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Abstract

Classifier guidance is a recently introduced method to trade off mode coverage and1

sample fidelity in conditional diffusion models post training, in the same spirit as2

low temperature sampling or truncation in other types of generative models. This3

method combines the score estimate of a diffusion model with the gradient of an4

image classifier and thereby requires training an image classifier separate from the5

diffusion model. We show that guidance can be performed by a pure generative6

model without such a classifier: we jointly train a conditional and an unconditional7

diffusion model, and find that it is possible to combine the resulting conditional8

and unconditional scores to attain a trade-off between sample quality and diversity9

similar to that obtained using classifier guidance.10

1 Introduction11

Diffusion models have recently emerged as an expressive and flexible family of generative models,12

delivering competitive sample quality and likelihood scores on image and audio synthesis tasks [14,13

15, 5, 16, 8]. These models have delivered audio synthesis performance rivaling the quality of14

autoregressive models with substantially fewer inference steps [2, 9], and they have delivered15

ImageNet generation results outperforming BigGAN-deep [1] and VQ-VAE-2 [11] in terms of FID16

score and classification accuracy score [6, 3].17

Dhariwal and Nichol [3] proposed classifier guidance, a technique to boost the sample quality of a18

diffusion model using an extra trained classifier. Using classifier guidance, they generate high fidelity,19

non-diverse ImageNet samples that match or exceed the Inception scores of truncated BigGAN, and20

by varying the strength of the classifier gradient, they can trade off Inception score [13] and FID21

score [4] (or precision and recall) in a manner similar to varying the truncation parameter of BigGAN.22

Prior to classifier guidance, it was not known how to generate “low temperature” samples from a23

diffusion model similar to those produced by truncated BigGAN: naive ways of doing so, such as24

scaling the model score vectors or decreasing the amount of Gaussian noise added during sampling,25

do not work. Classifier guidance resolves this issue but raises more questions: (1) Is it possible to26

achieve the same effect using a pure generative model without any classifier? (2) Is it necessary to27

use a classifier gradient to achieve this effect, and is classifier guidance able to boost classifier-based28

metrics such as Inception score and FID score simply because classifier guidance is adversarial to29

image classifiers and because classifier gradients have special structure? (3) What is an intuitive30

explanation for what is going on during guided sampling?31

By presenting and analysing classifier-free guidance, we provide some answers to these questions.32

2 Background33

Let x be data drawn from a data distribution p(x). We train a diffusion model in continuous34

time [16, 2, 8]: letting z = {zλ |λ ∈ [λmin, λmax]} for hyperparameters λmin < λmax ∈ R, the35
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forward process q(z|x) is the variance-preserving Markov process [14] specified as36

q(zλ|x) = N (αλx, σ
2
λI), where α2

λ = 1/(1 + e−λ), σ2
λ = 1− α2

λ (1)

q(zλ|zλ′) = N ((αλ/αλ′)zλ′ , σ2
λ|λ′I), where λ < λ′, σ2

λ|λ′ = (1− eλ−λ
′
)σ2
λ (2)

We will use the notation p(z) (or p(zλ)) to denote the marginal of z (or zλ) when x ∼ p(x). Note37

that λ = logα2
λ/σ

2
λ, so λ can be interpreted as the log signal-to-noise ratio of zλ, and the forward38

process runs in the direction of decreasing λ. Conditioned on x, the forward process can be described39

in reverse by the transitions q(zλ′ |zλ,x) = N (µ̃λ′|λ(zλ,x), σ̃
2
λ′|λI), where40

µ̃λ′|λ(zλ,x) = eλ−λ
′
(αλ′/αλ)zλ + (1− eλ−λ

′
)αλ′x, σ̃2

λ′|λ = (1− eλ−λ
′
)σ2
λ′ (3)

The reverse process generative model pθ(z) starts from pθ(zλmin
) = N (0, I). We specify the41

transitions:42

pθ(zλ′ |zλ) = N (µ̃λ′|λ(zλ,xθ(zλ)), (σ̃
2
λ′|λ)

1−v(σ2
λ|λ′)v) (4)

During sampling, we apply this transition along an increasing sequence λmin = λ1 < · · · < λT =43

λmax for T timesteps. If the model xθ is correct, then as T →∞, we obtain samples from an SDE44

whose sample paths are distributed as p(z) [16]. The variance is a log-space interpolation of σ̃2
λ′|λ45

and σ2
λ|λ′ as suggested by [10]; for simplicity we use a constant hyperparameter v rather than learned46

zλ-dependent v. Note that variances simplify to σ̃2
λ′|λ as λ′ → λ, so v has an effect only when47

sampling with non-infinitesimal timesteps as done in practice.48

The reverse process mean comes from an estimate xθ(zλ) ≈ x plugged into q(zλ′ |zλ,x) [5, 8] (xθ49

also receives λ as input, but we suppress this to keep our notation clean). We parameterize xθ in50

terms of ε-prediction [5]: xθ(zλ) = (zλ − σλεθ(zλ))/αλ, and we train on the objective51

Eε,λ

[
‖εθ(zλ)− ε‖22

]
(5)

where ε ∼ N (0, I), zλ = αλx + σλε, and λ is drawn from a distribution p(λ) over [λmin, λmax].52

This objective is denoising score matching [17] over multiple noise scales [15], and when p(λ) is53

uniform, the objective is proportional to the variational lower bound on the marginal log likelihood of54

the latent variable model
∫
pθ(x|z)pθ(z)dz, ignoring the term for the unspecified pθ(x|z) and for55

the prior at zλmin
[8]. For a different distribution p(λ), the objective can be interpreted as weighted56

variational lower bound whose weighting can be tuned for sample quality [5]. We use a p(λ) inspired57

by the cosine noise schedule of [10]: sampling λ is given by λ = −2 log tan(au+ b) for uniformly58

distributed u ∈ [0, 1], where b = arctan(e−λmax/2) and a = arctan(e−λmin/2)− b. This represents59

a hyperbolic secant distribution modified to be supported on a bounded interval. For finite timestep60

sampling, we use λ values corresponding to uniformly spaced u ∈ [0, 1].61

Because the loss for εθ(zλ) is denoising score matching for all λ, the score εθ(zλ) learned by our62

model estimates the gradient of the log-density of the distribution of our noisy data zλ, that is ε(zλ) ≈63

σλ∇zλ
log p(zλ). Sampling from the learned diffusion model resembles using Langevin diffusion to64

sample from a sequence of distributions p(zλ) that converges to the conditional distribution p(x) of65

the original data x.66

In the case of conditional generative modeling, the data x is drawn jointly with conditioning informa-67

tion c, i.e. a class label for class-conditional image generation. The only modification to the model is68

that the reverse process function approximator receives c as input, as in εθ(zλ, c).69

3 Guidance70

An interesting property of certain generative models, such as GANs and flow-based models, is the71

ability to perform truncated or low temperature sampling by decreasing the variance or range of noise72

inputs to the generative model at sampling time. The intended effect is to decrease the diversity of73

the samples while increasing the quality of each individual sample. Truncation in BigGAN [1], for74

example, yields a tradeoff curve between FID score and Inception score for low and high amounts of75

truncation, respectively. Low temperature sampling in Glow [7] has a similar effect.76

2



3.1 Classifier guidance77

Unfortunately, straightforward attempts of implementing truncation or low temperature sampling78

in diffusion models are ineffective. For example, scaling model scores or decreasing the variance79

of Gaussian noise in the reverse process cause the diffusion model to generate blurry, low quality80

samples [3].81

To obtain a truncation-like effect in diffusion models, Dhariwal and Nichol [3] introduce classifier82

guidance, where the diffusion score εθ(zλ, c) ≈ σλ∇zλ
log p(zλ|c) is modified to include the83

gradient of the log likelihood of an auxiliary classifier model pθ(c|zλ) as follows:84

ε̃θ(zλ, c) = εθ(zλ, c) + wσλ∇zλ
log pθ(c|zλ) ≈ σλ∇zλ

[log p(zλ|c) + w log pθ(c|zλ)],

where w is a parameter that controls the strength of the classifier guidance. This modified score85

ε̃θ(zλ, c) is then used in place of εθ(zλ, c) when sampling from the diffusion model, which has the86

effect of up-weighting the probability of data for which the classifier pθ(c|zλ) assigns high likelihood87

to the correct label: data that can be classified well scores high on the Inception score of perceptual88

quality [13], which rewards generative models for this by design. Dhariwal and Nichol [3] therefore89

find that by setting w > 0 they can improve the Inception score of their diffusion model, at the90

expense of decreased diversity in their samples. Interestingly, they obtain their best results when91

applying classifier guidance to an already class-conditional model as described above, and they find92

that applying guidance to an unconditional model performs less well: the effects of class-conditioning93

and guidance thus seem complimentary.94

3.2 Classifier-free guidance95

A downside of classifier guidance is that it requires an additional classifier model and thus complicates96

the training pipeline. This model has to be trained on noisy data zλ, so it is not possible to plug97

in a standard pre-trained classifier. We explore an alternative method of modifying εθ(zλ, c) to98

achieve the same effect of boosting the perceptual quality as measured by the Inception score without99

requiring an auxiliary classifier. We call this new method classifier-free guidance.100

Instead of training a separate classifier model, we choose to train an unconditional denoising diffusion101

model pθ(z) parameterized through a score estimator εθ(zλ) together with the conditional model102

pθ(z|c) parameterized through εθ(zλ, c). We use a single neural network to parameterize both103

models, where for the unconditional model we can simply input zeros for the class identifier c when104

predicting the score, i.e. εθ(zλ) = εθ(zλ, c = 0). We jointly train the unconditional and conditional105

models simply by randomly setting c to the unconditional class identifier.106

We can then apply Bayes’ rule to obtain an implicit classifier as piθ(c|zλ) ∝ pθ(zλ|c)/pθ(zλ). The107

score of this implicit classifier will then be given by ∇zλ
log piθ(c|zλ) ≈ 1

σλ
[εθ(zλ, c) − εθ(zλ)].108

Applying classifier guidance with this implicit classifier yields the following modification to the109

diffusion score estimator:110

ε̃θ(zλ, c) = (1 + w)εθ(zλ, c)− wεθ(zλ) ≈ σλ∇zλ
[log pθ(zλ|c) + w log piθ(c|zλ)]. (6)

We then use ε̃θ(zλ, c) to sample from our diffusion model as usual, thus producing approximate111

samples from p̃θ(zλ|c) ∝ pθ(zλ|c)piθ(c|zλ)w.112

4 Experiments113

We apply our proposed classifier-free guidance to 64× 64 area-downsampled ImageNet [12]. We114

trained a model with architecture and hyperparameters identical to the 64× 64 model in [3], and we115

jointly trained the model on unconditional generation with probability 0.1. We choose λmin = −20,116

λmax = 20, and v = 0.3. We consider implied-classifier weights w ∈ {0, 0.1, 0.2, . . . , 5} and117

calculate FID and Inception Scores with 50000 samples for each value using T = 256 sampling steps.118

Figure 1 and Fig. 2 list our results: we obtain the best FID result with a small amount of guidance119

(w = 0.1) and the best IS result with strong guidance (w ≥ 4). These results compare favorably120

to [3, 6] and are currently state-of-the-art for this data set as far as we are aware for models that121

use T ≈ 256 steps (the ADM result uses 250 steps, and the CDM result is a two-stage model with122

4000 steps each). Between these two extremes we see a clear trade-off between these two metrics123
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of perceptual quality, with FID monotonically decreasing and IS monotonically increasing with124

guidance weight w.125

Figure 3 shows randomly generated samples from our model for different levels of guidance: here126

we clearly see that increasing guidance has the effect of decreasing sample variety and increasing127

individual sample fidelity.128

Method FID (↓) IS (↑)
ADM [3] 2.07 -
CDM [6] 1.48 67.95

Ours, no guidance 1.80 53.71

Ours, with guidance
w = 0.1 1.55 66.11
w = 0.2 2.04 78.91
w = 0.3 3.03 92.8
w = 0.4 4.30 106.2
w = 0.5 5.74 119.3
w = 0.6 7.19 131.1
w = 0.7 8.62 141.8
w = 0.8 10.08 151.6
w = 0.9 11.41 161
w = 1.0 12.6 170.1
w = 2.0 21.03 225.5
w = 3.0 24.83 250.4
w = 4.0 26.22 260.2

Figure 1: ImageNet 64x64 results
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Figure 2: ImageNet 64x64 FID vs. IS

5 Conclusion129

Returning to the questions we posed in the introduction: since classifier-free guidance is able to trade130

off IS and FID like classifier guidance without needing an extra trained classifier, we have resolved131

our question of whether guidance can be performed with a pure generative model. We confirm that it132

is possible to maximize Inception scores using classifier-free guidance (and FID score for a small133

amount of guidance), thus providing evidence that classifier-based sample quality metrics can be134

improved using methods that are not adversarial against ImageNet classifiers using classifier gradients.135

Finally also have an intuitive explanation for what guidance does: it decreases the unconditional136

likelihood of the sample while increasing the conditional likelihood. Our classifier-free guidance137

decreases the unconditional likelihood with a negative score term, which to our knowledge has not138

yet been explored and may find uses in other applications.139

A potential disadvantage of classifier-free guidance is sampling speed. Generally, classifiers can be140

smaller and faster than generative models, so classifier guided sampling may be faster than classifier-141

free guidance because the latter needs to run two forward passes of the diffusion model, one for142

conditional score and another for the unconditional score. The necessity to run multiple passes of the143

diffusion model might be mitigated by changing the architecture to inject conditioning late in the144

network, but we leave this exploration for future work.145

It may be possible to entirely avoid training an unconditional model. If we know the class distribution146

and there are only a few classes, we can use the fact that
∑
c p(x|c)p(c) = p(x) to obtain an147

unconditional score from conditional scores without explicitly training for the unconditional score.148

Of course, this would require as many forward passes as possible values of c and would be inefficient149

for high dimensional conditioning signals.150

We have presented a method to increase sample quality while decreasing sample diversity, just like151

classifier guidance. There may be negative impacts of doing so in deployed models, since sample152

diversity is important to maintain in applications where certain parts of the data are underrepresented153

in the context of the rest of the data. It would be an interesting avenue of future work to try to boost154

sample quality while maintaining sample diversity.155
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(a) Non-guided conditional sampling: FID=1.80, IS=53.71

(b) Classifier-free guidance with w = 1.0: FID=12.6, IS=170.1

(c) Classifier-free guidance with w = 3.0: FID=24.83, IS=250.4

Figure 3: Classifier-free guidance on ImageNet 64x64. Left: random classes. Right: single class
(malamute). Same random seeds used for sampling in each subfigure.
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