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Abstract

A central challenge in training classification models in the real-world federated1

system is learning with non-IID data. To cope with this, most of the existing works2

involve enforcing regularization in local optimization or improving the model3

aggregation scheme at the server. Other works also share public datasets or synthe-4

sized samples to supplement the training of under-represented classes or introduce5

a certain level of personalization. Though effective, they lack a deep understanding6

of how the data heterogeneity affects each layer of a deep classification model.7

In this paper, we bridge this gap by performing an experimental analysis of the8

representations learned by different layers. Our observations are surprising: (1)9

there exists a greater bias in the classifier than other layers, and (2) the classification10

performance can be significantly improved by post-calibrating the classifier after11

federated training. Motivated by the above findings, we propose a novel and sim-12

ple algorithm called Classifier Calibration with Virtual Representations (CCVR),13

which adjusts the classifier using virtual representations sampled from an approx-14

imated gaussian mixture model. Experimental results demonstrate that CCVR15

achieves state-of-the-art performance on popular federated learning benchmarks16

including CIFAR-10, CIFAR-100, and CINIC-10. Code will be released.17

1 Introduction18

The rapid advances in deep learning have benefited a lot from large datasets like [1]. However,19

in the real world, data may be distributed on numerous mobile devices and the Internet of Things20

(IoT), requiring decentralized training of deep networks. Driven by such realistic needs, federated21

learning [2, 3, 4] has become an emerging research topic where the model training is pushed to a22

large number of edge clients and the raw data never leave local devices.23

A notorious trap in federated learning is training with non-IID data. Due to diverse user behaviors,24

large heterogeneity may be present in different clients’ local data, which has been found to result in25

unstable and slow convergence [5] and cause suboptimal or even detrimental model performance [6, 7].26

There have been a plethora of works exploring promising solutions to federated learning on non-IID27

data. They can be roughly divided into four categories: 1) client drift mitigation [5, 8, 9, 10], which28

modifies the local objectives of the clients, so that the local model is consistent with the global29

model to a certain degree; 2) aggregation scheme [11, 12, 13, 14, 15], which improves the model30

fusion mechanism at the server; 3) data sharing [6, 16, 17, 18], which introduces public datasets or31

synthesized data to help construct a more balanced data distribution on the client or on the server;32

4) personalized federated learning [19, 20, 21, 22], which aims to train personalized models for33

individual clients rather than a shared global model.34

However, as suggested by [7], existing algorithms are still unable to achieve good performance on35

image datasets with deep learning models, and could be no better than vanilla FedAvg [2]. To identify36
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the reasons behind this, we perform a thorough experimental investigation on each layer of a deep37

neural network. Specifically, we measure the Centered Kernel Alignment (CKA) [23] similarity38

between the representations from the same layer of different clients’ local models. The observation39

is thought-provoking: comparing different layers learned on different clients, the classifier has the40

lowest features1 similarity across different local models.41

Motivated by the above discovery, we dig deeper to study the variation of the weight of the classifier42

in federated optimization, and confirm that the classifier tends to be biased to certain classes. After43

identifying this devil, we conduct several empirical trials to debias the classifier via regularizing44

the classifier during training or calibrating classifier weights after training. We surprisingly find45

that post-calibration strategy is particularly useful — with only a small fraction of IID data, the46

classification accuracy is significantly improved. However, this approach cannot be directly deployed47

in practice since it infringes the privacy rule in federated learning.48

Based on the above findings and considerations, we propose a novel and privacy-preserving approach49

called Classifier Calibration with Virtual Representations (CCVR) which rectifies the decision50

boundaries (the classifier) of the deep network after federated training. CCVR generates virtual51

representations based on an approximated Gaussian Mixture Model (GMM) in the feature space with52

the learned feature extractor. Experimental results show that CCVR achieves significant accuracy53

improvements over several popular federated learning algorithms, setting the new state-of-the-art on54

common federated learning benchmarks like CIFAR-10, CIFAR-100 and CINIC-10.55

To summarize, our contributions are threefold: (1) We present the first systematic study on the hidden56

representations of different layers of neural networks (NN) trained with FedAvg on non-IID data57

and provide a new perspective of understanding federated learning with heterogeneous data. (2)58

Our study reveals an intriguing fact that the primary reason for the performance degradation of NN59

trained on non-IID data is the classifier. (3) We propose CCVR (Classifier Calibration with Virtual60

Representations) — a simple and universal classifier calibration algorithm for federated learning.61

CCVR is built on top of the off-the-shelf feature extractor and requires no transmission of the62

representations of the original data, thus raising no additional privacy concern. Our empirical results63

show that CCVR brings considerable accuracy gains over vanilla federated learning approaches.64

2 Related Work65

Federated learning [2, 3, 4] is a fast-growing research field and remains many open problems to solve.66

In this work, we focus on addressing the non-IID quagmire [6, 24]. Relevant works have pursued the67

following four directions.68

Client Drift Mitigation. FedAvg [2] has been the de facto optimization method in the federated69

setting. However, when it is applied to the heterogeneous setting, one key issue arises: when the70

global model is optimized with different local objectives with local optimums far away from each71

other, the average of the resultant client updates (the server update) would move away from the true72

global optimum [9]. The cause of this inconsistency is called ‘client drift’. To alleviate it, FedAvg73

is compelled to use a small learning rate which may damage convergence, or reduce the number of74

local iterations which induces significant communication cost [25]. There have been a number of75

works trying to mitigate ‘client drift’ of FedAvg from various perspectives. FedProx [5] proposes to76

add a proximal term to the local objective which regularizes the euclidean distance between the local77

model and the global model. MOON [8] adopts the contrastive loss to maximize the agreement of the78

representation learned by the local model and that by the global model. SCAFFOLD [9] performs79

‘client-variance reduction’ and corrects the drift in the local updates by introducing control variates.80

FedDyn [10] dynamically changes the local objectives at each communication round to ensure that81

the local optimum is asymptotically consistent with the stationary points of the global objective.82

Aggregation Scheme. A fruitful avenue of explorations involves improvements at the model83

aggregation stage. These works are motivated by three emerging concerns. First, oscillation may84

occur when updating the global model using gradients collected from clients with a limited subset of85

labels. To alleviate it, [11] proposes FedAvgM which adopts momentum update on the server-side.86

Second, element-wise averaging of weights may have drastic negative effects on the performance of87

the averaged model. [12] shows that directly averaging local models that are learned from totally88

1We use the terms representation and feature interchangeably.
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Figure 1: CKA similarities of three different layers of different ‘client model-client model’ pairs.
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Figure 2: The means of the CKA similarities of different layers in different local models.

distinct data distributions cannot produce a global model that performs well on the global distribution.89

The authors further propose FedDF that leverages unlabeled data or artificial samples generated by90

GANs [26] to distill knowledge from the local models. [13] considers the setting where each client91

performs variable amounts of local works and proposes FedNova which normalizes the local updates92

before averaging. Third, a handful of works [14, 15] believe that the permutation invariance of neural93

network parameters may cause neuron mismatching when conducting coordinate-wise averaging of94

model weights. So they propose to match the parameters of local models while aggregating.95

Data Sharing. The key motivation behind data sharing is that a client cannot acquire samples from96

other clients during local training, thus the learned local model under-represents certain patterns or97

samples from the absent classes. The common practices are to share a public dataset [6], synthesized98

data [16, 17] or a condensed version of the training samples [18] to supplement training on the clients99

or on the server. This line of works may violate the privacy rule of federated learning since they all100

consider sharing raw input data of the model, either real data or artificial data.101

Personalized Federated Learning. Different from the above directions that aim to learn a single102

global model, another line of research focuses on learning personalized models. Several works aim103

to make the global model customized to suit the need of individual users, either by treating each104

client as a task in meta-learning [19, 27, 20, 28] or multi-task learning [29], or by learning both105

global parameters for all clients and local private parameters for individual clients [21, 30, 31]. There106

are also heuristic approaches that divide clients into different clusters based on their learning tasks107

(objectives) and perform aggregation only within the cluster [32, 33, 22, 34].108

In this work, we consider training a single global classification model. To the best of our knowledge,109

we are the first to decouple the representation and classifier in federated learning — calibrating110

classifier after feature learning. Strictly speaking, our proposed CCVR algorithm does not fall into111

any aforementioned research direction but can be readily combined with most of the existing federated112

learning approaches to achieve better classification performance.113

3 Heterogeneity in Federated Learning: The Devil Is in Classifier114

3.1 Problem Setup115

We aim to collaboratively train an image classification model in a federated learning system which116

consists of K clients indexed by [K] and a central server. Client k has a local dataset Dk, and117

we set D =
⋃
k∈[K]Dk as the whole dataset. Suppose there are C classes in D indexed by [C].118

(x, y) ∈ X × [C] denotes a sample in D, where x is an image in the input space X and y is its119

corresponding label. LetDkc = {(x, y) ∈ Dk : y = c} be the set of samples with ground-truth label c120

on client k. We decompose the classification model into a deep feature extractor and a linear classifier.121

Given a sample (x, y), the feature extractor fθ : X → Z , parameterized by θ, maps the input image122

x into a feature vector z = fθ(x) ∈ Rd in the feature space Z . Then the classifier gϕ : Z → RC ,123

3



0 1 2 3 4 5 6 7 8 9
Classes

0
1
2
3
4
5
6
7
8
9

C
lie

nt
 ID

Label Distribution

0

1000

2000

3000

4000

0 1 2 3 4 5 6 7 8 9
Classes

0
1
2
3
4
5
6
7
8
9

C
lie

nt
 ID

NIID-Round 1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 1 2 3 4 5 6 7 8 9
Classes

0
1
2
3
4
5
6
7
8
9

C
lie

nt
 ID

NIID-Round 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0 1 2 3 4 5 6 7 8 9
Classes

0
1
2
3
4
5
6
7
8
9

C
lie

nt
 ID

IID-Round 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Figure 3: Label distribution of CIFAR-10 across clients (the first graph) and the classifier weight norm distribution
across clients in different rounds and data partitions (the three graphs on the right).

parameterized by ϕ, produces a probability distribution gϕ(z) as the prediction for x. Denote by124

w = (θ,ϕ) the parameter of the classification model.125

Federated learning proceeds through the communication between clients and the server in a round-126

by-round manner. In round t of the process, the server sends the current model parameterw(t−1) to a127

set U (t) of selected clients. Then each client k ∈ U (t) locally updates the received parameter w(t−1)128

to w(t)
k with the following objective:129

min
w

(t)
k

E(x,y)∼Dk [L(w(t)
k ;w(t−1),x, y)], (1)

where L is the loss function. Note that L is algorithm-dependent and could rely on the current global130

model parameter w(t−1) as well. For instance, FedAvg [2] computes w(t)
k by running SGD on Dk131

for a number of epochs using the cross-entropy loss, with initialization of the parameter set tow(t−1);132

FedProx [5] uses the cross entropy loss with an L2-regularization term to constrain the distance133

between w(t)
k and w(t−1); MOON [8] introduces a contrastive loss term to address the feature drift134

issue. In the end of round t, the selected clients send the optimized parameter back to the server and135

the server updates the parameter by aggregating heterogeneous parameters as follows,136

w(t) =
∑
k∈U(t) pkw

(t)
k , where pk = |Dk|∑

k′∈U(t) |Dk′ | .

3.2 A Closer Look at Classification Model: Classifier Bias137

To vividly understand how non-IID data affect the classification model in federated learning, we138

perform an experimental study on heterogeneous local models. For the sake of simplicity, we choose139

CIFAR-10 with 10 clients which is a standard federated learning benchmark, and a convolutional140

neural network with 7 layers used in [8]. As for the non-IID experiments, we partition the data141

according to the Dirichlet distribution with the concentration parameter α set as 0.1. More details are142

covered in the Appendix. To be specific, for each layer in the model, we leverage the recently proposed143

Centered Kernel Alignment (CKA) [23] to measure the similarity of the output features between two144

local models, given the same input testing samples. CKA outputs a similarity score between 0 (not145

similar at all) and 1 (identical). We train the model with FedAvg for 100 communication rounds and146

each client optimizes for 10 local epochs at each round.147

We first selectively show the pairwise CKA features similarity of three different layers across local148

models in Figure 1. Three compared layers here are the first layer, the middle layer (Layer 4), and the149

last layer (the classifier), respectively. Interestingly, we find that features outputted by the deeper150

layer show lower CKA similarity. It indicates that, for federated models trained on non-IID data, the151

deeper layers have heavier heterogeneity across different clients. By averaging the pairwise CKA152

features similarity in Figure 1, we can obtain a single value to approximately represent the similarity153

of the feature outputs by each layer across different clients. We illustrate the approximated layer-wise154

features similarity in Figure 2. The results show that the models trained with non-IID data have155

consistently lower feature similarity across clients for all layers, compared with those trained on156

IID data. The primary finding is that, for non-IID training, the classifier shows the lowest features157

similarities, among all the layers. The low CKA similarities of the classifiers imply that the local158

classifiers change greatly to fit the local data distribution.159

To perform a deeper analysis on the classifier trained on non-IID data, inspired by [35], we illustrate160

the L2 norm of the local classifier weight vectors in Figure 3. We observe that the classifier weight161

norms would be biased to the class with more training samples at the initial training stage. At the end162

4



Table 1: Accuracy@1 (%) on CIFAR-10 with different degrees of heterogeneity.

Method α = 0.5 α = 0.1 α = 0.05

FedAvg 68.62±0.77 58.55±0.98 52.33±0.43
FedAvg + clsnorm 69.65±0.35 (↑ 1.03) 58.94±0.08 (↑ 0.39) 51.74±4.02 (↓ 0.59)
FedAvg + clsprox 68.82±0.75 (↑ 0.20) 59.04±0.70 (↑ 0.49) 52.38±0.78 (↑ 0.05)
FedAvg + clsnorm + clsprox 68.75±0.75 (↑ 0.13) 58.80±0.30 (↑ 0.25) 52.39±0.24 (↑ 0.06)

FedAvg + calibration (whole data) 72.51±0.53 (↑ 3.89) 64.70±0.94 (↑ 6.15) 57.53±1.00 (↑ 5.20)
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Figure 4: The effect of classifier calibration using different amounts of data.

of the training, models trained on non-IID data suffer from a much heavier biased classifier than the163

models trained on IID data.164

Based on the above observations about the classifier, we hypothesize that: because the classifier is165

the closest layer to the local label distribution, it can be easily biased to the heterogeneous local166

data, reflected by the low features similarity among different local classifiers and the biased weight167

norms. Furthermore, we believe that debiasing the classifier is promising to directly improve the168

classification performance.169

3.3 Classifier Regularization and Calibration170

To effectively debias the classifier, we consider the following regularization and calibration methods.171

Classifier weight normalization. To eliminate the bias in classifier weight norms, we normalize the172

classifier weight vectors during the training and the inference stage. In particular, the classifier is a173

linear transformation with weight ϕ = [ϕ1, . . . ,ϕC ], followed by normalization and softmax. Given174

a feature z, the output of the classifier is175

gϕ(z)i =
eϕ

T
i z/||ϕi||∑C

i′=1
e
ϕT
i′

z/||ϕ
i′ ||
, ∀i ∈ [C].

Classifier regularization. Beyond restricting the weight norms of classifier, we also consider adding a176

proximal term similar to [5] only to restrict the classifier weights to be close to the received global177

classifier weight vectors from the server. Thus the loss function in Eq. (1) can be specified as178

L(w(t)
k ;w(t−1),x, y) = `(g

ϕ
(t)
k

(f
θ
(t)
k

(x)), y) + µ
2 ||ϕ

(t)
k −ϕ(t−1)||2,

where ` is the cross-entropy loss and µ is the regularization factor.179

Classifier calibration with IID samples. In addition to regularizing the classifier during federated180

training, we also consider a post-processing technique to calibrate the learned classifier. After the181

federated training, we fix the feature extractor and calibrate the classifier by SGD optimization with a182

cross-entropy loss on IID samples. Note that this calibration strategy requires IID raw data sampled183

from heterogeneous clients. Therefore, it can only serve as an experimental study use but cannot be184

applied to the real federated learning system.185

We conduct experiments to compare the above three methods on CIFAR-10 with three different186

degrees of data heterogeneity and present the results in Table 1. We observe that regularizing the187

norm of classifier weight is effective for light data heterogeneity but would have less help or even188

lead to damages along with the increase of the heterogeneity. Regularizing the classifier parameters is189

consistently effective but with especially minor improvements. Surprisingly, we find that calibrating190

the classifier of the trained FedAvg model with all training samples brings significant performance191

improvement for all degrees of data heterogeneity.192
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To further understand the classifier calibration technique, we additionally perform calibrations193

with different numbers of data samples and different off-the-shelf federated models trained by194

FedAvg and FedProx. The results are shown in Figure 4 and we observe that data-based classifier195

calibration performs consistently well, even with 1/50 training data samples for calibration use. These196

significant performance improvements after adjusting the classifier strongly verify our aforementioned197

hypothesis, i.e., the devil is in the classifier.198

4 Classifier Calibration with Virtual Representations199

Algorithm 1: Virtual Representation Generation
Input: Feature extractor fθ̂ of the global model,

number Mc of virtual features for class c
1 # Server executes:
2 Send fθ̂ to clients.

3 # Clients execute:
4 foreach client k ∈ [K] do
5 foreach class c ∈ [C] do
6 Produce zc,k,j = fθ̂(xc,k,j) for j-th

sample in Dkc for j ∈ [Nc,k].
7 Compute µc,k and Σc,k using Eq. (2).
8 end
9 Send {(µc,k,Σc,k) : c ∈ [C]} to server.

10 end
11 # Server executes:
12 foreach class c ∈ [C] do
13 Compute µc and Σc using Eq. (3) and (4).
14 Draw a set Gc of Mc samples from

Gaussian distribution N (µc,Σc).
15 end

Output: Set of virtual representations
⋃
c∈[C]Gc

Motivated by the above observations, we pro-200

pose Classifier Calibration with Virtual Repre-201

sentations (CCVR) that runs on the server after202

federated training the global model. CCVR203

uses virtual features drawn from an estimated204

Gaussian Mixture Model (GMM), without ac-205

cessing any real images. Suppose fθ̂ and gϕ̂206

are the feature extractor and classifier of the207

global model, respectively, where ŵ = (θ̂, ϕ̂)208

is the parameter trained by a certain federated209

learning algorithm, e.g. FedAvg. We shall use210

fθ̂ to extract features and estimate the corre-211

sponding feature distribution, and re-train g212

using generated virtual representations.213

Feature Distribution Estimation. For se-214

mantics related tasks such as classification,215

the features learned by deep neural networks216

can be approximated with a mixture of Gaus-217

sian distribution. Theoretically, any continu-218

ous distribution can be approximated by using219

a finite number of mixture of gaussian distri-220

butions [36]. In our CCVR, we assume that221

features of each class in D follow a Gaussian222

distribution. The server estimates this distribu-223

tion by computing the mean µc and the covariance Σc for each class c of D using gathered local224

statistics from clients, without accessing true data samples or their features. In particular, the server225

first sends the feature extractor fθ̂ of the trained global model to clients. Let Nc,k = |Dkc | be the226

number of samples of class c on client k, and set Nc =
∑K
k=1Nc,k. Client k produces features227

{zc,k,1, . . . ,zc,k,Nc,k
} for class c, where zc,k,j = fθ̂(xc,k,j) is the feature of the j-th sample in Dkc ,228

and computes local mean µc,k and covariance Σc,k of Dkc as:229

µc,k = 1
Nc,k

∑Nc,k

j=1 zc,k,j , Σc,k = 1
Nc,k−1

∑Nc,k

j=1 (zc,k,j − µc,k) (zc,k,j − µc,k)T , (2)

Then client k uploads {(µc,k,Σc,k) : c ∈ [C]} to server. For the server to compute the global230

statistics of D, it is sufficient to represent the global mean µc and covariance Σc using µc,k’s and231

Σc,k’s for each class c. The global mean can be straightforwardly written as232

µc =
1
Nc

∑K
k=1

∑Nc,k

j=1 zc,k,j =
∑K
k=1

Nc,k

Nc
µc,k. (3)

For the covariance, note that by definition we have233

(Nc,k − 1)Σc,k =
∑Nc,k

j=1 zc,k,jz
T
c,k,j −Nc,k · µc,kµTc,k

whenever Nc,k ≥ 1. Then the global covariance can be written as234

Σc =
1

Nc−1
∑K
k=1

∑Nc,k

j=1 zc,k,jz
T
c,k,j −

Nc

Nc−1µcµ
T
c

=
∑K
k=1

Nc,k−1
Nc−1 Σc,k +

∑K
k=1

Nc,k

Nc−1µc,kµ
T
c,k −

Nc

Nc−1µcµ
T
c . (4)

Virtual Representations Generation. After obtaining µc’s and Σc’s, the server generates a set Gc235

of virtual features with ground truth label c from the Gaussian distribution N (µc,Σc). The number236
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Table 2: Accuracy@1 (%) on CIFAR-10, CIFAR-100 and CINIC-10.

Method CIFAR-10 CIFAR-100 CINIC-10

No Calibration
FedAvg 68.62±0.77 66.25±0.54 60.20±2.04
FedProx 69.07±1.07 66.31±0.39 60.52±2.07
MOON 70.48±0.36 67.02±0.31 65.67±2.10

CCVR (Ours.)
FedAvg 71.03±0.40 (↑ 2.41) 66.60±0.63 (↑ 0.35) 69.99±0.54 (↑ 9.79)
FedProx 70.99±1.21 (↑ 1.92) 66.61±0.48 (↑ 0.30) 70.05±0.66 (↑ 9.53)
MOON 71.29±0.11 (↑ 0.81) 67.17±0.37 (↑ 0.15) 69.42±0.65 (↑ 3.75)

Whole Data (Oracle)
FedAvg 72.51±0.53 (↑ 3.89) 66.84±0.50 (↑ 0.59) 73.47±0.30 (↑ 13.27)
FedProx 72.26±1.22 (↑ 3.19) 66.68±0.43 (↑ 0.37) 73.10±0.57 (↑ 12.58)
MOON 72.05±0.16 (↑ 1.57) 67.56±0.44 (↑ 0.54) 73.38±0.23 (↑ 7.71)

Mc := |Gc| of virtual features for each class c could be determined by the fraction Nc

|D| to reflect the237

inter-class distribution. See Algorithm 1.238

Classifier Re-Training. The last step of our CCVR method is classifier re-training using virtual239

representations. We take out the classifier g from the global model, initialize its parameter as ϕ̂, and240

re-train the parameter to ϕ̃ for the objective241

minϕ̃ E(z,y)∼
⋃

c∈[C]Gc
[`(gϕ̃(z), y)],

where ` is the cross-entropy loss. We then obtain the final classification model gϕ̃ ◦ fθ̂ consisting of242

the pre-trained feature extractor and the calibrated classifier.243

5 Experiment244

5.1 Experiment Setup245

Federated Simulation. We consider image classification task and adopt three datasets from the246

popular FedML benchmark [37], i.e., CIFAR-10 [38], CIFAR-100 [38] and CINIC-10 [39]. Note247

that CINIC-10 is constructed from ImageNet [40] and CIFAR-10, whose samples are very similar but248

not drawn from identical distributions. Therefore, it naturally introduces distribution shifts which is249

suited to the heterogeneous nature of federated learning. To simulate federated learning scenario, we250

randomly split the training set of each dataset into K batches, and assign one training batch to each251

client. Namely, each client owns its local training set. We hold out the testing set at the server for252

evaluation of the classification performance of the global model. For hyperparameter tuning, we first253

take out a 15% subset of training set for validation. After selecting the best hyperparameter, we return254

the validation set to the training set and retrain the model. We are interested in the NIID partitions of255

the three datasets, where class proportions and number of data points of each client are unbalanced.256

Following [14, 15], we sample pi ∼ DirK(α) and assign a pi,k proportion of the samples from class257

i to client k. We set α as 0.5 unless otherwise specified. For fair comparison, we apply the same data258

augmentation techniques for all methods.259

Baselines and Implementation. We consider comparing the test accuracies of the representative260

federated learning algorithms FedAvg [2], FedProx [5] and the state-of-the-art method MOON [8]261

before and after applying our CCVR. For FedProx and MOON, we carefully tune the coefficient of262

local regularization term µ and report their best results. We use a simple 4-layer CNN network with263

a 2-layer MLP projection head described in [8] for CIFAR-10. For CIFAR-100 and CINIC-10, we264

adopt MobileNetV2 [41]. For each dataset, all methods are evaluated with the same model for fair265

comparison. The proposed CCVR algorithm only has one important hyperparameter, the number266

of feature samples Mc to generate. Unless otherwise stated, Mc is set to 100, 500 and 1000 for267

CIFAR-10, CIFAR-100 and CINIC-10 respectively. All experiments run with PyTorch 1.7.1. More268

details about the implementation and datasets are summarized in the Appendix.269

5.2 Can classifier calibration improve performance of federated learning?270

In Table 2, we present the test accuracy on all datasets before and after applying our CCVR. We also271

report the results under an ideal setting where the whole data are available for classifier calibration272

(Oracle). These results indicate the upper bound of classifier calibration.273
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Figure 5: t-SNE visualization of the features learned by FedAvg on CINIC-10. The features are colored by the
ground truth and the predictions of the classifier before and after applying CCVR. Best Viewed in color.

CCVR consistently improves all baseline methods. First, it can be observed that applying classifier274

calibration increases accuracies for all baseline methods, even with the accuracy gain up to 9.79%275

on CINIC-10. This is particularly inspiring because CCVR requires no modification to the original276

federated training process. One can easily get considerable accuracy profits by simply post-processing277

the trained global model. Comparing the accuracy gains of different methods after applying CCVR278

and whole data calibration, we find that the accuracy of FedAvg gets the greatest increase. On279

CIFAR-10 and CINIC-10, the oracle results of FedAvg even outstrip those of FedProx and MOON,280

implying that FedAvg focuses more on learning high-quality features but ignores learning a fair281

classifier. It further confirms the necessity of classifier calibration.282

5.3 In what situation does CCVR work best?283

We observe that though there is improvement on CIFAR-100 by applying CCVR, it seems subtle284

compared with that of other two datasets. This is not surprising, since the final accuracy achieved285

by classifier calibration is not only dependent on the degree to which the classifier is debaised, but286

also closely correlated with the quality of pre-trained representations. In CIFAR-100, each class287

only has 500 training images, so the classification task itself is very difficult and the model may288

learn representations with low separability. It is shown that the accuracy obtained with CCVR on289

CIFAR-100 is very close to the upper bound, indicating that CCVR does a good job of correcting the290

classifier, even if it is provided with a poor feature extractor.291

We also note that CCVR achieves huge improvements on CINIC-10. To further analyze the reason292

of this success and the characteristics of CCVR, we now shows the t-SNE visualization [42] of the293

features learned by FedAvg on CINIC-10 dataset in Figure 5. From the first and second sub-graphs on294

the top, we can observe that some classes dominate the classification results, while certain classes are295

rarely predicted correctly. For instance, the classifier makes wrong prediction for most of the samples296

belonging to the grey class. Another evidence showing there exists a great bias in the classifier is that,297

from the upper right corner of the ground truth subfigure, we can see that the features colored green298

and those colored purple can be easily separated. However, due to biases in the classifier, nearly all299

purple features are wrongly classified as the green class. Observing the second sub-graph on the300

bottom, we find that by applying CCVR, these misclassifications are alleviated. Observing the last301

subfigure on the bottom, we find that, with CCVR, mistakes are basically made when identifying302

easily-confused features that are close to the decision boundary rather than a majority of features303

that belong to certain classes. This suggests that the classifier weight has been adjusted to be more304

fair to each class. In summary, CCVR may be more effective when applied to the models with good305

representations but serious classifier biases.306

5.4 How many virtual features to generate?307

One important hyperparameter in our CCVR is the number of virtual features Mc for each class c308

to generate. We study the effect of Mc by tuning it from {0, 50, 100, 500, 1000, 2000} on three309

different partitions of CIFAR-10 (α ∈ {0.05, 0.1, 0.5}) when applying CCVR to FedAvg. The results310

are provided in Figure 6. In general, even sampling only a few features can significantly increase the311

classification accuracy. Additionally, it is observed that on the two more heterogeneous distributions312

(the left two subfigures), more samples produces higher accuracy. Although results on NIID-0.5 give313
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Figure 6: Accuracy@1 (%) of CCVR on CIFAR-10 with different numbers of virtual samples.

a similar hint in general, an accuracy decline when using a medium number of virtual samples is314

observed. This suggests that Mc is more sensitive when faced with a more balanced dataset. This315

can be explained by the nature of CCVR: utilizing virtual feature distribution to mimic the original316

feature distribution. As a result, if the number of virtual samples is limited, the simulated distribution317

may deviates from the true feature distribution. The results on NIID-0.5 implies that this trap could318

be easier to trigger when CCVR dealing with a more balanced original distribution. To conclude,319

though CCVR can provide free lunch for federated classification, one should still be very careful320

when tuning Mc to achieve higher accuracy. Generally speaking, a larger value of Mc is better.321

5.5 Does different levels of heterogeneity affect CCVR’s performance?322

We further study the effect of heterogeneity on CIFAR-10 by generating various non-IID partitions323

from Dirichlet distribution with different concentration parameters α. Note that partition with smaller324

α is more imbalanced. It can be seen from Table 3 that CCVR steadily improves accuracy for325

all the methods on all partitions. Typically, the improvements is greater when dealing with more326

heterogeneous data, implying that the amount of bias existing in the classifier is positively linked with327

the imbalanceness of training data. Another interesting discovery is that vanilla MOON performs328

worse than FedAvg and FedProx when α equals to 0.1 or 0.05, but the oracle results after classifier329

calibration is higher than those of FedAvg and FedProx. It indicates that MOON’s regularization330

on the representation brings severe negative effects on the classifier. As a consequence, MOON331

learns good representations but poor classifier. In that case, applying CCVR observably improves the332

original results, making the performance of MOON on par with FedAvg and FedProx.333

Table 3: Accuracy@1 (%) on CIFAR-10 with different degrees of heterogeneity.

Method α = 0.5 α = 0.1 α = 0.05

No Calibration
FedAvg 68.62±0.77 58.55±0.98 52.33±0.43
FedProx 69.07±1.07 58.93±0.64 53.00±0.32
MOON 70.48±0.36 57.36±0.85 49.91±0.38

CCVR (Ours.)
FedAvg 71.03±0.40 (↑ 2.41) 62.68±0.54 (↑ 4.13) 54.95±0.61 (↑ 2.62)
FedProx 70.99±1.21 (↑ 1.92) 62.60±0.43 (↑ 3.67) 55.79±1.07 (↑ 2.79)
MOON 71.29±0.11 (↑ 0.81) 62.22±0.70 (↑ 4.86) 55.60±0.63 (↑ 5.69)

Whole Data (Oracle)
FedAvg 72.51±0.53 (↑ 3.89) 64.70±0.94 (↑ 6.15) 57.53±1.00 (↑ 5.20)
FedProx 72.26±1.22 (↑ 3.19) 64.63±0.93 (↑ 5.70) 57.33±0.72 (↑ 4.33)
MOON 72.05±0.16 (↑ 1.57) 64.94±0.58 (↑ 7.58) 58.14±0.47 (↑ 8.23)

6 Conclusion334

In this work, we provide a new perspective to understand why the performance of a deep learning-335

based classification model degrades when trained with non-IID data in federated learning. We first336

anatomize the neural networks and study the similarity of different layers of the models on different337

clients through recent representation analysis techniques. We observe that the classifiers of different338

local models are less similar than any other layer, and there is a significant bias among the classifier.339

We then propose a novel method called Classifier Calibration with Virtual Representations (CCVR),340

which samples virtual features from an approximated Gaussian Mixture Model (GMM) for classifier341

calibration to avoid uploading raw features to the server. Experimental results on three image datasets342

show that CCVR steadily improves over several popular federated learning algorithms.343
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