2232, Cambridge, MA, USA,
2015. MIT Press.

F. Fuchs, Daniel E. Worrall, Volker Fischer, and M. Welling. Se(3)-transformers: 3d roto-translation
equivariant attention networks. ArXiv, abs/2006.10503, 2020.

J. Gilmer, S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural message
passing for quantum chemistry. ArXiv, abs/1704.01212, 2017.

Jonathan Godwin*, Thomas Keck*, Peter Battaglia, Victor Bapst, Thomas Kipf, Yujia Li, Kimberly
Stachenfeld, Petar Veličković, and Alvaro Sanchez-Gonzalez. Jraph: A library for graph neural
networks in jax., 2020. URL http://github.com/deepmind/jraph.

Tom Hennigan, Trevor Cai, Tamara Norman, and Igor Babuschkin. Haiku: Sonnet for JAX, 2020.
URL http://github.com/deepmind/dm-haiku.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. ArXiv,
abs/2005.00687, 2020a.

Weihua Hu, Bowen Liu, Joseph Gomes, M. Zitnik, Percy Liang, V. Pande, and J. Leskovec. Strategies
for pre-training graph neural networks. arXiv: Learning, 2020b.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc: A
large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430, 2021a.

Weihua Hu, Muhammed Shuaibi, Abhishek Das, Siddharth Goyal, Anuroop Sriram, J. Leskovec, Devi
Parikh, and C. L. Zitnick. Forcenet: A graph neural network for large-scale quantum calculations.
ArXiv, abs/2103.01436, 2021b.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2015.

11

https://arxiv.org/abs/2006.13318
https://doi.org/10.1021/acscatal.0c04525
https://doi.org/10.1021/acscatal.0c04525
http://arxiv.org/abs/1909.03211
http://github.com/deepmind/jraph
http://github.com/deepmind/dm-haiku

Under review as a conference paper at ICLR 2022

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Johannes Klicpera, Shankari Giri, Johannes T. Margraf, and Stephan Günnemann. Fast
and uncertainty-aware directional message passing for non-equilibrium molecules. CoRR,
abs/2011.14115, 2020a. URL https://arxiv.org/abs/2011.14115.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. ArXiv, abs/2003.03123, 2020b.

Risi Kondor, Hy Truong Son, Horace Pan, Brandon M. Anderson, and Shubhendu Trivedi. Covariant
compositional networks for learning graphs. CoRR, abs/1801.02144, 2018. URL http://
arxiv.org/abs/1801.02144.

Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, G. Taylor,
and T. Goldstein. Flag: Adversarial data augmentation for graph neural networks. ArXiv,
abs/2010.09891, 2020.

Jonas Köhler, Leon Klein, and Frank Noé. Equivariant flows: sampling configurations for multi-body
systems with symmetric energies, 2019.

G. Li, M. Müller, Ali K. Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns?
2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9266–9275, 2019.

Guohao Li, C. Xiong, Ali K. Thabet, and Bernard Ghanem. Deepergcn: All you need to train deeper
gcns. ArXiv, abs/2006.07739, 2020.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. CoRR, abs/2106.07476, 2021. URL https://arxiv.org/abs/2106.
07476.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

Yi Liu, Limei Wang, Meng Liu, Xuan Zhang, Bora Oztekin, and Shuiwang Ji. Spherical message
passing for 3d graph networks. arXiv preprint arXiv:2102.05013, 2021.

T. Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and P. Battaglia. Learning mesh-based simula-
tion with graph networks. ArXiv, abs/2010.03409, 2020.

R. Ramakrishnan, Pavlo O. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chemistry structures
and properties of 134 kilo molecules. Scientific Data, 1, 2014.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. The truly deep graph convolutional
networks for node classification. CoRR, abs/1907.10903, 2019. URL http://arxiv.org/
abs/1907.10903.

Alvaro Sanchez-Gonzalez, N. Heess, Jost Tobias Springenberg, J. Merel, Martin A. Riedmiller,
R. Hadsell, and P. Battaglia. Graph networks as learnable physics engines for inference and control.
ArXiv, abs/1806.01242, 2018.

Alvaro Sanchez-Gonzalez*, Jonathan Godwin*, Tobias Pfaff*, Rex Ying*, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In Hal Daumé III and Aarti
Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 8459–8468. PMLR, 13–18 Jul 2020. URL
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural networks,
2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The
graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009. doi:
10.1109/TNN.2008.2005605.

12

http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2011.14115
http://arxiv.org/abs/1801.02144
http://arxiv.org/abs/1801.02144
https://arxiv.org/abs/2106.07476
https://arxiv.org/abs/2106.07476
http://arxiv.org/abs/1907.10903
http://arxiv.org/abs/1907.10903
http://proceedings.mlr.press/v119/sanchez-gonzalez20a.html

Under review as a conference paper at ICLR 2022

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, A. Tkatchenko,
and K. Müller. Schnet: A continuous-filter convolutional neural network for modeling quantum
interactions. In NIPS, 2017.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle physics.
Machine Learning: Science and Technology, 2(2):021001, Jan 2021. ISSN 2632-2153. doi:
10.1088/2632-2153/abbf9a. URL http://dx.doi.org/10.1088/2632-2153/abbf9a.

J. Sietsma and Robert J. F. Dow. Creating artificial neural networks that generalize. Neural Networks,
4:67–79, 1991.

Chuxiong Sun and Guoshi Wu. Adaptive graph diffusion networks with hop-wise attention. ArXiv,
abs/2012.15024, 2020.

Shantanu Thakoor, C. Tallec, M. G. Azar, R. Munos, Petar Velivckovi’c, and Michal Valko. Boot-
strapped representation learning on graphs. ArXiv, abs/2102.06514, 2021.

Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds. CoRR, abs/1802.08219, 2018. URL http://arxiv.org/abs/1802.08219.

Oliver T. Unke and Markus Meuwly. Physnet: A neural network for predicting energies, forces, dipole
moments, and partial charges. Journal of Chemical Theory and Computation, 15(6):3678–3693,
May 2019. ISSN 1549-9626. doi: 10.1021/acs.jctc.9b00181. URL http://dx.doi.org/10.
1021/acs.jctc.9b00181.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks, 2018.

Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In ICML ’08, 2008.

Pascal Vincent, H. Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked
denoising autoencoders: Learning useful representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res., 11:3371–3408, 2010.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 2020.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, C. Zhang, and Philip S. Yu. A compre-
hensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32:4–24, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting"
over-smoothing" in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform bad for graph representation? ArXiv, abs/2106.05234,
2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. ArXiv, abs/2010.13902, 2020.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020a.

Kuangqi Zhou, Yanfei Dong, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng. Effective
training strategies for deep graph neural networks. CoRR, abs/2006.07107, 2020b. URL https:
//arxiv.org/abs/2006.07107.

13

http://dx.doi.org/10.1088/2632-2153/abbf9a
http://arxiv.org/abs/1802.08219
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://dx.doi.org/10.1021/acs.jctc.9b00181
http://arxiv.org/abs/1810.00826
https://arxiv.org/abs/2006.07107
https://arxiv.org/abs/2006.07107

Under review as a conference paper at ICLR 2022

Table 8: OC20 IS2RS Test, Average Force below Threshold %, ↑

Model Method OOD Both OOD Adsorbate OOD Catalyst ID

Noisy Nodes Direct 0.09% 0.00% 0.29% 0.54%

Table 9: OC20 IS2RS Test, Force below Threshold %, ↑

Model Method OOD Both OOD Adsorbate OOD Catalyst ID

Noisy Nodes Direct 0.0% 0.0% 0.0% 0.0%

A APPENDIX

The following sections include details on training setup, hyper-parameters, input processing, as well
as additional experimental results.

A.1 ADDITIONAL METRICS FOR OPEN CATALYST IS2RS TEST SET

Relaxation approaches to IS2RS minimise forces with respect to positions, with the expectation that
forces at the minimum are close to zero. One metric of such a model’s success is to evaluate the
forces at the converged structure using ground truth Density Functional Theory calculations and see
how close they are to zero. Two metrics are provided by OC20 (Chanussot* et al., 2020) on the
IS2RS test set: Force below Threshold (FbT), which is the percentage of structures that have forces
below 0.05 eV/Angstrom, and Average Force below Threshold (AFbT) which is FbT calculated at
multiple thresholds.

The OC20 project computes test DFT calculations on the evaluation server and presents a summary
result for all IS2RS position predictions. Such calculations take 10-12 hours and they are not available
for the validation set. Thus, we are not able to analyse the results in Tables 8 and 9 in any further
detail. Before application to catalyst screening further work may be needed for direct approaches to
ensure forces do not explode from atoms being too close together.

A.2 MORE DETAILS ON GNS ADAPTATIONS FOR MOLECULAR PROPERTY PREDICTION.

Encoder.

The node features are a learned embedding lookup of the atom type, and in the case of OC20 two
additional binary features representing whether the atom is part of the adsorbate or catalyst and
whether the atom remains fixed during the quantum chemistry simulation.

The edge features, ek are the distances |d| featurised using c Radial Bessel basis functions, ẽRBF,c =√
2
R

sin(cπR d)

d , and the edge vector displacements, d, normalised by the edge distance:

ek = Concat(ẽRBF,1(|d|), ..., ẽRBF,c(|d|),
d

|d|
)

Decoder

The decoder consists of two parts, a graph-level decoder which predicts a single output for the input
graph, and a node-level decoder which predicts individual outputs for each node. The graph-level
decoder implements the following equation:

y = W Proc
|V |∑
i=1

MLPProc(a
Proc
i) + bProc +W Enc

|V |∑
i=1

MLPEnc(a
Enc
i) + bEnc

14

Under review as a conference paper at ICLR 2022

Where aProc
i are node latents from the Processor, aEnc

i are node latents from the Encoder, W Enc and
W Proc are linear layers, bEnc and bProc are biases, and |V | is the number of nodes. The node-level
decoder is simply an MLP applied to each aProc

i which predicts a∆
i .

A.3 EXPERIMENT SETUP

Open Catalyst. All training experiments were ran on a cluster of TPU devices. For the Open Catalyst
experiments, each individual run (i.e. a single random seed) utilised 8 TPU devices on 2 hosts (4 per
host) for training, and 4 V100 GPU devices for evaluation (1 per dataset).

Each Open Catalyst experiment was ran until convergence for up to 200 hours. Our best result, the
large 100 layer model requires 7 days of training using the above setting. Each configuration was run
at least 3 times in this hardware configuration, including all ablation settings.

We further note that making effective use of our regulariser requires sweeping noise values. These
sweeps are dataset dependent and can be carried out using few message passing steps.

QM9. Experiments were also run on TPU devices. Each seed was run using 8 TPU devices on a
single host for training, and 2 V100 GPU devices for evaluation. QM9 targets were trained between
12-24 hours per experiment.

Following Klicpera et al. (2020b) we define std. MAE as :

std. MAE =
1

M

M∑
m=1

(
1

N

N∑
i=1

|f (m)
θ (Xi, zi)− t̂(m)

i |
σm

)

and logMAE as:

logMAE =
1

M

M∑
m=1

log

(
1

N

N∑
i=1

|f (m)
θ (Xi, zi)− t̂(m)

i |
σm

)

with target index m, number of targets M = 12, dataset size N , ground truth values t̂(m), model
f

(m)
θ , inputs Xi and zi, and standard deviation σm of t̂(m).

A.4 HYPER-PARAMETERS

Open Catalyst. We list the hyper-parameters used to train the default Open Catalyst experiment.
If not specified otherwise (e.g. in ablations of these parameters), experiments were ran with this
configuration.

Dynamic batch sizes refers to constructing batches by specifying maximum node, edge and graph
counts (as opposed to only graph counts) to better balance computational load. Batches are constructed
until one of the limits is reached.

Parameter updates were smoothed using an EMA for the current training step with the current decay
value computed through decay = min(decay, (1.0 + step)/(10.0 + step). As discussed in the
evaluation, best results on Open Catalyst were obtained by utilising a 100 layer network with group
size 10.

QM9 Table 11 lists QM9 hyper-parameters which primarily reflect the smaller dataset and geometries
with fewer long range interactions. For U0, U , H and G we use a slightly larger number of graphs
per batch - 16 - and a smaller position loss co-efficient of 0.01.

OGBG-PCQM4M Table 12 provides the hyper parameters for OGBG-PCQM4M.

OGBG-MOLPCBA Table 13 provides the hyper parameters for the OGBG-MOLPCBA experiments.

OGBN-ARXIV Table 14 provides the hyper parameters for the OGBN-Arxiv experiments.

15

Under review as a conference paper at ICLR 2022

Table 10: Open Catalyst training parameters.

Parameter Value or description

Optimiser Adam with warm up and cosine cycling
β1 0.9
β2 0.95
Warm up steps 5e5
Warm up start learning rate 1e− 5
Warm up/cosine max learning rate 1e− 4
Cosine cycle length 5e6
Loss type Mean squared error

Batch size Dynamic to max edge/node/graph count
Max nodes in batch 1024
Max edges in batch 12800
Max graphs in batch 10

MLP number of layers 3
MLP hidden sizes 512
Number Bessel Functions 512
Activation shifted softplus
message passing layers 50
Group size 10
Node/Edge latent vector sizes 512

Position noise Gaussian (µ = 0, σ = 0.3)
Parameter update Exponentially moving average (EMA) smoothing
EMA decay 0.9999
Position Loss Co-efficient 1.0

Table 11: QM9 training parameters.

Parameter Value or description

Optimiser Adam with warm up and cosine cycling
β1 0.9
β2 0.95
Warm up steps 1e4
Warm up start learning rate 3e− 7
Warm up/cosine max learning rate 1e− 4
Cosine cycle length 2e6
Loss type Mean squared error

Batch size Dynamic to max edge/node/graph count
Max nodes in batch 256
Max edges in batch 4096
Max graphs in batch 8

MLP number of layers 3
MLP hidden sizes 1024
Number Bessel Funtions 512
Activation shifted softplus
message passing layers 10
Group Size 10
Node/Edge latent vector sizes 512

Position noise Gaussian (µ = 0, σ = 0.02)
Parameter update Exponentially moving average (EMA) smoothing
EMA decay 0.9999
Position Loss Coefficient 0.1

16

Under review as a conference paper at ICLR 2022

Table 12: OGBG-PCQM4M Training Parameters.

Parameter Value or description

Optimiser Adam with warm up and cosine cycling
β1 0.9
β2 0.95
Warm up steps 5e4
Warm up start learning rate 1e− 5
Warm up/cosine max learning rate 1e− 4
Cosine cycle length 5e5
Loss type Mean absolute error
Reconstruction type Softmax Cross Entropy

Batch size Dynamic to max edge/node/graph count
Max nodes in batch 20,480
Max edges in batch 8,192
Max graphs in batch 512

MLP number of layers 2
MLP hidden sizes 512
Activation relu
Node/Edge latent vector sizes 512

Dropnode Rate 0.1
Noisy Nodes Category Flip Fate 0.05
Parameter update Exponentially moving average (EMA) smoothing
EMA decay 0.999
Reconstruction Loss Coefficient 0.1

Table 13: OGBG-PCQM4M Training Parameters.

Parameter Value or description

Optimiser Adam with warm up and cosine cycling
β1 0.9
β2 0.95
Warm up steps 1e4
Warm up start learning rate 1e− 5
Warm up/cosine max learning rate 1e− 4
Cosine cycle length 1e5
Loss type Softmax Cross Entropy
Reconstruction loss type Softmax Cross Entropy

Batch size Dynamic to max edge/node/graph count
Max nodes in batch 20,480
Max edges in batch 8,192
Max graphs in batch 512

MLP number of layers 2
MLP hidden sizes 512
Activation relu
Batch Normalization Yes, after every hidden layer
Node/Edge latent vector sizes 512

Dropnode Rate 0.1
Dropout Rate 0.1
Noisy Nodes Category Flip Fate 0.05
Parameter update Exponentially moving average (EMA) smoothing
EMA decay 0.999
Reconstruction Loss Coefficient 0.1

17

Under review as a conference paper at ICLR 2022

Table 14: OGBG-PCQM4M Training Parameters.

Parameter Value or description

Optimiser Adam with warm up and cosine cycling
β1 0.9
β2 0.95
Warm up steps 50
Warm up start learning rate 1e− 5
Warm up/cosine max learning rate 1e− 3
Cosine cycle length 12, 000
Loss type Softmax Cross Entropy
Reconstruction loss type Mean Squared Error

Batch size Full graph

MLP number of layers 1
Activation relu
Batch Normalization Yes, after every hidden layer
Node/Edge latent vector sizes 256

Dropout Rate 0.5
Noisy Nodes Input Dropout 0.05
Reconstruction Loss Coefficient 0.1

18

	Introduction
	Related Work
	Preliminaries: Graph Prediction Problem
	Noisy Nodes
	3D Molecular Property Prediction Experiments and Results
	Training
	Open Catalyst 2020
	QM9

	Non-Spatial Tasks
	OGBG-PCQM4M
	OGBG-MOLPCBA
	OGBN-ARXIV
	Limitations

	Conclusions
	Reproducibility statement
	Ethics statement
	Appendix
	Additional Metrics for Open Catalyst IS2RS Test Set
	More details on GNS adaptations for molecular property prediction.
	Experiment setup
	Hyper-parameters

