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Abstract

Despite the superior empirical success of deep meta-learning, theoretical under-1

standing of overparameterized meta-learning is still limited. This paper studies the2

generalization of a widely used meta-learning approach, Model-Agnostic Meta-3

Learning (MAML), which aims to find a good initialization for fast adaptation4

to new tasks. Under a mixed linear regression model, we analyze the general-5

ization properties of MAML trained with SGD in the overparameterized regime.6

We provide both upper and lower bounds for the excess risk of MAML, which7

captures how SGD dynamics affect these generalization bounds. With such sharp8

characterizations, we further explore how various learning parameters impact the9

generalization capability of overparameterized MAML, including explicitly identi-10

fying typical data and task distributions that can achieve diminishing generalization11

error with overparameterization, and characterizing the impact of adaptation learn-12

ing rate on both excess risk and the early stopping time. Our theoretical findings13

are further validated by experiments.14

1 Introduction15

Meta-learning [22] is a learning paradigm which aims to design algorithms that are capable of gaining16

knowledge from many previous tasks and then using it to improve the performance on future tasks17

efficiently. It has exhibited great power in various machine learning applications spanning over18

few-shot image classification [31, 32], reinforcement learning [21] and intelligent medicine [20].19

One prominent type of meta-learning approaches is an optimization-based method, Model-Agnostic20

Meta-Learning (MAML) [16], which achieves impressive results in different tasks [30, 4, 2]. The21

idea of MAML is to learn a good initialization ω∗, such that for a new task we can adapt quickly22

to a good task parameter starting from ω∗. MAML takes a bi-level implementation: the inner-level23

initializes at the meta parameter and takes task-specific updates using a few steps of gradient descent24

(GD), and the outer-level optimizes the meta parameter across all tasks.25

With the superior empirical success, theoretical justifications have been provided for MAML and26

its variants over the past few years from both optimization [18, 36, 14, 25] and generalization27

perspectives [1, 11, 15, 9]. However, most existing analyses did not take overparameterization into28

consideration, which we deem as crucial to demystify the remarkable generalization ability of deep29

meta-learning [37, 22]. More recently, [35] studied the MAML with overparameterized deep neural30

nets and derived a complexity-based bound to quantify the difference between the empirical and31

population loss functions at their optimal solutions. However, complexity-based generalization32

bounds tend to be weak in the high dimensional, especially in the overparameterized regime. Recent33

works [6, 39] developed more precise bounds for overparameterized setting under a mixed linear34

regression model, and identified the effect of adaptation learning rate on the generalization. Yet, they35

considered only the simple isotropic covariance for data and tasks, and did not explicitly capture how36
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the generalization performance of MAML depends on the data and task distributions. Therefore, the37

following important problem still remains largely open:38

Can overparameterized MAML generalize well to a new task, under general data and task39

distributions?40

In this work, we utilize the mixed linear regression, which is widely adopted in theoretical studies for41

meta-learning [27, 6, 12, 3], as a proxy to address the above question. In particular, we assume that42

each task τ is a noisy linear regression and the associated weight vector is sampled from a common43

distribution. Under this model, we consider one-step MAML meta-trained with stochastic gradient44

descent (SGD), where we minimize the loss evaluated at single GD step further ahead for each task.45

Such settings correspond to real-world implementations of MAML [17, 28, 22] and are extensively46

considered in theoretical analysis [14, 8, 15]. The focus of this work is the overparameterized regime,47

i.e., the data dimension d is far larger than the meta-training iterations T (d ≫ T ).48

1.1 Our Contributions49

Our goal is to characterize the generalization behaviours of the MAML output in the overparameter-50

ized regime, and to explore how different problem parameters, such as data and task distributions, the51

adaptation learning rate βtr, affect the test error. The main contributions are highlighted below.52

• Our first contribution is a sharp characterization (both upper and lower bounds) of the excess53

risk of MAML trained by SGD. The results are presented in a general manner, which depend54

on a new notion of effective meta weight, data spectrum, task covariance matrix, and other55

hyperparameters such as training and test learning rates. In particular, the effective meta56

weight captures an essential property of MAML, where the inner-loop gradient updates57

have distinctive effects on different dimensions of data eigenspace, i.e., the importance of58

"leading" space will be magnified whereas the "tail" space will be suppressed.59

• We investigate the influence of data and task distributions on the excess risk of MAML. For60

log-decay data spectrum, our upper and lower bounds establish a sharp phase transition of61

the generalization. Namely, the excess risk vanishes for large T (where benign fitting occurs)62

if the data spectrum decay rate is faster than the task diversity rate, and non-vanishing risk63

occurs otherwise. In contrast, for polynomial or exponential data spectrum decays, excess64

risk always vanishes for large T irrespective of the task diversity spectrum.65

• We showcase the important role the adaptation learning rate βtr plays in the excess risk66

and the early stopping time of MAML. We provably identify a novel tradeoff between67

the different impacts of βtr on the "leading" and "tail" data spectrum spaces as the main68

reason behind the phenomena that the excess risk will first increase then decrease as βtr69

changes from negative to positive values under general data settings. This complements the70

explanation based only on the "leading" data spectrum space given in [6] for the isotropic71

case. We further theoretically illustrate that βtr plays a similar role in determining the early72

stopping time, i.e., the iteration at which MAML achieves steady generalization error.73

Notations. We will use bold lowercase and capital letters for vectors and matrices respectively.74

N
(
0, σ2

)
denotes the Gaussian distribution with mean 0 and variance σ2. We use f(x) ≲ g(x) to75

denote the case f(x) ≤ cg(x) for some constant c > 0. We use the standard big-O notation and its76

variants: O(·),Ω(·), where T is the problem parameter that becomes large. Occasionally, we use the77

symbol Õ(·) to hide polylog(T ) factors. 1(·) denotes the indicator function. Let x+ = max{x, 0}.78

2 Related Work79

Statistical theory for MAML-type approaches. One line of theoretical analyses lie in the statistical80

aspect. [15] studied the generalization of MAML on recurring and unseen tasks. Information81

theory-type generalization bounds for MAML were developed in [26, 9]. [8] characterized the82

gap of generalization error between MAML and Bayes MAML. [35] provided the statistical error83

bound for MAML with overparameterized DNN. Our work falls into this category, where the84

overparameterization has been rarely considered in previous works. Note that [35] only derived the85

generalization bound from the complexity-based perspective to study the difference between the86

empirical and population losses for the obtained optimization solutions. Such complexity bound is87
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typically related to the data dimension [29] and may yield vacuous bound in the high dimensional88

regime. However, our work show that the generalization error of MAML can be small even the data89

dimension is sufficiently large.90

Overparamterized meta-learning. [13, 34] studied overparameterized meta-learning from a repre-91

sentation learning perspective. The most relevant papers to our work are [39, 6], where they derived92

the population risk in overparameterized settings to show the effect of the adaptation learning rate93

for MAML. Our analysis differs from these works from two essential perspectives: i). we analyze94

the excess risk of MAML based on the optimization trajectory of SGD in non-asymptotic regime,95

highlighting the dependence of iterations T , while they directly solved the MAML objective asymp-96

totically; ii). [39, 6] mainly focused on the simple isotropic case for data and task covariance, while97

we explicitly explore the role of data and task distributions under general settings.98

More detailed discussions for related work can be found in Appendix.99

3 Preliminary100

3.1 Meta Learning Formulation101

In this work, we consider a standard meta-learning setting [15], where a number of tasks share some102

similarities, and the learner aims to find a good model prior by leveraging task similarities, so that the103

learner can quickly find a desirable model for a new task by adapting from such an initial prior.104

Learning a proper initialization. Suppose we are given a collection of tasks {τt}Tt=1 sam-105

pled from some distribution T . For each task τt, we observe N samples Dt ≜ (Xt,yt) =106 {
(xt,j , yt,j) ∈ Rd × R

}
j∈[N ]

i.i.d.∼ Pϕt(y|x)P(x), where ϕt is the model parameter for the t-th107

task. The collection of {Dt}Tt=1 is denoted as D. Suppose that Dt is randomly split into training and108

validation sets, denoted respectively as Din
t ≜ (Xin

t ,y
in
t ) and Dout

t ≜ (Xout
t ,yout

t ), correspondingly109

containing n1 and n2 samples (i.e., N = n1 + n2). We let ω ∈ Rd denote the initialization variable.110

Each task τt applies an inner algorithm A with such an initial and obtains an output A(ω;Din
t ). Thus,111

the adaptation performance of ω for task τt can be measured by the mean squared loss over the112

validation set given by ℓ(A(ω;Din
t );Dout

t ) := 1
2n2

∑n2

j=1

(〈
xout
t,j ,A(ω;Din

t )
〉
− yout

t,j

)2
. The goal of113

meta-learning is to find an optimal initialization ω̂∗ ∈ Rd by minimizing the following empirical114

meta-training loss:115

min
ω∈Rd

L̂(A,ω;D) where L̂(A,ω;D) =
1

T

T∑
t=1

ℓ(A(ω;Din
t );Dout

t ). (1)

In the testing process, suppose a new task τ sampled from T is given, which is associated with the116

dataset Z consisting of m points with the task. We apply the learned initial ω̂∗ as well as the inner117

algorithm A on Z to produce a task predictor. Then the test performance can be evaluated via the118

following population loss:119

L(A,ω) = Eτ∼T EZ,(x,y)∼Pϕ(y|x)P(x) [ℓ (A (ω;Z) ; (x, y))] . (2)

Inner Loop with one-step GD. Our focus of this paper is the popular meta-learning algorithm120

MAML [16], where inner stage takes a few steps of GD update initialized from ω. We consider one121

step for simplicity, which is commonly adopted in the previous studies [6, 10, 19]. Formally, for any122

ω ∈ Rd, and any dataset (X,y) with n samples, the inner loop algorithm for MAML with a learning123

rate β is given by124

A(ω; (X,y)) := ω − β∇ωℓ (ω; (X,y)) = (I− β
nX

⊤X)ω + β
nX

⊤y. (3)
We allow the learning rate to differ at the meta-training and testing stages, denoted as βtr and βte125

respectively. Moreover, in subsequent analysis, we will include the dependence on the learning rate126

to the inner loop algorithm and loss functions as A(ω, β; (X,y)), L̂(A,ω, β;D) and L(A,ω, β).127

Outer Loop with SGD. We adopt SGD to iteratively update the meta initialization variable ω based128

on the empirical meta-training loss eq. (1), which is how MAML is implemented in practice [17].129

Specifically, we use the constant stepsize SGD with iterative averaging [15, 12, 11], and the algorithm130

is summarized in Algorithm 1. Note that at each iteration, we use one task for updating the meta131

parameter, which can be easily generalized to the case with a mini-batch tasks for each iteration.132
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Algorithm 1 MAML with SGD

Input: Stepsize α > 0, meta learning rate βtr > 0
Initialization: ω0

for t = 1 to T do
Receive task τt with data Dt

Randomly divided into training and validation set: Din
t = (Xin

t ,yin
t ), Dout

t = (Xout
t ,yout

t )
Update ωt+1 = ωt − α∇ℓ(A(ω, βtr;Din

t );Dout
t )

end for
return ωT = 1

T

∑T−1
t=0 ωt

Meta Excess Risk of SGD. Let ω∗ denote the optimal solution to the population meta-test error133

eq. (2). We define the following excess risk for the output ωT of SGD:134

R(ωT , β
te) ≜ E

[
L(A,ωT , β

te)
]
− L(A,ω∗, βte) (4)

which identifies the difference between adapting from the SGD output ωT and from the optimal135

initialization ω∗. Assuming that each task contains a fixed constant number of samples, the total136

number of samples over all tasks is O(T ). Hence, the overparameterized regime can be identified as137

d ≫ T , which is the focus of this paper, and is in contrast to the well studied underparameterized138

setting with finite dimension d (d ≪ T ). The goal of this work is to characterize the impact of SGD139

dynamics, demonstrating how the iteration T affects the excess risk, which has not been considered140

in the previous overparameterized MAML analysis [6, 39].141

3.2 Task and Data Distributions142

To gain more explicit knowledge of MAML, we specify the task and data distributions in this section.143

Mixed Linear Regression. We consider a canonical case in which the tasks are linear regressions.144

This setting has been commonly adopted recently in [6, 3, 27]. Given a task τ , its model parameter ϕ145

is determined by θ ∈ Rd, and the output response is generated as follows:146

y = θ⊤x+ z, x ∼ Px, z ∼ Pz (5)

where x is the input feature, which follows the same distribution Px across different tasks, and z is the147

i.i.d. Gaussian noise sampled from N (0, σ2). The task signal θ has the mean θ∗ and the covariance148

Σθ ≜ E[θθ⊤]. Denote the distribution of θ as Pθ. We do not make any additional assumptions on149

Pθ, whereas recent studies on MAML [6, 39] assume it to be Gaussian and isotropic.150

Data distribution. For the data distribution Px, we first introduce some mild regularity conditions:151

1. x ∈ Rd is mean zero with covariance operator Σ = E[xx⊤];152

2. The spectral decomposition of Σ is V ΛV ⊤ =
∑

i>0 λiviv
⊤
i , with decreasing eigenvalues153

λ1 ≥ · · · ≥ λd > 0, and suppose
∑

i>0 λi < ∞.154

3. Σ− 1
2x is σx-subGaussian.155

To analyze the stochastic approximation method SGD, we take the following standard fourth moment156

condition [38, 24, 7].157

Assumption 1 (Fourth moment condition). There exist positive constants c1, b1 > 0, such that for158

any positive semidefinite (PSD) matrix A, it holds that159

b1 tr(ΣA)Σ + ΣAΣ ⪯ Ex∼Px

[
xx⊤Axx⊤] ⪯ c1 tr(ΣA)Σ

For the Gaussian distribution, it suffices to take c1 = 3, b1 = 2.160

3.3 Connection to a Meta Least Square Problem.161

After instantiating our study on the task and data distributions in the last section, note that162

∇ℓ(A(ω, βtr;Din
t );Dout

t ) is linear with respect to ω. Hence, we can reformulate the problem eq. (1)163

as a least square (LS) problem with transformed meta inputs and output responses.164
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Proposition 1 (Meta LS Problem). Under the mixed linear regression model, the expectation of the165

meta-training loss eq. (1) taken over task and data distributions can be rewritten as:166

E
[
L̂(A,ω, βtr;D)

]
= L(A,ω, βtr) = EB,γ

1

2

[
∥Bω − γ∥2

]
. (6)

The meta data are given by167

B = 1√
n2

Xout
(
I− βtr

n1
XinTXin

)
γ = 1√

n2

(
Xout

(
I− βtr

n1
XinTXin

)
θ + zout − βtr

n1
XoutXin⊤zin

)
(7)

where Xin ∈ Rn1×d,zin ∈ Rn1 ,Xout ∈ Rn2×d and zout ∈ Rn2 denote the inputs and noise for168

training and validation. Furthermore,we have169

γ = Bθ∗ + ξ with meta noise E[ξ | B] = 0. (8)

Therefore, the meta-training objective is equivalent to searching for a ω, which is close to the task170

mean θ∗. Moreover, with the specified data and task model, the optimal solution for meta-test171

loss eq. (2) can be directly calculated [19], and we obtain ω∗ = E[θ] = θ∗. Hence, the meta172

excess risk eq. (4) is identical to the standard excess risk [5] for the linear model eq. (8), i.e.,173

R(ωT , β
te) = EB,γ

1
2

[
∥BωT − γ∥2 − ∥Bθ∗ − γ∥2

]
, but with more complicated input and output174

data expressions. The following analysis will focus on this transformed linear model.175

Furthermore, we can calculate the statistical properties of the reformed input B, and obtain the
meta-covariance:

E[B⊤B] = (I− βtrΣ)2Σ+ βtr2

n1
(F −Σ3)

where F = E[xx⊤Σxx⊤]. Let X ∈ Rn×d denote the collection of n i.i.d. samples from Px, and
denote

Hn,β = E[(I− β
nX

⊤X)Σ(I− β
nX

⊤X)] = (I− βΣ)2Σ+ β2

n (F −Σ3).

We can then write E[B⊤B] = Hn1,βtr . Regarding the form of B and Hn1,βtr , we need some further176

conditions on the higher order moments of the data distribution.177

Assumption 2 (Commutity). F = E[xx⊤Σxx⊤] commutes with the data covariance Σ.178

Assumption 2 holds for Gaussian data. Such commutity of Σ has also been considered in [38].179

Assumption 3 (Higher order moment condition). Given |β| < 1
λ1

and Σ, there exists a constant180

C(β,Σ) > 0, for large n > 0, s.t. for any unit vector v ∈ Rd, we have:181

E[∥v⊤H
− 1

2

n,β(I−
β

n
X⊤X)Σ(I− β

n
X⊤X)H

− 1
2

n,βv∥
2] < C(β,Σ). (9)

In Assumption 3, the analytical form of C(β,Σ) can be derived if Σ− 1
2x is Gaussian. Moreover, if182

β = 0, then we obtain C(β,Σ) = 1. Further technical discussions are presented in Appendix.183

4 Main Results184

In this section, we present our analyses on generalization properties of MAML optimized by average185

SGD and derive insights on the effect of various parameters. Specifically, our results consist of three186

parts. First, we characterize the meta excess risk of MAML trained with SGD. Then, we establish the187

generalization error bound for various types of data and task distributions, to reveal which kind of188

overparameterization regarding data and task is essential for diminishing meta excess risk. Finally,189

we explore how the adaptation learning rate βtr affects the excess risk and the training dynamics.190

4.1 Performance Bounds191

Before starting our results, we first introduce relevant notations and concepts. We define the following192

rates of interest (See Remark 3 for further discussions)193

c(β,Σ) := c1(1 + 8|β|λ1

√
C(β,Σ)σ2

x + 64
√

C(β,Σ)σ4
xβ

2 tr(Σ2))

f(β, n, σ,Σ,Σθ) := c(β,Σ) tr(ΣθΣ) + 4c1σ
2σ2

xβ
2
√

C(β,Σ) tr(Σ2) + σ2/n

g(β, n, σ,Σ,Σθ) := σ2 + b1 tr(ΣθHn,β) + β2b1 tr(Σ
2)/n.
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Moreover, for a positive semi-definite matrix H, s.t. H and Σ can be diagonalized simultaneously,194

let µi(H) denote its corresponding eigenvalues for vi, i.e. H =
∑

i µi(H)viv
⊤
i (Recall vi is the195

i-th eigenvector of Σ).196

We next introduce the following new notion of the effective meta weight, which will serve as an197

important quantity for capturing the generalization of MAML.198

Definition 1 (Effective Meta Weights). For |βtr|, |βte| < 1/λ1, given step size α and iteration T ,199

define200

Ξi(Σ, α, T ) =

{
µi(Hm,βte)/ (Tµi(Hn1,βtr)) µi(Hn1,βtr) ≥ 1

αT ;

Tα2µi(Hn1,βtr)µi(Hm,βte) µi(Hn1,βtr) < 1
αT .

(10)

We call µi(Hm,βte)/µi(Hn1,βtr) and µi(Hm,βte)µi(Hn1,βtr) the meta ratio (See Remark 2).201

We omit the arguments of the effective meta weight Ξi for simplicity in the following analysis.202

Our first results characterize matching upper and lower bounds on the meta excess risk of MAML in203

terms of the effective meta weight.204

Theorem 1 (Upper Bound). Let ωi = ⟨ω0 − θ∗,vi⟩. If |βtr|, |βte| < 1/λ1, n1 is large ensuring that205

µi(Hn1,βtr) > 0, ∀i and α < 1/ (c(βtr,Σ) tr(Σ)), then the meta excess risk R(ωT , β
te) is bounded206

above as follows207

R(ωT , β
te) ≤ Bias + Var

where208

Bias =
2

α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)

Var =
2

(1− αc(βtr,Σ) tr(Σ))

(∑
i

Ξi

)

×[f(βtr, n2, σ,Σθ,Σ)︸ ︷︷ ︸
V1

+2c(βtr,Σ)
∑

i

(
1
µi(Hn1,βtr )≥ 1

αT

Tαµi(Hn1,βtr )
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i︸ ︷︷ ︸

V2

]

Remark 1. The primary error source of the upper bound are two folds. The bias term corresponds to209

the error if we directly implement GD updates towards the meta objective eq. (6). The variance error210

is composed of the disturbance of meta noise ξ (the V1 term), and the randomness of SGD itself (the211

V2 term). Regardless of data or task distributions, for proper stepsize α, we can easily derive that the212

bias term is O( 1
T ), and the V2 term is also O( 1

T ), which is dominated by V1 term (Ω(1)). Hence, to213

achieve the vanishing risk, we need to understand the roles of Ξi and f(·)214

Remark 2 (Effective Meta Weights). By Definition 1, we separate the data eigenspace into “leading”215

(≥ 1
αT ) and “tail” (< 1

αT ) spectrum spaces with different meta weights. The meta ratios indicate the216

impact of one-step gradient update. For large n, µi(Hn,β) ≈ (1− βλi)
2λi, and hence a larger βtr in217

training will increase the weight for “leading” space and decrease the weight for “tail” space, while a218

larger βte always decreases the weight.219

Remark 3 (Role of f(·)). f(·) in variance term consists of various sources of meta noise ξ, including220

inner gradient updates (β), task diversity (Σθ) and noise from regression tasks (σ). As mentioned221

in Remark 1, understanding f(·) is critical in our analysis. Yet, due to the multiple randomness222

origins, techniques for classic linear regression [38, 24] cannot be directly applied here. Our analysis223

overcomes such non-trivial challenges. g(·) in Theorem 2 plays a similar role to f(·).224

Therefore, Theorem 1 implies that overparameterization is crucial for diminishing risk under the225

following conditions:226

• For f(·): tr(ΣΣθ) and tr(Σ2) is small compared to T ;227

• For Ξi: the dimension of "leading" space is o(T ), and the summation of meta ratio over228

"tail" space is o( 1
T ).229

We next provide a lower bound on the meta excess risk, which matches the upper bound in order.230
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Theorem 2 (Lower Bound). Following the similar notations in Theorem 1, Then231

R(ωT , β
te) ≥ 1

100α2T

∑
i Ξi

ω2
i

µi(Hn1,βtr )
+ 1

n2
· 1
(1−αc(βtr,Σ) tr(Σ))

∑
i Ξi

×[ 1
100g(β

tr, n1,Σ,Σθ) +
b1

1000

∑
i

(1
µi(Hn1,βtr )≥ 1

αT

Tαµi(Hn1,βtr )
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i ].

Our lower bound can also be decomposed into bias and variance terms as the upper bound. The bias232

term well matches the upper bound up to absolute constants. The variance term differs from the upper233

bound only by 1
n2

, where n2 is the batch size of each task, and is treated as a constant (i.e., does not234

scale with T ) [23, 33] in practice. Hence, in the overparameterized regime where d ≫ T and T tends235

to be sufficiently large, the variance term also matches that in the upper bound w.r.t. T .236

4.2 The Effects of Task Diversity237

From Theorem 1 and Theorem 2, we observe that the task diversity Σθ in f(·) and g(·) plays a238

crucial role in the performance guarantees for MAML. In this section, we explore several types of239

data distributions to further characterize the effects of the task diversity.240

We take the single task setting as a comparison with meta-learning, where the task diversity diminishes241

(tentatively say Σθ → 0), i.e., each task parameter θ = θ∗. In such a case, it is unnecessary to242

do one-step gradient in the inner loop and we set βtr = 0, which is equivalent to directly running243

SGD. Formally, the single task setting can be described as outputting ωsin
T with iterative SGD that244

minimizes L̂(A,ω, 0;D) with meta linear model as γ = 1√
n2

(Xoutθ∗ + zout).245

Theorem 1 implies that the data spectrum should decay fast, which leads to a small dimension of246

"leading" space and small meta ratio summation over "tail" space. Let us first consider a relatively247

slow decaying case: λk = k−1 log−p(k + 1) for some p > 1. Applying Theorem 1, we immediately248

derive the theoretical guarantees for single task:249

Lemma 1 (Single Task). If |βte| < 1
λ1

and if the spectrum of Σ satisfies λk = k−1 log−p(k + 1),250

then R(ωsin
T , βte) = O( 1

logp(T ) )251

At the test stage, if we set βte = 0, then the meta excess risk for the single task setting, i.e., R(ωsin
T , 0),252

is exactly the excess risk in classical linear regression [38]. Lemma 1 can be regarded as a generalized253

version of Corollary 2.3 in [38], where they provide the upper bound for R(ωsin
T , 0), while we allow a254

one-step fine-tuning for testing.255

Lemma 1 suggests that the log-decay is sufficient to assure that R(ωsin
T , 0) is diminishing when256

d ≫ T . However, in meta-learning with multi-tasks, the task diversity captured by the task spectral257

distribution can highly affect the meta excess risk. In the following, our Theorem 1 and Theorem 2258

(i.e., upper and lower bounds) establish a sharp phase transition of the generalization for MAML for259

the same data spectrum considered in Lemma 1, which is in contrast to the single task setting (see260

Lemma 1), where log-decay data spectrum always yields vanishing excess risk.261

Proposition 2 (MAML, log-Decay Data Spectrum). Given |βtr|, |βte| < 1
λ1

, under the same data
distribution as in Lemma 1, and the spectrum of Σθ, denoted as νi, satisfies νk = logr(k + 1) for
some r > 0, then

R(ωT , β
te) =

{
Ω(logr−2p+1(T )) r ≥ 2p− 1

O( 1

logp−(r−p+1)+ (T )
) r < 2p− 1

Proposition 2 implies that under log-decay data spectrum parameterized by p, the meta excess risk262

of MAML experiences a phase transition determined by the spectrum parameter r. Since large r263

implies large eigenvalues and high variations for task vectors, we adopt r to measure the diversity264

of task distributions, and call r as the task diversity in the sequel. While slower task diversity rate265

r < 2p− 1 guarantees vanishing excess risk, faster task diversity rate r ≥ 2p− 1 necessarily results266

in non-vanishing excess risk. Proposition 2 and Lemma 1 together indicate that while log-decay267

data spectrum always yields benign fitting (vanishing risk) in the single task setting, it can yield268

non-vanishing risk in meta learning due to fast task diversity rate.269

We further validate our theoretical results in Proposition 2 by experiments. We consider the case270

p = 2. As shown in Figure 1a, when r < 2p− 1, the test error quickly converges to the Bayes error.271
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When r > 2p− 1, Figure 1b illustrates that MAML already converges on the training samples, but272

the test error (which is further zoomed in Figure 1c) levels off and does not vanish, showing MAML273

generalizes poorly when r > 2p− 1.274

(a) νi = 0.25 log1.5(i+ 1) (b) νi = 0.25 log8(i+ 1) (c) νi = 0.25 log8(i+ 1)

Figure 1: The effects of task diversity. d = 500, T = 300, λi =
1

i log(i+1)2 , βtr = 0.02, βte = 0.2

Furthermore, we show that the above phase transition that occurs for log-decay data distributions no275

longer exists for data distributions with faster decaying spectrum.276

Proposition 3 (MAML, Fast-Decay Data Spectrum). Under the same task distribution as in Proposi-277

tion 2, i.e., the spectrum of Σθ, denoted as νi, satisfies νk = logr(k + 1) = Õ(1) for some r > 0,278

and the data distribution satisfies:279

1. λk = k−q for some q > 1, R(ωsin
T , βte) = O

(
1

T
q−1
q

)
and R(ωT , β

te) = Õ
(

1

T
q−1
q

)
;280

2. λk = e−k, R(ωsin
T , βte) = Õ( 1

T ) and R(ωT , β
te) = Õ( 1

T ).281

4.3 On the Role of Adaptation Learning Rate282

The analysis in [6] suggests a surprising observation that a negative learning rate (i.e., when βtr takes283

a negative value) optimizes the generalization for MAML under mixed linear regression models.284

Their results indicate that the testing risk initially increases and then decreases as βtr varies from285

negative to positive values around zero for Gaussian isotropic input data and tasks. Our following286

proposition supports such a trend, but with a novel tradeoff in SGD dynamics as a new reason for287

the trend, under more general data distributions. Denote ωβ
T as the average SGD solution of MAML288

after T iterations that uses β as the inner loop learning rate.289

Proposition 4. Let s = T log−p(T ) and d = T logq(T ), where p, q > 0. Suppose Px is Gaussian
and the spectrum of Σ satisfies

λk =

{
1/s, k ≤ s

1/(d− s), s+ 1 ≤ k ≤ d.

Suppose the spectral parameter νi of Σθ is O(1), and let the step size α = 1
2c(βtr,Σ) tr(Σ) . Then for290

large n1, |βtr|, |βte| < 1
λ1

, we have291

R(ωβtr

T , βte) ≲O
(

1
logp(T )

)
1

(1−βtrλ1)2
+O

(
1

logq(T )

)(
1− βtrλd

)2
+ Õ( 1

T ). (11)

The first two terms in the bound of eq. (11) correspond to the impact of effective meta weights Ξi292

on the "leading" and "tail" spaces, respectively, as we discuss in Remark 2. Clearly, the learning293

rate βtr plays a tradeoff role in these two terms, particularly when p is close to q. This explains the294

fact that the test error first increases and then decreases as βtr varies from negative to positive values295

around zero. Such a tradeoff also serves as the reason for the first-increase-then-decrease trend of the296

test error under more general data distributions as we demonstrate in Figure 2. This complements297

the reason suggested in [6], which captures only the quadratic form 1
(1−βtrλ1)

2 of βtr for isotropic Σ,298

where there exists only the "leading" space without "tail" space.299

Based on the above results, incorporating with our dynamics analysis, we surprisingly find that βtr300

not only affects the final risk, but also plays a pivot role towards the early iteration that the testing301

error tends to be steady. To formally study such a property, we define the stopping time as follows.302
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Figure 2: R(ωβtr

T , βte) as a function of βtr. d = 200, T = 100, Σθ = 0.82

d I, βte = 0.2

Definition 2 (Stopping time). Given βtr, βte, for any ϵ > 0, the corresponding stopping time303

tϵ(β
tr, βte) is defined as:304

tϵ(β
tr, βte) = min t s.t. R(ωβtr

t ;βte) < ϵ.

In the sequel, we may omit the arguments in tϵ for simplicity. We consider the similar data distribution305

in Proposition 4 but parameterized by K, i.e., s = K log−p(K) and d = K logq(K), where p, q > 0.306

Then we can derive the following characterization for tϵ.307

Corollary 1. If the assumptions in Proposition 4 hold and p = q. Further, let Σθ = η2I, and308

|βtr| < 1
λ1

. Then for tϵ(βtr, βte) ∈ (s,K], we have:309

exp
(
ϵ−

1
p

[
Ll

(1−βtrλ1)2
+ Lt(1− βtrλd)

2
] 1

p
)
≤ tϵ ≤ exp

(
ϵ−

1
p

[
Ul

(1−βtrλ1)2
+ Ut(1− βtrλd)

2
] 1

p
)

(12)

where Ll, Lt, Ul, Ut > 0 are factors for "leading" and "tail" spaces that are independent of K1.310

Equation (12) suggests that the early stopping time tϵ is also controlled by the tradeoff role that βtr311

plays in the "leading" (Ul, Ll) and "tail" spaces (Ut, Lt), which takes a similar form as the bound in312

Proposition 4. Therefore, the trend for tϵ in terms of βtr will exhibit similar behaviours as the final313

excess risk, and hence the optimal βtr for the final excess risk will lead to an earliest stopping time.314

We plot the training and test errors for different βtr in Figure 3, under the same data distributions315

as Figure 2a to validate our theoretical findings. As shown in Figure 3a, βtr does not make much316

difference in the training stage (the process converges for all βtr when T is larger than 100). However,317

in Figure 3b at test stage, βtr significantly affects the iteration when the test error starts to become318

relatively flat. Such an early stopping time first increases then decreases as βtr varies from −0.5 to319

0.7, which resembles the change of final excess risk in Figure 2a.320

R
is

k

Iteration T

(a) Training Risk

R
is

k

Iteration T

(b) Test Error

Figure 3: Training and test curves for different βtr. d = 500, λi =
1

i log2(i+1)
,Σθ = 0.82

d I, βte = 0.2

5 Conclusions321

In this work, we give the theoretical treatment towards the generalization property of MAML based on322

their optimization trajectory in non-asymptotic and overparameterized regime. We provide both upper323

and lower bounds on the excess risk of MAML trained with average SGD. Furthermore, we explore324

which type of data and task distributions are crucial for diminishing error with overparameterization,325

and discover the influence of adaption learning rate both on the generalization error and the dynamics,326

which brings novel insights towards the distinct effects of MAML’s one-step gradient updates on327

"leading" and "tail" parts of data eigenspace.328

1Such terms have been suppressed for clarity. Details are presented in the appendix.
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