
Does Preprocessing Help Training
Over-parameterized Neural Networks?

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep neural networks have achieved impressive performance in many areas. De-1
signing a fast and provable method for training neural networks is a fundamental2
question in machine learning.3
The classical training method requires paying Ω(mnd) cost for both forward com-4
putation and backward computation, where m is the width of the neural network,5
and we are given n training points in d-dimensional space. In this paper, we pro-6
pose two novel preprocessing ideas to bypass this Ω(mnd) barrier:7

• First, by preprocessing the initial weights of the neural networks, we can8
train the neural network in Õ(m1−Θ(1/d)nd) cost per iteration.9

• Second, by preprocessing the input data points, we can train neural network10
in Õ(m4/5nd) cost per iteration.11

From the technical perspective, our result is a sophisticated combination of tools12
in different fields, greedy-type convergence analysis in optimization, sparsity ob-13
servation in practical work, high-dimensional geometric search in data structure,14
concentration and anti-concentration in probability. Our results also provide theo-15
retical insights for a large number of previously established fast training methods.16

1 Introduction17

During the last decade, deep learning has achieved dominating performance over many ar-18
eas, e.g., computer vision [LBBH98, KSH12, SLJ+15, HZRS16], natural language processing19
[CWB+11, DCLT18], automatic driving system, game playing [SHM+16, SSS+17] and beyond.20
The computational resource requirement for deep neural network training such computation has21
growing very quickly. Designing a fast and provable training method for neural networks is there-22
fore a fundamental and demanding challenge.23

Almost all deep learning models are optimized by gradient descent (or its variants). The total training24
time can be split in two components, the first one is the number of iterations and the second one is the25
cost per spent per iteration. Nearly all the iterative algorithms for acceleration can be viewed as two26
separate lines of research correspondingly, the first line is aiming for an algorithm that has as small27
as possible number of iterations, the second line is focusing on designing as efficient as possible data28
structures to improve the cost spent per iteration of the algorithm [Vai89, CLS19, LSZ19, JLSW20,29
JKL+20]. In this paper, our major focus is on the second line.30

There are a number of practical works trying to use a nearest neighbor search data structure to speed31
up the per-step computation of the deep neural network training [CMF+20, LXJ+20, CLP+21,32
DMZS21]. However, none of the previous work is able to give a provable guarantee. In this paper,33
our goal is to develop training algorithms that provably reduce per step time complexity. Let us34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

consider the ReLU activation neural network and two-layer neural network1. Let n denote the35
number of training data points. Let d denote the dimension of each data point. Let m denote the36
number of neurons. Suppose we consider the gradient descent algorithm, in each iteration we need37
to compute prediction for each point in the neural network. Each point xi ∈ Rd, requires to compute38
m inner product in d dimension. Thus, Ω(mnd) is a natural barrier for cost per iteration in training39
neural network (in both forward computation and backward computation).40

A natural question to ask is41

Is it possible to improve the cost per iteration of training neural network algorithm? E.g., is42
o(mnd) possible?43

We list our contributions as follows:44

• We provide a new theoretical framework for speeding up neural network training by: 1) adopting45
the shifted neural tangent kernel; 2) showing that only a small fraction (o(m)) of neurons are46
activated for each input data in each training iteration; 3) identifying the sparsely activated neurons47
via geometric search; 4) proving that the algorithm can minimize the train loss to zero in a linear48
convergence rate.49

• We provide two theoretical results 1) our first result (Theorem 6.1) builds a dynamic half-space50
report data structure for the weights of neural network to train neural networks in sublinear cost51
per iteration; 2) our second result (Theorem 6.2) builds a static half-space report data-structure for52
the input data points of the training data set for training neural network in sublinear time.53

1.1 Related work54

Acceleration via high-dimensional search data-structure. High-dimensional search data struc-55
tures support efficiently finding points in some geometric query regions (e.g., half-spaces, simplices,56
etc). Currently, there are two main approaches: one is based on Locality Sensitive Hashing (LSH)57
[IM98], which aims to find the close-by points (i.e., small `2 distance [DIIM04, AR15, AIL+15,58
ARN17, Raz17, AIR18, BIW19, DIRW20] or large inner product [SL14, SL15b, SL15a]) of a query59
q ∈ Rd in a given set of points S ⊂ Rd. This kind of algorithms runs very fast in practice, but most60
of them only supports approximate queries. Another approach is based on space partitioning data61
structures, for example, partition trees [Mat92a, Mat92b, AEM92, AC09, Cha12], k-d trees / range62
trees [CT17, TOG17, Cha19], Voronoi diagrams [ADBMS98, Cha00], which can exactly search the63
query regions. Recent works have successfully applied high-dimensional geometric data-structure to64
reduce the complexity of training deep learning models. SLIDE [CMF+20] accelerates the forward65
pass by retrieving neurons with maximum inner product via a LSH-based data-structure; Reforemer66
[KKL20] similarly adopts LSH to reduce the memory usage for processing long sequence; MON-67
GOOSE [CLP+21] accelerates the forward pass by retrieving neurons with maximum inner product68
via a learnable LSH-based data-structure [Cha02] and lazy update framework [CLS19]. Despite the69
great empirical success, there is no theoretical understanding of such acceleration.70

The goal of our paper is to theoretically characterize the acceleration brought by the high-71
dimensional geometric data-structure. Specifically, our algorithm and analysis are built upon the72
HSR data structures [AEM92] which can find all the points that have large inner product and sup-73
port efficient data update. Note that HSR comes with a stronger recovery guarantee than LSH, in74
the sense that HSR, whereas LSH is guaranteed to find some of those points.75

Convergence via over-parameterization. Recently, there has been a tremendous progress in un-76
derstanding the “small training loss” phenomenon in standard training [LL18, DZPS19, AZLS19a,77
AZLS19b, DLL+19, ADH+19a, ADH+19b, SY19, OS20, LSS+20, ZPD+20, HLSY21]. A con-78
vergence theory has been developed to show that, when randomly initialized, gradient descent and79
stochastic gradient descent converge to small training loss in polynomially many iterations when the80
network has polynomial width in terms of the number of training examples.81

1An alternative name of two-layer neural network is “one-hidden layer neural network”

2

2 Our techniques82

• Empirical works combine high-dimensional search data structures (e.g., LSH) with neural network83
training, however they do not work theoretically due to the following reasons:84

– Without shifting, the number of activated (and therefore updated) number of neurons is85
Θ(m). There is no hope to theoretically prove o(m) complexity (See Issue 1).86

– Approximate high-dimensional search data structure might miss some important neurons,87
which can potentially prevent the training from converge (see Issue 2).88

• Our solutions are:89

– We propose a shifted ReLU activation that is guaranteed to have o(m) number of activated90
neurons. Along with the shifted ReLU, we also propose a shifted NTK to rigorously provide91
convergence guarantee (see Solution 1).92

– We adopt an exact high-dimensional search data structure which better couples with the93
shifted NTK. It takes o(m) time to identify the activated neurons and fits well with the con-94
vergence analysis as it avoids missing important neurons (see Solution 2).95

Issue 1 To speed up the training process, we need the neural network to be “sparse”, that is,96
for each training data x ∈ Rd, the number of activated neurons is small. Then, in the forward97
computation, we can just evaluate a small subset of neurons. However, in the previous NTK analysis98
(e.g., [DZPS19]), the activation function is σ(x) = max{〈wr, x〉, 0}, and the weights vectors wr99
are initially sampled from a standard d-dimensional Gaussian distribution. Then, by the symmetry100
of Gaussian distribution, we know that for every input data x, there will be about half of the neurons101
being activated, which means that we can only obtain a constant factor speedup.102

Solution 1 The problem actually comes from the activation function. In practice, people use a103
shifted ReLU function σb(x) = max{〈wr, x〉, br} to train neural networks. The main observation104
of our work is that threshold implies sparsity. We consider the setting where all neurons have a105
unified threshold parameter b. Then, by the concentration of Gaussian distribution, there will be106
O(exp(−b2) ·m) activated neurons after the initialization.107

The next step is to show that the number of activated neurons will not blow up too much in the108
following training iterations. In [DZPS19, SY19], they showed that the weights vectors are changing109
slowly during the training process. In our work, we open the black box of their proof and show110
a similar phenomenon for the shifted ReLU function. More specifically, a key component is to111
prove that for each training data, a large fraction of neurons will not change their status (from112
non-activated to activated and vice versa) in the next iteration with high probability. To achieve113
this, they showed that this is equivalent to the event that a standard Gaussian random variable in a114
small centered interval [−R,R], and applied the anti-concentration inequality to upper-bound the115
probability. In our setting, we need to upper-bound the probability of z ∼ N (0, 1) in a shifted116
interval [b − R, b + R]. On the one hand, we can still apply the anti-concentration inequality by117
showing that the probability is at most Pr[z ∈ [−R,R]]. On the other hand, this probability is also118
upper-bounded by Pr[z > b − R], and for small R, we can apply the concentration inequality for119
a more accurate estimation. In the end, by some finer analysis of the probability, we can show that120
with high probability, the number of activated neurons in each iteration is also O(exp(−b2) ·m) for121
each training data. If we take b = Θ(

√
logm), we only need to deal with truly sublinear in m of122

activated neurons in the forward evaluation.123

Issue 2: How to find the small subset of activated neurons? A linear scan of the neurons will124
lead to a time complexity linear in m, which we hope to avoid. Randomly sampling or using LSH125
for searching can potentially miss important neurons which are important for a rigorous convergence126
analysis.127

Solution 2 Given the shifted ReLU function σb(〈wr, x〉) = max{〈wr, x〉 − b, 0}, the active neu-128
rons are those with weights wr lying in the half space of 〈wr, x〉 − b > 0. Finding such neurons129
is equivalent to a computational geometry problem: given m points in Rd, in each query and a half130
space H, the goal is to output the points contained in H. Here we use the Half-Space Reporting131
(HSR) data structure proposed by [AEM92]: after proper initialization, the HSR data structure can132
return all points lying in the queried half space with complexity as low as O(log(n) + k), where k133

3

is the number of such points. Note that the HSR data structure well couples with the shifted ReLU,134
as the number of activated neurons k is truly sublinear in m as per the setting of b = Θ(

√
logm).135

3 Preliminaries136

Notations For an integer n, we use [n] to denote the set {1, 2, · · · , n}. For a vector x, we use137
‖x‖2 to denote the entry-wise `2 norm of a vector. For a matrix A, we use ‖A‖F = (

∑
i,j A

2
i,j)

1/2138

to denote its Frobenius norm and use ‖A‖ to denote the operator/spectral norm of A. We use x>y139
to denote the inner product between vectors x and y. We use Id to denote d-dimensional identity140
matrix. We use N (0, 1) to denote Gaussian distribution with mean 0 and variance 1.141

3.1 Problem Formulation142

In this section, we introduce the neural network model we study in this paper. We consider a two-143
layer ReLU activated neural network with m neurons in the hidden layer2:144

f(W,x, a) :=
1√
m

m∑

r=1

arσb(〈wr, x〉),

where x ∈ Rd is the input, w1, · · · , wm ∈ Rd are weight vectors in the first layer, a1, · · · , am ∈ R145
are weights in the second layer. The ReLU function σb(x) := max{x − b, 0}, where b is the146
threshold parameter. For simplicity, we only optimize W ∈ Rd×m but not a ∈ Rm.3 Specifically,147
we use the following initialization throughout the paper148

wr(0) ∼ N (0, Id); ar ∼ U({−1, 1}), ∀r ∈ [m]. (1)

Recall that the ReLU function σb(x) = max{x− b, 0}. Therefore for r ∈ [m], we have149

∂f(W,x, a)

∂wr
=

1√
m
arx1w>

r x≥b. (2)

We define objective function L as L(W) = 1
2

∑n
i=1(yi − f(W,xi, a))2.150

Then, we can apply the gradient descent to optimize the weight matrix W in the following standard151
way,152

W (k + 1) = W (k)− η ∂L(W (k))

∂W (k)
. (3)

We can compute the gradient of L in terms of wr ∈ Rd153

∂L(W)

∂wr
=

1√
m

n∑

i=1

(f(W,xi, a)− yi)arxi1〈wr,xi〉≥0. (4)

At time t, let u(t) = (u1(t), · · · , un(t)) ∈ Rn be the prediction vector where each ui(t) is defined154
as155

ui(t) = f(W (t), a, xi). (5)

3.2 Data Structure for Half-Space Reporting156

The half-space range reporting problem is an important problem in computational geometry, which157
is formally defined as follows:158

Definition 3.1 (Half-space range reporting). Given a set S of n points in Rd. There are two opera-159
tions:160

2This is a very standard formulation in the literature, e.g., see [DZPS19, SY19].
3We remark, in some previous work, they do choose shift, but their shift is a random shift. In our application,

it is important, we fixed the same b for all neurons and never trained.

4

• QUERY(H): given a half-space H ⊂ Rd, output all of the points in S that contain in H ,161
i.e., S ∩H .162

• UPDATE: add or delete a point in S.163

– INSERT(q): insert q into S164
– DELETE(q): delete q from S165

Let Tinit denote the pre-processing time to build the data structure, Tquery denote the time per query166
and Tupdate time per update.167

We use the data-structure proposed in [AEM92] to solve the half-space range reporting problem,168
which admits the interface summarized in Algorithm 1. Intuitively, the data-structure recursively169
partition the set S and organizes the points in a tree data-structure. Then for a given query (a, b), all170
k points of S with sgn(〈a, x〉 − b) ≥ 0 are reported quickly. Note that the query (a, b) here defines171
the half-space H in Definition 3.1.172

Algorithm 1 Half Space Report Data Structure

1: data structure HALFSPACEREPORT
2: procedures:
3: INIT(S, n, d) . Initialize the data structure with a set S of n points in Rd
4: QUERY(a, b) . a, b ∈ Rd. Output the set {x ∈ S : sgn(〈a, x〉 − b) ≥ 0}
5: ADD(x) . Add a point x ∈ Rd to S
6: DELETE(x) . Delete the point x ∈ Rd from S
7: end data structure

Adapted from [AEM92], the algorithm comes with the following complexity:173

Corollary 3.2 ([AEM92]). Given a set of n points in Rd, the half-space reporting problem can be174
solved with the following performances:175

• Part 1.4 Tquery(n, d, k) = Od(n
1−1/bd/2c + k), amortized Tupdate = Od(log2(n)).176

• Part 2.5 Tquery(n, d, k) = Od(log(n) + k), amortized Tupdate = Od(n
bd/2c−1).177

3.3 Sparsity-based Characterizations178

In this section, we consider the ReLU function with a nonzero threshold: σb(x) = max{0, x − b},179
which is commonly seen in practise, and also has been considered in theoretical work [ZPD+20].180

We first define the set of neurons that are firing at time t.181

Definition 3.3 (fire set). For each i ∈ [n], for each t ∈ {0, 1, · · · , T}, let Si,fire(t) ⊂ [m] denote182
the set of neurons that are “fire” at time t, i.e.,183

Si,fire(t) := {r ∈ [m] : 〈wr(t), xi〉 > b}.
We define ki,t := |Si,fire(t)|, ∀t ∈ {0, 1, · · · , T}.184

The following lemma shows that σb gives the desired sparsity.185

Lemma 3.4 (Sparsity after initialization). Let b > 0 be a tunable parameter. If we use the σb as186
the activation function, then after the initialization, with probability at least 1 − n · exp(−Ω(m ·187
exp(−b2/2))), it holds that for each input data xi, the number of activated neurons ki,0 ≤ O(m ·188
exp(−b2/2)), where m is the total number of neurons.189

Proof. By the concentration of Gaussian distribution, the initial fire probability of a single neuron is190

Pr[σb(〈wr(0), xi〉) > 0] = Pr
z∼N (0,1)

[z > b] ≤ exp(−b2/2).

4Used in Theorem 6.1
5Used in Theorem 6.2

5

Algorithm 2 Training Neural Network via building a data structure of weights of the neural network

1: procedure TRAININGWITHPREPROCESSWEIGHTS({(xi, yi)}i∈[n],n,m,d) . Theorem 6.1
2: Initialize wr, ar for r ∈ [m] and b according to Equation (1) and Remark 3.5
3: HALFSPACEREPORT HSR.INIT({wr(0)}r∈[m],m, d) . Algorithm 1
4: for t = 1→ T do
5: Si,fire ← HSR.QUERY(xi, b) for i ∈ [n]
6: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
7: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
8: Gradient update for the neurons in ∪i∈[n]Si,fire

9: HSR.DELETE(wr(t)) for r ∈ ∪i∈[n]Si,fire

10: HSR.ADD(wr(t+ 1)) for r ∈ ∪i∈[n]Si,fire

11: end for
12: return Trained weights wr(T + 1) for r ∈ [m]
13: end procedure

Hence, for the indicator variable 1r∈Si,fire(0), we have191

E[1r∈Si,fire(0)] ≤ exp(−b2/2).

By Bernstein inequality (Lemma B.3) we have for all t > 0,192

Pr [|Si,fire(0)| > k0 + t] ≤ exp

(
− t2/2

k0 + t/3

)
, (6)

where k0 := m · exp(−b2/2). If we choose t = k0, then we have:193

Pr [|Si,fire(0)| > 2k0] ≤ exp (−3k0/8)

Then, by union bound over all i ∈ [n], we have that with high probability194

1− n · exp(−Ω(m · exp(−b2/2))),

the number of initial fire neurons for the sample xi is bounded by ki,0 ≤ 2m · exp(−b2/2).195

The following remark gives an example of setting the threshold b, and will be useful for showing the196
sublinear complexity in the next section.197

Remark 3.5. If we choose b =
√

0.4 logm then k0 = m4/5. For t = m4/5, Eq. (6) implies that198

Pr
[
|Si,fire(0)| > 2m4/5

]
≤ exp

(
−min{mR,O(m4/5)}

)
.

4 Training Neural Network with Half-Space Reporting Data Structure199

In this section, we present two sublinear time algorithms for training over-parameterized neural net-200
works. The first algorithm (Section 4.1) relies on building a high-dimensional search data-structure201
for the weights of neural network. The second algorithm (Section 4.2) is based on building a data202
structure for the input data points of the training set. Both of the algorithms use the HSR to quickly203
identify the fired neurons to avoid unnecessary calculation. The time complexity and the sketch of204
the proof are provided after each of the algorithms.205

4.1 Weights Preprocessing206

We first introduce the algorithm that preprocesses the weights wr for r ∈ [m], which is commonly207
used in practice [CLP+21, CMF+20, KKL20]. Recall the two-layer ReLU neural network is defined208
as f(W,x, a) := 1√

m

∑m
r=1 arσb(〈wr, x〉). By constructing a HSR data-structure for wrs, we can209

quickly find the set of active neurons Si,fire for each of the training sample xi. See pseudo-code in210
Algorithm 2.211

In the remaining part of this section, we focus on the time complexity analysis of Algorithm 2. The212
convergence proof will be given in Section 5.213

6

Algorithm 3 Training Neural Network via building a data-structure of the training data

1: procedure TRAININGWITHPROCESSDATA({(xi, yi)}i∈[n],n,m,d) . Theorem 6.2
2: Initialize wr, ar for r ∈ [m] and b according to Equation (1) and Remark 3.5
3: HALFSPACEREPORT HSR.INIT({xi}i∈[n], n, d) . Algorithm 1
4: S̃r,fire ← HSR.QUERY(wr(0), b) for r ∈ [m] . S̃r,fire are samples which neuron r fires for
5: Si,fire ← {r | i ∈ S̃r,fire} . Si,fire is the set of neurons, which fire for xi
6: for t = 1→ T do
7: Forward pass for xi only on neurons in Si,fire for i ∈ [n]
8: Calculate gradient for xi only on neurons in Si,fire for i ∈ [n]
9: Gradient update for the neurons in ∪i∈[n]Si,fire

10: for r ∈ ∪i∈[n]Si,fire do
11: Si,fire.DEL(r) for i ∈ S̃r,fire

12: S̃r,fire ← HSR.QUERY(wr(t+ 1), b)

13: Si,fire.ADD(r) for i ∈ S̃r,fire

14: end for
15: end for
16: return Trained weights wr(T + 1) for r ∈ [m]
17: end procedure

Lemma 4.1 (Running time part of Theorem 6.1). Given n data points in d-dimensional space.214
Running gradient descent algorithm (Algorithm 2) on a two-layer ReLU (over-parameterized) neu-215
ral network with b =

√
0.4 logm, the expected per-iteration running time of the gradient descent216

algorithm is Õ(m1−Θ(1/d)nd).217

Proof. The per-step time complexity is218

n∑

i=1

TQUERY(m, d, ki,t) + (TDELETE + TINSERT) · | ∪i∈[n] Si,fire(t)|+ d
∑

i∈[n]

ki,t

The first term
∑n
i=1 TQUERY(m, d, ki,t) corresponds to the running time of querying the active neuron219

set Si,fire(t) for all training samples i ∈ [n]. With the first result in Corollary B.7, the complexity is220

bounded by Õ(m1−Θ(1/d)nd).221

The second term (TDELETE + TINSERT) · | ∪i∈[n] Si,fire(t)| corresponds to updating wr in the high-222
dimensional search data-structure (Lines 9 and 10). Again with the first result in Corollary B.7, we223
have TDELETE + TINSERT = O(log2m). Combining with the fact that | ∪i∈[n] Si,fire(t)| ≤ | ∪i∈[n]224
Si,fire(0)| ≤ O(nm4/5), the second term is bounded by O(nm4/5 log2m).225

The third term is the time complexity of gradient calculation restricted to the set Si,fire(t). With the226
bound on

∑
i∈[n] ki,t (Lemma C.9), we have d

∑
i∈[n] ki,t ≤ O(m4/5nd).227

Putting them together completes the proof.228

4.2 Data Preprocessing229

While the weights preprcessing algorithm is inspired by the common practise, the dual relationship230
between the input xi and model weights wr inspires us to preprocess the dataset before training (i.e.,231
building HSR data-structure for xi). This largely improves the per-iteration complexity and avoids232
the frequent updates of the data structure since the training data is fixed. More importantly, once233
the training dataset is preprocessed, it can be reused for different models or tasks, thus one does not234
need to perform the expensive preprocessing for each training.235

The corresponding pseudocode is presented in Algorithm 3. With xi preprocessed, we can query236
HSR with weights wr and the result S̃r,fire is the set of training samples xi for which wr fires for.237

Given S̃r,fire for r ∈ [m], we can easily reconstruct the set Si,fire, which is the set of neurons fired238
for sample xi. The forward and backward pass can then proceed similar to Algorithm 2.239

7

At the end of each iteration, we will update S̃r,fire based on the new wr estimation and update Si,fire240
accordingly. For Algorithm 3, the HSR data-structure is static for the entire training process. This241
is the main difference from Algorithm 2, where the HSR needs to be updated every time step to242
account for the changing weights wr.243

We defer the convergence analysis to Section 5 and focus on the time complexity analysis of Algo-244
rithm 2 in the rest of this section. We consider d being a constant for the rest of this subsection.245

Lemma 4.2 (Running time part of Theorem 6.2). Given n data points in d-dimensional space. Run-246
ning gradient descent algorithm (Algorithm 2) on a two-layer ReLU (over-parameterized) neural247
network with b =

√
0.4 logm, the expected per-iteration running time of initializing S̃r,fire, Si,fire248

for r ∈ [m], i ∈ [n] is O(m log n + m4/5n). The cost per iteration of the training algorithm is249
O(m4/5n log n).250

Proof. We analyze the initialization and training parts separately.251

Initialization In Lines 4 and 5, the sets S̃r,fire, Si,fire for r ∈ [m], i ∈ [n] are initialized. For each252
r ∈ [m], we need to query the data structure the set of data points x’s such that σb(wr(0)>x) > 0.253
Hence, the running time of this step is254

m∑

r=1

Tquery(n, d, k̃r,0) = O(m log n+
m∑

r=1

k̃r,0)

= O(m log n+
n∑

i=1

ki,0)

= O(m log n+m4/5n).

where the second step follows from
∑m
r=1 k̃r,0 =

∑n
i=1 ki,0.255

Training Consider training the neural network for T steps. For each step, first notice that the256
forward and backward computation parts (Line 7 - 9) are the same as previous algorithm. The time257
complexity is O(m4/5n log n).258

We next show that maintaining S̃r,fire, r ∈ [m] and Si,fire, i ∈ [n] (Line 10-14) takesO(m4/5n log n)259
time. For each fired neuron r ∈ [m], we first remove the indices of data in the sets Si,fire, which260
takes time261

O(1) ·
∑

r∈∪i∈[n]Si,fire

k̃r,t = O(1) ·
m∑

r=1

k̃r,t = O(m4/5n).

Then, we find the new set of x’s such that σb(〈wr(t + 1), x〉) > 0 by querying the half-space262
reporting data structure. The total running time for all fired neurons is263

∑

r∈∪i∈[n]Si,fire

Tquery(n, d, k̃r,t+1) . m4/5n log n+
∑

r∈∪i∈[n]Si,fire

k̃r,t+1 = O(m4/5n log n)

Then, we update the index sets Si,fire in time O(m4/5n). Therefore, each training step takes264
O(m4/5n log n) time, which completes the proof.265

5 Convergence Analysis of Our Algorithm266

In this section, we state the convergence result of our training neural network algorithms267
(Lemma 5.2). An important component in our proof is to show that the smallest eigenvalue of the268
continuous Hessian matrix λmin(Hcts) cannot be too small. It turns out to be an anti-concentration269
problem of Gaussian random matrix. In [OS20], they gave a lower bound on λmin(Hcts) for ReLU270
function with b = 0, assuming the input data are separable. One of our major technical contribution271
is generalizing it to arbitrary b ≥ 0.272

8

Proposition 5.1 (Informal version of Theorem F.1). Given n input data {x1, x2, · · · , xn} ⊆ Rd273
such that ∀i ∈ [n], ‖xi‖2 = 1 and δ := mini6=j{‖xi − xj‖2, ‖xi + xj‖2}. For any b ≥ 0, we define274
Hcts ∈ Rn×n as follows Hcts

i,j := Ew∼N (0,Id)

[
〈xi, xj〉1〈w,xi〉≥b,〈w,xj〉≥b

]
,∀i ∈ [n], j ∈ [n]. Then275

λmin(Hcts) ≥ 0.01e−b
2/2δ/n2.

With proposition 5.1, we are ready to show the convergence rate of over-parameterized neural net-276
work with shifted ReLU function.277

Lemma 5.2 (Convergence part of Theorem 6.1 and Theorem 6.2). Suppose input data-points are278
δ-separable, i.e., δ := mini 6=j{‖xi − xj‖2, ‖xi + xj‖2}. Let m = poly(n, 1/δ, log(n/ρ)), we279
i.i.d. initialize wr ∈ N (0, Id), ar sampled from {−1,+1} uniformly at random for r ∈ [m],280
b = Θ(

√
logm), and we set the step size η = O(λ/n2) then with probability at least 1− ρ over the281

random initialization we have for k = 0, 1, 2, · · · , T 6,282

‖u(k)− y‖22 ≤ (1− ηλ/2)k · ‖u(0)− y‖22. (7)

This result shows that despite the shifted ReLU and sparsely activated neurons, we can still retain283
the linear convergence. Combined with the results on per-step complexity in the previous section, it284
gives our main theoretical results of training deep learning models with sublinear time complexity285
(Theorem 6.1 and Theorem 6.2).286

6 Main Theorems287

In this section, we state the main theorems of our work, showing the sublinear running time and288
linear convergence rate of our two algorithms. The first algorithm is relying on building a high-289
dimensional geometric search data-structure for the weights of neural network.290

Theorem 6.1 (Main result I, informal of Theorem E.2). Given n data points in d-dimensional space.291
We preprocess the initialization weights of the neural network. Running gradient descent algorithm292
(Algorithm 2) on a two-layer ReLU (over-parameterized) neural network with m neurons in the293
hidden layers is able to minimize the training loss to zero and the expected running time of gradient294
descent algorithm (per iteration)295

Õ(m1−Θ(1/d)nd).

The second algorithm is based on building a data structure for the input data points of the training296
set. Our second algorithm can further reduce the cost per iteration from m1−1/d to truly sublinear297
in m, e.g. m4/5.298

Theorem 6.2 (Main result II, informal of Theorem E.2). Given n data points in d-dimensional299
space. We preprocess all the data points. Running gradient descent algorithm (Algorithm 3) on a300
two-layer ReLU (over-parameterized) neural network with m neurons in the hidden layers is able301
to minimize the training loss to zero, and the expected running time of gradient descent algorithm302
(per iteration)303

Õ(m4/5nd).

7 Discussion and Limitations304

In this paper, we propose two sublinear algorithms to train neural networks. By preprocessing305
the weights of the neuron networks or preprocessing the training data, we rigorously prove that306
it is possible to train a neuron network with sublinear complexity, which overcomes the Ω(mnd)307
barrier in classical training methods. Our results also offer theoretical insights for many previously308
established fast training methods.309

One limitation of our work is that the current analysis framework does not provide convergence310
guarantee for combining LSH with gradient descent, which is commonly seen in many empirical311
works. Our proof breaks as LSH might miss important neurons which potentially ruins the conver-312
gence analysis. Instead, we refer to the HSR data-structure, which provides a stronger theoretical313
guarantee of successfully finding all fired neurons.314

6Eventually, we choose T = λ−2n2 log(n/ε) where ε is the final accuracy.

9

References315

[AC09] Peyman Afshani and Timothy M Chan. Optimal halfspace range reporting in three di-316
mensions. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete317
algorithms, pages 180–186. SIAM, 2009.318

[ADBMS98] Pankaj K Agarwal, Mark De Berg, Jiri Matousek, and Otfried Schwarzkopf. Con-319
structing levels in arrangements and higher order voronoi diagrams. SIAM journal on320
computing, 27(3):654–667, 1998.321

[ADH+19a] Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained322
analysis of optimization and generalization for overparameterized two-layer neural323
networks. In International Conference on Machine Learning, pages 322–332, 2019.324

[ADH+19b] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong325
Wang. On exact computation with an infinitely wide neural net. In NeurIPS. https:326
//arxiv.org/pdf/1904.11955.pdf, 2019.327

[AEM92] Pankaj K Agarwal, David Eppstein, and Jirí Matousek. Dynamic half-space report-328
ing, geometric optimization, and minimum spanning trees. In Annual Symposium on329
Foundations of Computer Science (FOCS), volume 33, pages 80–80, 1992.330

[AIL+15] Alexandr Andoni, Piotr Indyk, TMM Laarhoven, Ilya Razenshteyn, and Ludwig331
Schmidt. Practical and optimal lsh for angular distance. In Advances in Neural Infor-332
mation Processing Systems (NIPS), pages 1225–1233. Curran Associates, 2015.333

[AIR18] Alexandr Andoni, Piotr Indyk, and Ilya Razenshteyn. Approximate nearest neighbor334
search in high dimensions. arXiv preprint arXiv:1806.09823, 7, 2018.335

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approx-336
imate near neighbors. In Proceedings of the forty-seventh annual ACM symposium on337
Theory of computing (STOC), pages 793–801, 2015.338

[ARN17] Alexandr Andoni, Ilya Razenshteyn, and Negev Shekel Nosatzki. Lsh forest: Practical339
algorithms made theoretical. In Proceedings of the Twenty-Eighth Annual ACM-SIAM340
Symposium on Discrete Algorithms (SODA), pages 67–78. SIAM, 2017.341

[AZLS19a] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learn-342
ing via over-parameterization. In ICML, 2019.343

[AZLS19b] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training344
recurrent neural networks. In NeurIPS, 2019.345

[Ber24] Sergei Bernstein. On a modification of chebyshev’s inequality and of the error formula346
of laplace. Ann. Sci. Inst. Sav. Ukraine, Sect. Math, 1(4):38–49, 1924.347

[BIW19] Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density348
estimation in high dimensions. 2019.349

[Cha00] Timothy M Chan. Random sampling, halfspace range reporting, and construction of350
(≤ k)-levels in three dimensions. SIAM Journal on Computing, 30(2):561–575, 2000.351

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Pro-352
ceedings of the thiry-fourth annual ACM symposium on Theory of computing (STOC),353
pages 380–388, 2002.354

[Cha12] Timothy M Chan. Optimal partition trees. Discrete & Computational Geometry,355
47(4):661–690, 2012.356

[Cha19] Timothy M Chan. Orthogonal range searching in moderate dimensions: kd trees and357
range trees strike back. Discrete & Computational Geometry, 61(4):899–922, 2019.358

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based359
on the sum of observations. The Annals of Mathematical Statistics, pages 493–507,360
1952.361

10

[CLP+21] Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao,362
Zhao Song, Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable lsh363
framework for efficient neural network training. In ICLR oral, 2021.364

[CLS19] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current365
matrix multiplication time. In STOC, 2019.366

[CMF+20] Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshu-367
mali Shrivastava. Slide: In defense of smart algorithms over hardware acceleration368
for large-scale deep learning systems. In In Proceedings of the 3rd Conference on369
Machine Learning and Systems (MLSys), 2020.370

[CT17] Timothy M Chan and Konstantinos Tsakalidis. Dynamic orthogonal range search-371
ing on the ram, revisited. Leibniz International Proceedings in Informatics, LIPIcs,372
77:281–2813, 2017.373

[CWB+11] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu,374
and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of375
machine learning research, 12(ARTICLE):2493–2537, 2011.376

[DCLT18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-377
training of deep bidirectional transformers for language understanding. arXiv preprint378
arXiv:1810.04805, 2018.379

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-380
sensitive hashing scheme based on p-stable distributions. In Proceedings of the twen-381
tieth annual symposium on Computational geometry (SoCG), pages 253–262, 2004.382

[DIRW20] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions383
for nearest neighbor search. In ICLR. arXiv preprint arXiv:1901.08544, 2020.384

[DLL+19] Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient385
descent finds global minima of deep neural networks. In ICML. https://arxiv.386
org/pdf/1811.03804, 2019.387

[DMZS21] Shabnam Daghaghi, Nicholas Meisburger, Mengnan Zhao, and Anshumali Shrivas-388
tava. Accelerating slide deep learning on modern cpus: Vectorization, quantizations,389
memory optimizations, and more. Proceedings of Machine Learning and Systems, 3,390
2021.391

[DZPS19] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably392
optimizes over-parameterized neural networks. In ICLR, 2019.393

[HLSY21] Baihe Huang, Xiaoxiao Li, Zhao Song, and Xin Yang. Fl-ntk: A neural tangent394
kernel-based framework for federated learning convergence analysis. In ICML, 2021.395

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.396
Journal of the American Statistical Association, 58(301):13–30, 1963.397

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning398
for image recognition. In Proceedings of the IEEE conference on computer vision and399
pattern recognition (CVPR), pages 770–778, 2016.400

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing401
the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium402
on Theory of computing (STOC), pages 604–613, 1998.403

[JKL+20] Haotian Jiang, Tarun Kathuria, Yin Tat Lee, Swati Padmanabhan, and Zhao Song. A404
faster interior point method for semidefinite programming. In FOCS, 2020.405

[JLSW20] Haotian Jiang, Yin Tat Lee, Zhao Song, and Sam Chiu-wai Wong. An improved406
cutting plane method for convex optimization, convex-concave games and its appli-407
cations. In STOC, 2020.408

11

[KKL20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient trans-409
former. arXiv preprint arXiv:2001.04451, 2020.410

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification411
with deep convolutional neural networks. Advances in neural information processing412
systems, 25:1097–1105, 2012.413

[LBBH98] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based414
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–415
2324, 1998.416

[LL18] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via417
stochastic gradient descent on structured data. In NeurIPS, 2018.418

[LS01] W.V. Li and Q.-M. Shao. Gaussian processes: Inequalities, small ball probabilities and419
applications. In Stochastic Processes: Theory and Methods, volume 19 of Handbook420
of Statistics, pages 533–597. Elsevier, 2001.421

[LSS+20] Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized422
leverage score sampling for neural networks. In NeurIPS, 2020.423

[LSZ19] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the424
current matrix multiplication time. In Conference on Learning Theory (COLT), pages425
2140–2157. PMLR, 2019.426

[LXJ+20] Zichang Liu, Zhaozhuo Xu, Alan Ji, Jonathan Li, Beidi Chen, and Anshumali427
Shrivastava. Climbing the wol: Training for cheaper inference. arXiv preprint428
arXiv:2007.01230, 2020.429

[Mat92a] Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry,430
8(3):315–334, 1992.431

[Mat92b] Jiri Matousek. Reporting points in halfspaces. Computational Geometry, 2(3):169–432
186, 1992.433

[OS20] Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization:434
global convergence guarantees for training shallow neural networks. In arXiv preprint.435
https://arxiv.org/pdf/1902.04674.pdf, 2020.436

[Raz17] Ilya Razenshteyn. High-dimensional similarity search and sketching: algorithms and437
hardness. PhD thesis, Massachusetts Institute of Technology, 2017.438

[Sch11] Jssai Schur. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich439
vielen veränderlichen. 1911.440

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George441
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,442
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree443
search. nature, 529(7587):484–489, 2016.444

[SL14] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maxi-445
mum inner product search (mips). Advances in Neural Information Processing Sys-446
tems (NIPS), pages 2321–2329, 2014.447

[SL15a] Anshumali Shrivastava and Ping Li. Asymmetric minwise hashing for indexing bi-448
nary inner products and set containment. In Proceedings of the 24th international449
conference on world wide web (WWW), pages 981–991, 2015.450

[SL15b] Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive hashing451
(alsh) for maximum inner product search (mips). In Proceedings of the Thirty-First452
Conference on Uncertainty in Artificial Intelligence (UAI), pages 812–821, 2015.453

12

[SLJ+15] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir454
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going455
deeper with convolutions. In Proceedings of the IEEE conference on computer vi-456
sion and pattern recognition, pages 1–9, 2015.457

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,458
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-459
tering the game of go without human knowledge. nature, 550(7676):354–359, 2017.460

[SY19] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix461
chernoff bound. arXiv preprint arXiv:1906.03593, 2019.462

[TOG17] Csaba D Toth, Joseph O’Rourke, and Jacob E Goodman. Handbook of discrete and463
computational geometry. CRC press, 2017.464

[Tro15] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and465
Trends in Machine Learning, 8(1-2):1–230, 2015.466

[Vai89] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication.467
In FOCS, 1989.468

[ZPD+20] Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora.469
Over-parameterized adversarial training: An analysis overcoming the curse of dimen-470
sionality. In NeurIPS. arXiv preprint arXiv:2002.06668, 2020.471

Checklist472

1. For all authors...473

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s474
contributions and scope?475
A: [Yes] .476

(b) Did you describe the limitations of your work?477
A: [Yes] See Section 7.478

(c) Did you discuss any potential negative societal impacts of your work?479
A: [N/A] . Our theoretical work does not have explicitly negative societal impacts.480

(d) Have you read the ethics review guidelines and ensured that your paper conforms to481
them?482
A: [Yes] , we conformed.483

2. If you are including theoretical results...484

(a) Did you state the full set of assumptions of all theoretical results?485
A: [Yes] , we explictly stated the assumptions.486

(b) Did you include complete proofs of all theoretical results?487
A: [Yes] , we provided the complete proofs in supplementary materials.488

3. If you ran experiments...489

(a) Did you include the code, data, and instructions needed to reproduce the main experi-490
mental results (either in the supplemental material or as a URL)?491
A: [N/A]492

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they493
were chosen)?494
A: [N/A]495

(c) Did you report error bars (e.g., with respect to the random seed after running experi-496
ments multiple times)?497
A: [N/A]498

(d) Did you include the total amount of compute and the type of resources used (e.g., type499
of GPUs, internal cluster, or cloud provider)?500
A: [N/A]501

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...502

13

(a) If your work uses existing assets, did you cite the creators?503
A: [N/A]504

(b) Did you mention the license of the assets?505
A: [N/A]506

(c) Did you include any new assets either in the supplemental material or as a URL?507
A: [N/A]508

(d) Did you discuss whether and how consent was obtained from people whose data509
you’re using/curating?510
A: [N/A]511

(e) Did you discuss whether the data you are using/curating contains personally identifi-512
able information or offensive content?513
A: [N/A]514

5. If you used crowdsourcing or conducted research with human subjects...515

(a) Did you include the full text of instructions given to participants and screenshots, if516
applicable?517
A: [N/A]518

(b) Did you describe any potential participant risks, with links to Institutional Review519
Board (IRB) approvals, if applicable?520
A: [N/A]521

(c) Did you include the estimated hourly wage paid to participants and the total amount522
spent on participant compensation?523
A: [N/A]524

14

