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Abstract

Multi-head attention empowers the recent success of transformers, the state-of-the-1

art models that have achieved remarkable success in sequence modeling and beyond.2

These attention mechanisms compute the pairwise dot products between the queries3

and keys, which results from the use of unnormalized Gaussian kernels with the4

assumption that the queries follow a mixture of Gaussian distribution. There is no5

guarantee that this assumption is valid in practice. In response, we first interpret6

attention in transformers as a nonparametric kernel regression. We then propose7

the FourierFormer, a new class of transformers in which the dot-product kernels8

are replaced by the novel generalized Fourier integral kernels. Different from the9

dot-product kernels, where we need to choose a good covariance matrix to capture10

the dependency of the features of data, the generalized Fourier integral kernels can11

automatically capture such dependency and remove the need to tune the covariance12

matrix. We theoretically prove that our proposed Fourier integral kernels can effi-13

ciently approximate any key and query distributions. Compared to the conventional14

transformers with dot-product attention, FourierFormers attain better accuracy15

and reduce the redundancy between attention heads. We empirically corroborate16

the advantages of FourierFormers over the baseline transformers in a variety of17

practical applications including language modeling and image classification.18

1 Introduction19

Transformers [76] are powerful neural networks that have achieved tremendous success in many20

areas of machine learning [38, 69, 34] and become the state-of-the-art model on a wide range21

of applications across different data modalities, from language [22, 1, 17, 12, 55, 4, 8, 20] to22

images [23, 41, 71, 56, 52, 26], videos [3, 42], point clouds [90, 29], and protein sequence [58, 32].23

In addition to their excellent performance on supervised learning tasks, transformers can also24

effectively transfer the learned knowledge from a pretraining task to new tasks with limited or no25

supervision [53, 54, 22, 87, 40]. At the core of transformers is the dot-product self-attention, which26

mainly accounts for the success of transformer models [13, 49, 39]. This dot-product self-attention27

learn self-alignment between tokens in an input sequence by estimating the relative importance of a28

given token with respect to all other tokens. It then transform each token into a weighted average of29

the feature representations of other tokens where the weight is proportional to a importance score30

between each pair of tokens. The importance scores in self-attention enable a token to attend to other31

tokens in the sequence, thus capturing the contextual representation [6, 76, 36].32

1.1 Self-Attention33

Given an input sequence X := [x1, · · · ,xN ]> 2 RN⇥Dx of N feature vectors, self-attention34

computes the output sequence H from X as follows:35

Step 1: Projecting the input sequence into different subspaces. The input sequence X is
transformed into the query matrix Q, the key matrix K, and the value matrix V via three linear
Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



transformations
Q = XW

>
Q;K = XW

>
K ;V = XW

>
V ,

where WQ,WK 2 RD⇥Dx , and WV 2 RDv⇥Dx are the weight matrices. We denote Q :=36

[q1, · · · , qN ]>,K := [k1, · · · ,kN ]>, and V := [v1, · · · ,vN ]>, where the vectors qi,ki,vi for37

i = 1, · · · , N are the query, key, and value vectors, respectively.38

Step 2: Computing the output as a weighted average. The output sequence H := [h1, · · · ,hN ]>39

is then given by40

H = softmax
⇣
QK

>
/

p

D

⌘
V := AV, (1)

where the softmax function is applied to each row of the matrix (QK
>)/

p
D. For each query vector41

qi, i = 1, · · · , N , Eqn. (1) can be written in the vector form to compute the output vector hi as42

follows43

hi =
NX

j=1

softmax
⇣
q>
i kj/

p

D

⌘
vj :=

NX

j=1

aijvj . (2)

The matrix A 2 RN⇥N and its component aij for i, j = 1, · · · , N are the attention matrix and44

attention scores, respectively. The self-attention computed by equations (1) and (2) is called the dot-45

product attention or softmax attention. In our paper, we refer a transformer that uses this attention as46

the baseline transformer with the dot-product attention or the dot-product transformer. The structure47

of the attention matrix A after training governs the ability of the self-attention to capture contextual48

representation for each token.49

Multi-head Attention Each output sequence H forms an attention head. Multi-head attention50

concatenates multiple heads to compute the final output. Let H be the number of heads and51

W
O
2 RHDv⇥HDv be the projection matrix for the output. The multi-head attention is defined as52

MultiHead({Q,K,V}
H
i=1) = Concat(H1, . . . ,HH)WO

.

The capacity of the attention mechanism and its ability to learn diverse syntactic and semantic53

relationships determine the success of transformers [70, 77, 16, 78, 30]. However, equations (1)54

and (2) implies that the dot-product attention assumes the features (qi1, . . . , qiD) in qi, as well as55

the features (kj1, . . . , qjD) in kj , are independent. Thus, the dot-product attention fail to capture the56

correlations between these features, limiting its representation capacity and inhibit the performance57

of transformers on practical tasks where there is no guarantee that independent features can learned58

from complex data. One solution to capture correlations between features qi and kj is to introduce59

covariance matrices into the formulation of the dot-product attention with the cost of significantly60

increasing of the computational complexity. Also, choosing good covariance matrices is difficult.61

1.2 Contribution62

In this paper, we first establish a correspondence between self-attention and nonparametric kernel63

regression. Under this new perspective of self-attention, we explain the limitation of the dot-product64

self-attention that it may fail to capture correlations between the features in the query and key65

vectors. We then leverage the generalized Fourier integral theorems, which can automatically capture66

these correlations, and derive the generalized Fourier integral estimators for the nonparametric67

regression problem. Using this new density estimator, we propose the FourierFormer, a novel68

class of transformers that can capture correlations between features in the query and key vectors of69

self-attention. In summary, our contribution is three-fold:70

1. We derive the formula of self-attention from solving a nonparametric kernel regression71

problem, thus providing a nonparametric regression interpretation to study and further72

develop self-attention.73

2. We develop the generalized Fourier integral estimators for the nonparametric regression74

problem and provide theoretical guarantees for these estimator.75

3. We propose the FourierFormer whose attentions use the generalized Fourier integral es-76

timators to capture more efficiently correlations between features in the query and key77

vectors.78
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Finally, we empirically show that the FourierFormer attains significantly better accuracy than the79

baseline transformer with the dot-product attention on a variety of tasks including the WikiText80

language modeling and ImageNet image classsification. We also demonstrate in our experiments that81

FourierFormer helps reduce the redundancy between attention heads.82

Organization We structure this paper as follows: In Section 2, we present the correspondence83

between self-attention and nonparametric kernel regression. In Section 3, we discuss the generalized84

Fourier integral estimators and define the FourierFormer. We validate and empirically analyze the85

advantages of FourierFormer in Section 4. We discuss related works in Section 5. The paper ends with86

concluding remarks. Technical proofs and more experimental details are provided in the Appendix.87

Notation For any N 2 N, we denote [N ] = {1, 2, . . . , N}. For any D � 1, L1(RD) denotes the88

space of real-valued functions on RD that are integrable. For any two sequences {aN}N�1, {bN}N�1,89

we denote aN = O(bN ) to mean that aN  CbN for all N � 1 where C is some universal constant.90

2 A Nonparametric Regression Interpretation of Self-attention91

In this section, we establish the connection between self-attention and nonparametric kernel regression.92

In particular, we derive the self-attention in equation (2) as a nonparametric kernel regression in93

which the key vectors kj and value vectors vj are training inputs and training targets, respectively,94

while the query vectors qi and the output vectors hi form a set of new inputs and their corresponding95

targets that need to be estimated, respectively, for i, j = 1, · · · , N . In general, we can view the96

training set {kj ,vj} for j 2 [N ] to come from the following nonparametric regression model:97

vj = f(kj) + "j , (3)

where "1, . . . , "N are independent noises such that E("j) = 0. Furthermore, we consider a random98

design setting where the key vectors k1,k2, . . . ,kN are i.i.d. samples from the distribution that99

admits p as density function. By an abuse of notation, we also denote p as the joint density where the100

key and value vectors (v1,k1), . . . , (vN ,kN ) are i.i.d. samples from. Here, f is a true but unknown101

function and we would like to estimate it.102

Nadaraya–Watson estimator Our approach to estimate the function f is based on103

Nadaraya–Watson’s nonparametric kernel regression approach [48]. In particular, from the nonpara-104

metric regression model (3), we have E [vj |kj ] = f(kj) for all j 2 [N ]. Therefore, it is sufficient to105

estimate the conditional distribution of the value vectors given the key vectors. Given the density106

function p of the key vectors and the joint density p of the key and value vectors, for any pair of107

vectors (v,k) generate from model (3) we have108

E [v|k] =

Z

RD

v · p(v|k)dv =

Z
v · p(v,k)

p(k)
dv. (4)

The formulation (4) of the conditional expectation indicates that as long as we can estimate the joint109

density function p(v,k) and the marginal density function p(v), we are able to obtain an estimation110

for the conditional expectation and thus for the function f . This approach is widely known as111

Nadaraya–Watson’s nonparametric kernel regression approach.112

Kernel density estimator To estimate p(v,k) and p(k), we employ the kernel density estimation113

approach [59, 50]. In particular, by using the isotropic Gaussian kernel with bandwidth �, we have114

the following estimators of p(v,k) and p(k):115

p̂�(v,k) =
1

N

NX

j=1

'�(v � vj)'�(k � kj), p̂�(k) =
1

N

NX

j=1

'�(k � kj), (5)

where '�(.) is the isotropic multivariate Gaussian density function with diagonal covariance matrix116

�
2
ID. Given the kernel density estimators (5), we obtain the following estimation of the function f :117

bf�(k) =
Z

RD

v · p̂�(v,k)

p̂�(k)
dv =

Z

RD

v ·
PN

j=1 '�(v � vj)'�(k � kj)
PN

j=1 '�(k � kj)
dv

=

PN
j=1 '�(k � kj)

R
v · '�(v � vj)dv

PN
j=1 '�(k � kj)

=

PN
j=1 vj'�(k � kj)

PN
j=1 '�(k � kj)

. (6)
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Connection between Self-Attention and nonparametric regression By plugging the query vectors118

qi into the function bf� in equation (6), we obtain that119

bf�(qi) =
PN

j vj exp
�
�kqi � kjk

2
/2�2

�

PN
j exp (�kqi � kjk

2/2�2)

=

PN
j vj exp

⇥
�
�
kqik2 + kkjk

2
�
/2�2

⇤
exp

�
qik>

j /�
2
�

PN
j exp [� (kqik2 + kkj0k

2) /2�2] exp
�
qik>

j /�
2
� . (7)

If we further assume that the keys kj are normalized, which is usually done in practice to stabilize120

the training of transformers [64], the value of bf�(qi) in equation (6) then becomes121

bf�(qi) =
PN

j vj exp
�
qik>

j /�
2
�

PN
j0 exp

⇣
qik>

j0/�
2
⌘ =

NX

j=1

softmax
⇣
q>
i kj/�

2
⌘
vj . (8)

When we choose �
2 =

p
D where D is the dimension of qi and kj , equation (8) matches equa-122

tion (2) of self-attention, namely, bf�(qi) = hi. Thus, we have shown that self-attention performs123

nonparametric regression using isotropic Gaussian kernels.124

Remark 1 The assumption that kj is normalized is to recover the pairwise dot-product attention in125

transformers. In general, this assumption is not necessary. In fact, the isotropic Gaussian kernel in126

equation (7) is more desirable than the dot-product kernel in equation (8) of the pairwise dot-product127

attention since the former is Lipschitz while the later is not Lipschitz [35]. The Lipschitz constraint128

helps improve the robustness of the model [15, 74, 2] and stabilize the model training [46].129

Limitation of Self-Attention From our nonparametric regression interpretation, self-attention is130

derived from the use of isotropic Gaussian kernels for kernel density estimation and nonparametric131

regression estimation, which may fail to capture the complex correlations between D features132

in qi and kj [81, 31]. Using multivariate Gaussian kernels with dense covariance matrices can133

help capture such correlations; however, choosing good covariance matrices is challenging and134

inefficient [80, 66, 11]. In the following section, we discuss the Fourier integral estimator and its use135

as a kernel for computing self-attention in order to overcome these limitations.136

3 FourierFormer: Transformer via Generalized Fourier Integral Theorem137

In the following, we introduce generalized integral theorems that are able to capture the complex138

interactions among the features of the queries and keys. We then apply these theorems to density139

estimation and nonparametric regression problems. We also establish the convergence rates of these140

estimators. Given these density estimators, we introduce a novel family of transformers, named141

FourierFormer, that integrates the generalized Fourier integral theorem into the dot-product attention142

step of the standard transformer.143

3.1 Generalized Fourier Integral Theorems and Their Applications144

The Fourier integral theorem is a beautiful result in mathematics [85, 7] and has been recently used145

in nonparametric mode clustering, deconvolution problem, and generative modeling [31]. It is a146

combination of Fourier transform and Fourier inverse transform. In particular, for any function147

p 2 L1(RD), the Fourier integral theorem is given by148

p(k) =
1

(2⇡)D

Z

RD

Z

RD

cos(s>(k � y))p(y)dyds

=
1

⇡D
lim

R!1

Z

RD

DY

j=1

sin(R(kj � yj))

(kj � yj)
p(y)dy, (9)

where k = (k1, . . . , kD),y = (y1, . . . , yD), s = (s1, . . . , sD), and R is the radius. The de-149

tailed derivation of Equation (9) is in Appendix A.3. Equation (9) suggests that pR(k) :=150

1
⇡D

R
RD

QD
j=1

sin(R(yj�kj))
(yj�kj)

p(y)dy can be used as an estimator of the function p.151

Benefits of the Fourier integral over Gaussian kernel There are two important benefits of the152

estimator pR: (i) it can automatically preserve the correlated structure lying within p even when p is153
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very complex and high dimensional function. It is in stark contrast to the standard kernel estimator154

built based on multivariate Gaussian kernel where we need to choose good covariance matrix in the155

multivariate Gaussian kernel to guarantee such estimator to work well. We note that as the standard156

soft-max Transformer is constructed based on the multivariate Gaussian kernel, the issue of choosing157

good covariance matrix in dot-product transformer is inevitable; (ii) The product of sinc kernels in158

the estimator pR does not decay to a point mass when R ! 1. It is in stark difference from the159

multivariate Gaussian kernel estimator, which converges to a point mass when the covariance matrix160

goes to 0. It indicates that pR is a non-trivial estimator of the function p. Finally, detailed illustrations161

of these benefits of the Fourier integral over Gaussian kernel in density estimation and nonparametric162

regression problems, which we have just shown to have connection to the self-attention in transformer,163

can be found in Section 8 in [31].164

Generalized Fourier integral estimator Borrowing the above benefits of Fourier integral estimator165

pR, in the paper we would like to consider a generalization of that estimator, named generalized166

Fourier integral estimator, which is given by:167

p
�
R(k) :=

R
D

AD

Z

RD

DY

j=1

�

✓
sin(R(yj � kj))

R(yj � kj)

◆
p(y)dy, (10)

where A :=
R
R �

⇣
sin(z)

z

⌘
dz and � : R ! R is a given function. When �(k) = k for all168

k 2 RD, the generalized Fourier integral estimator p�R becomes the Fourier integral estimator pR.169

Under appropriate conditions on the function � (see Theorem 1 in Section 3.1.1 and Theorem 3 in170

Appendix B.1), the estimator p�R converges to the true function p, namely,171

p(k) = lim
R!1

p
�
R(k) = lim

R!1

R
D

AD

Z

RD

DY

j=1

�

✓
sin(R(yj � kj))

R(yj � kj)

◆
p(y)dy. (11)

We name the above limit as generalized Fourier integral theorem. Furthermore, the estimator p�R also172

inherits similar aforementioned benefits of the Fourier integral estimator pR. Therefore, we will use173

the generalized Fourier integral theorem as a building block for constructing density estimators and174

nonparametric regression estimators, which are crucial to develop the FourierFormer in Section 3.2.175

3.1.1 Density Estimation via Generalized Fourier Integral Theorems176

We first apply the generalized Fourier integral theorem to the density estimation problem. To ease the177

presentation, we assume that k1,k2, . . . ,kN 2 RD are i.i.d. samples from a distribution admitting178

density function p where D � 1 is the dimension. Inspired by the generalized Fourier integral179

theorem, we obtain the following generalized Fourier density estimator p�N,R of p as follows:180

p
�
N,R(k) :=

R
D

NAD

NX

i=1

DY

j=1

�

✓
sin(R(kj � kij))

R(kj � kij)

◆
,+ (12)

where A =
R
R �

⇣
sin(z)

z

⌘
dz and ki = (ki1, . . . , kiD) for all i 2 [N ]. To quantify the error between181

the generalized Fourier density estimator p�n,R and the true density p, we utilize mean integrated182

squared errors (MISE) [84], which is given by:183

MISE(p�N,R, p) :=

Z

RD

(p�N,R(k)� p(k))2dk. (13)

We start with the following bound on the MISE between p
�
n,R and p.184

Theorem 1 Assume that
R
R �(sin(z)/z)zjdz = 0 for all j 2 [m] and

R
R |�(sin(z)/z)||z|m+1

dz <185

1 for some m 2 N. Then, there exist universal constants C and C
0 depending on d and A such that186

MISE(p�N,R, p) 
C

Rm+1
+

C
0
R

D

N
.

Proof of Theorem 1 is in Appendix C.1. A few comments are in order. First, by choosing R187

to balance the bias and variance in the bound of MISE in Theorem 1, we have the optimal R as188
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R = O(N1/(D+m+1)). With that choice of R, the MISE rate of p�N,R is O(N�(m+1)/(D+m+1)).189

Second, when �(z) = z
l for l � 4 and z 2 R, the assumptions in Theorem 1 are satisfied when190

m = 1. Under this case, the MISE rate of p�N,R is O(N�2/(D+2)). However, these assumptions191

do not satisfy when �(z) = z
l and l 2 {1, 2, 3}, which is due to the limitation of the current proof192

technique of Theorem 1 that is based on Taylor expansion of the estimator p�n,R.193

To address the limitation of the Taylor expansion technique, we utilize the Plancherel theorem in194

Fourier analysis to establish the MISE rate of p�N,R when �(z) = z
l and l 2 {1, 2, 3}. The details of195

the theoretical analyses for such setting are in Appendix B.196

3.2 FourierFormer: Transformers with Fourier Attentions197

Motivated by the preservation of the correlated structure of the function from the generalized Fourier198

integral theorem as well as the theoretical guarantees of density estimators, in this section we adapt199

the nonparametric regression interpretation of self-attention in Section 2 and propose the generalized200

Fourier nonparametric regression estimator in Section 3.2.1. We also establish the convergence201

properties of that estimator. Then, based on generalized Fourier nonparametric regression estimator,202

we develop the Fourier Attention and its corresponding FourierFormer in Section 3.2.2.203

3.2.1 Nonparametric Regression via Generalized Fourier Integral Theorem204

We now discuss an application of the generalized Fourier integral theorems to the nonparametric205

regression setting (3), namely, we assume that (v1,k1), . . . , (vN ,kN ) are i.i.d. samples from the206

following nonparametric regression model:207

vj = f(kj) + "j ,

where "1, . . . , "N are independent noises such that E("j) = 0 and the key vectors k1,k2, . . . ,kN are208

i.i.d. samples from p. Given the generalized Fourier density estimator (12), following the argument in209

Section 2, the Nadaraya–Watson estimator of the function f based on the generalized Fourier density210

estimator is given by:211

fN,R(k) :=

PN
i=1 vi

QD
j=1 �

⇣
sin(R(kj�kij))

R(kj�kij)

⌘

PN
i=1

QD
j=1 �

⇣
sin(R(kj�kij))

R(kj�kij)

⌘ . (14)

The main difference between the generalized Fourier nonparametric regression estimator fN,R in212

equation (14) and the estimator bf� in equation (6) is that the estimator fN,R utilizes the generalized213

Fourier density estimator to estimate the conditional distribution of the value vectors given the key214

vectors instead of the isotropic Gaussian kernel density estimator as in bf�. As we highlighted in215

Section 3, an important benefit of the generalized Fourier density estimator is that it can capture the216

complex dependencies of the features of the value vectors and the key vectors while the Gaussian217

kernel needs to have good covariance matrix to do that, which is computationally expensive in218

practice.219

We now have the following result establishing the mean square error (MSE) of fN,R.220

Theorem 2 Assume that
R
R �

⇣
sin(z)

z

⌘
z
j
dz = 0 for all 1  j  m and

R
R

����
⇣

sin(z)
z

⌘��� |z|jdz < 1221

for any m+1  j  2m+2 for some m 2 N. Then, for any k 2 RD, there exist universal constants222

C1, C2, C3, C4 such that the following holds:223

E
⇥
(fN,R(k)� f(k))2

⇤


✓
C1

R2(m+1)
+

(f(k) + C2)RD

N

◆��
p
2(k)J(R)

�
,

where J(R) = 1 �
1

p2(k)

⇣
C3

R2(m+1) +
C4R

d log(NR)
N

⌘
. Here, the outer expectation is taken with224

respect to the key vectors k1, . . . ,kN and the noises "1, . . . , "N .225

Proof of Theorem 2 is in Appendix C.3. A few comments with Theorem 2 are in order. First, by226

choosing R to balance the bias and variance in the bound of the MSE of the nonparametric generalized227

Fourier estimator fN,R, we have the optimal radius R as R = O(N
1

2(m+1)+D ). With that choice of228

the optimal radius R, the rate of fN,R is O(N� 2(m+1)
D+2(m+1) ). Second, when �(z) = z

l for l � 6, the229
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assumption on the function � of Theorem 2 is satisfied with m = 1. Under this case, the rate of fN,R230

becomes O(N� 4
D+4 ). In Appendix B, we also provide the rate of fN,R when �(z) = z

l for some231

l  5, which includes the original Fourier integral theorem.232

3.2.2 FourierFormer233

Given the generalized Fourier nonparametric regression estimator fN,R in equation (14), by plugging234

the query values q1, . . . , qN into that function, we obtain the following definition of the Fourier235

attention:236

Definition 1 (Fourier Attention) A Fourier attention is a multi-head attention that does nonpara-237

metric regression using the generalized Fourier nonparametric regression estimator fN,R. The output238

ĥi of the Fourier attention is then computed as239

ĥi := fN,R(qi) =

PN
i=1 vi

QD
j=1 �

⇣
sin(R(qij�kij))

R(qij�kij)

⌘

PN
i=1

QD
j=1 �

⇣
sin(R(qij�kij))

R(qij�kij)

⌘ 8 i 2 [N ]. (15)

Given the Fourier Attention in Definition 1, we then give the definition of FourierFormer as follows.240

Definition 2 (FourierFormer) A FourierFormer is a transformer that uses Fourier attention to241

capture dependency between tokens in the input sequence and the correlation between features in242

each token.243

Remark 2 (The Nonnegativity of the Fourier Kernel) The density estimation via generalized244

Fourier integral theorem in Section 3.1.1 does not require the generalized Fourier density esti-245

mator to be nonnegative. However, empirically, we observe that negative density estimator can cause246

instability in training the FourierFormer. Thus, in FourierFormer, we choose the function � to be a247

nonnegative function to enforce the density estimator to be nonnegative. In particular, we choose � to248

be power functions of the form �(x) = x
2m, where m is an positive integer. Note that when m = 2249

and m = 4, the kernels in our generalized Fourier integral estimators are the well-known Fejer-de la250

Vallee Poussin and Jackson-de la Vallee Poussin kernels [19].251

3.3 An Efficient Implementation of the Fourier Attention252

The Fourier kernel is implemented efficiently in the C++/CUDA extension developed by Pytorch
[51]. The idea is similar to the function cdist [51], which computes the p-norm distance between
each pair of the two collections of row vectors. In our case, we aim to compute kernel functions that
represent a Fourier attention in Definition 1. The core of this implementation is the following Fourier
metric function df :

df (qi,kj) =
DY

d=1

�

✓
sin(R(qid � kjd))

R(qid � kjd)

◆

We directly implement df as a torch.autograd.Function [51] in which we provide an efficient253

way to compute forward and backward function (df and gradient of df ). While the implementation254

of the forward function is straight forward, the backward function is more tricky since we need to255

optimize the code to compute the gradient of df w.r.t to variables q, k, and R all at once. We can256

develop the backward function with highly parallel computation by exploiting GPU architecture and257

utilizing the reduction technique. The computational time is comparable to function cdist; thus, our258

FourierFormer implementation is as computationally time-efficient.259

4 Experimental Results260

In this section, we numerically justify the advantage of FourierFormer over the baseline dot-product261

transformer on two large-scale tasks: language modeling on WikiText-103 [44] (Section 4.1) and262

image classification on ImageNet [21, 60] (Section 4.2). We aim to show that: (i) FourierFormer263

achieves better accuracy than the baseline transformer on a variety of practical tasks with different264

data modalities, and (ii) FourierFormer helps reduce head redundancy compared to the baseline265

transformer (Section 4.3).266

Throughout the section, we compare FourierFormers with the baseline dot-product transformers267

of the same configuration. In all experiments, we made the constant R in Fourier attention (see268
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Table 1. Perplexity (PPL) on WikiText-103 of FourierFormers compared to the baselines. FourierForm-
ers achieve much better PPL than the baselines.

Method Valid PPL Test PPL

Baseline dot-product (small) 33.15 34.29
FourierFormer (small) 31.86 32.85

Baseline dot-product (medium) 27.90 29.60
FourierFormer (medium) 26.51 28.01

equation (58)) to be a learnable scalar and set choose the function �(x) = x
4 (see Remark 2). All of269

our results are averaged over 5 runs with different seeds. More details on the models and training are270

provided in Appendix D. We also provide additional experimental results in Appendix E.271

4.1 Language Modeling on WikiText-103272

Datasets and metrics WikiText-103 is a collection of articles from Wikipedia, which have long273

contextual dependencies. The training set consists of about 28K articles containing 103M running274

words; this corresponds to text blocks of about 3600 words. The validation and test sets have 218K275

and 246K running words, respectively. Each of them contains 60 articles and about 268K words. Our276

experiment follows the standard setting [44, 64] and splits the training data into L-word independent277

long segments. For evaluation, we use a batch size of 1, and process the text sequence with a sliding278

window of size L. The last position is used for computing perplexity (PPL) except in the first segment,279

where all positions are evaluated as in [1, 64].280

Models and baselines Our implementation is based on the public code by [64].1 We use their281

small and medium models in our experiments. In particular, for small models, the key, value, and282

query dimension are set to 128, and the training and evaluation context length are set to 256. For283

medium models, the key, value, and query dimension are set to 256, and the training and evaluation284

context length are set to 384. In both configurations, the number of heads is 8, the feed-forward layer285

dimension is 2048, and the number of layers is 16.286

Results We report the validation and test perplexity (PPL) of FourierFormer versus the baseline287

transformer with the dot-product attention in Table 1. FourierFormers attain much better PPL than the288

baselines in both small and medium configurations. For the small configuration, the improvements of289

FourierFormer over the baseline are 1.29 PPL in validation and 1.44 PPL in test. For the medium290

configuration, these improvements are 1.39 PPL in validation and 1.59 PPL in test. These results291

suggest that the advantage of FourierFormer over the baseline dot-product transformer grows with the292

model’s size. This meets our expectation because larger models has larger query and key dimensions,293

e.g. the language model with medium configuration in this experiment has the query and key294

dimension of 256 versus 128 as in the language model with small configuration. Since the advantage295

of FourierFormer results from the property that FourierFormer can capture correlation between296

features in query and key vectors, the larger the query and key dimensions are, the more advantage297

FourierFormer has.298

4.2 Image Classification on ImageNet299

Datasets and metrics The ImageNet dataset [21, 60] consists of 1.28M training images and 50K300

validation images. For this benchmark, the model learns to predict the category of the input image301

among 1000 categories. Top-1 and top-5 classification accuracies are reported.302

Models and baselines We use the DeiT-tiny model [72] with 12 transformer layers, 4 attention heads303

per layer, and the model dimension of 192. To train the models, we follow the same setting and304

configuration as for the baseline [72].2305

Results We summarize our resuls in Table 2. Same as in the language modeling experiment, for this306

image classification task, the Deit model equipped with FourierFormer significantly outperforms the307

baseline Deit dot-product transformer in both top-1 and top-5 accuracy. This result suggests that the308

advantage of FourierFormer over the baseline dot-product transformer holds across different data309

modalities.310

1Implementation available at https://github.com/IDSIA/lmtool-fwp.
2Implementation available at https://github.com/facebookresearch/deit.
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Table 2. Top-1 and top-5 accuracy (%) of FourierFormer Deit vs. the baseline Deit with dot-product
attention. FourierFormer Deit outperforms the baseline in both top-1 and top-5 accuracy.

Method Top-1 Acc Top-5 Acc

Baseline DeiT 72.23 91.13
FourierFormer DeiT 73.25 91.66

Table 3. Laver-average mean and standard deviation of L2 distances between heads of FourierFormer
versus the baseline transformer with dot-product attention trained for the WikiText-103 language
modeling task. FourierFormer has greater L2 distance between heads than the baseline and thus captures
more diverse attention patterns.

Method Train Test

Baseline dot-product 6.20± 2.30 6.17± 2.30
FourierFormer 7.45± 2.50 7.37± 2.44

4.3 FourierFormer Helps Reducing Head Redundancy311

To study the diversity between attention heads, given the model trained for the WikiText-103 language312

modeling task, we compute the average L2 distance between heads in each layer. We show the313

layer-average mean and variance of distances between heads in Table 3. Results in Table 3 shows314

that FourierFormer obtains greater L2 distance between attention heads than the baseline transformer315

with the dot-product attention and thus helps reduce the head redundancy. Note that we use the small316

configuration as specified in Section 4.1 for both models.317

5 Related Work318

Interpretation of Attention Mechanism in Transformers Recent works have tried to gain an319

understanding of transformer’s attention from different perspectives. [73] considers attention as320

applying kernel smoother over the inputs. Extending this kernel approach, [33, 14, 82] linearize the321

softmax kernel in dot-product attention and propose a family of efficient transformers with linear322

computational and memory complexity. [9] then shows that these linear transformers are comparable323

to a Petrov-Galerkin projection [57], suggesting that the softmax normalization in the dot-product324

attention is sufficient but not necessary. Other works provide an understanding of attention in325

transformers via ordinary/partial differential equation include [43, 62]. In addition, [68, 28, 89] relate326

attentions in transformers to a Gaussian mixture models. Several works also connect the attention327

mechanism to graph-structured learning and message passing in graphical models [83, 65, 37]. Our328

work focuses on deriving the connection between self-attention and nonparametric kernel regression329

and exploring better regression estimator, such as the generalized Fourier nonparametric regression330

estimator, to improve the performance of transformers.331

Redundancy in Transformers [18, 45, 24] show that neurons and attention heads in the pre-trained332

transformer are redundant and can be removed when applied on a downstream task. By studying333

the contextualized embeddings in pre-trained networks, it has been demonstrated that the learned334

representations from these redundant models are highly anisotropic [47, 25]. Furthermore, [63, 67, 79,335

61] employ knowledge distillation and sparse approximation to enhance the efficiency of transformers.336

Our FourierFormer is complementary to these methods and can be combined with them.337

6 Concluding Remarks338

In this paper, we establish the correspondence between the nonparametric kernel regression and the339

self-attention in transformer. We then develop the generalized Fourier integral estimators and propose340

the FourierFormer, a novel class of transformers that use the generalized Fourier integral estimators to341

construct their attentions for efficiently capturing the correlations between features in the query and342

key vectors. We theoretically prove the approximation guarantees of the generalized Fourier integral343

estimators and empirically validate the advantage of FourierFormer over the baseline transformer344

with the dot-product attention in terms of accuracy and head redundancy reduction. It is interesting345

to incorporate robust kernels into the nonparametric regression framework of FourierFormer to346

enhance the robustness of the model under data perturbation and adversarial attacks. A limitation of347

FourierFormer is that it still has the same quadratic computational and memory complexity as the348

baseline transformer with the dot-product attention. We leave the development of the linear version349

of FourierFormer that achieves linear computational and memory complexity as future work. It is350

worth noting that there is no potential negative societal impacts of FourierFormer.351
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