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Abstract

In many sequential decision-making problems (e.g., robotics control, game play-1

ing, sequential prediction), human or expert data is available containing useful2

information about the task. However, imitation learning (IL) from a small amount3

of expert data can be challenging in high-dimensional environments with com-4

plex dynamics. Behavioral cloning is a simple method that is widely used due to5

its simplicity of implementation and stable convergence but doesn’t utilize any6

information involving the environment’s dynamics. Many existing methods that7

exploit dynamics information are difficult to train in practice due to an adversarial8

optimization process over reward and policy approximators or biased, high variance9

gradient estimators. We introduce a method for dynamics-aware IL which avoids10

adversarial training by learning a single Q-function, implicitly representing both11

reward and policy. On standard benchmarks, the implicitly learned rewards show12

a high positive correlation with the ground-truth rewards, illustrating our method13

can also be used for inverse reinforcement learning (IRL). Our method, Inverse14

soft-Q learning (IQ-Learn) obtains state-of-the-art results in offline and online15

imitation learning settings, surpassing existing methods both in the number of16

required environment interactions and scalability in high-dimensional spaces.17

1 Introduction18

Imitation of an expert has long been recognized as a powerful approach for sequential decision-19

making [21, 1], with applications as diverse as healthcare [27], autonomous driving [28], and playing20

complex strategic games [6]. In the imitation learning (IL) setting, we are given a set of expert21

trajectories, with the goal of learning a policy which induces behavior similar to the expert’s. The22

learner has no access to the reward, and no explicit knowledge of the dynamics.23

The simple behavioural cloning [24] approach simply maximizes the probability of the expert’s24

actions under the learned policy, approaching the IL problem as a supervised learning problem.25

While this can work well in simple environments and with large quantities of data, it ignores the26

sequential nature of the decision-making problem, and small errors can quickly compound when the27

learned policy departs from the states observed under the expert. A natural way of introducing the28

environment dynamics is by framing the IL problem as an Inverse RL (IRL) problem, aiming to learn29

a reward function under which the expert’s trajectory is optimal, and from which the learned imitation30

policy can be trained [1]. This framing has inspired several approaches which use rewards either31

explicitly or implicitly to incorporate dynamics while learning an imitation policy [13, 7, 23, 18].32

However, these dynamics-aware methods are typically hard to put into practice due to unstable33

learning which can be sensitive to hyperparameter choice or minor implementation details [17].34

In this work, we introduce a dynamics-aware imitation learning method which has stable, non-35

adversarial training, allowing us to achieve state-of-the-art performance on imitation learning bench-36

marks. Our key insight is that much of the difficulty with previous IL methods arises from the37

IRL-motivated representation of the IL problem as a min-max problem over reward and policy [13, 1].38
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Table 1: A comparison of various algorithms for imitation learning. “Convergence Guarantees”
refers to if a proof is given that the algorithm converges to the correct policy with sufficient data.
We consider an algorithm “directly optimized” if it consists of an optimization algorithm (such as
gradient descent) applied to the parameters of a single function

Method Reference Dynamics
Aware

Non-
Adversarial

Training

Convergence
Guarantees

Non-restrictive
Reward

Direct
Optimization

O
nl

in
e

Max Margin IRL [21, 1] 3 3 3 × ×
Max Entropy IRL [30] 3 3 3 × ×
GAIL/AIRL [13, 7] 3 × 3 3 ×
ASAF [3] 3 3 3 × 3
SQIL [23] 3 3 × × 3

Ours (Online) – 3 3 3 3 3

O
ffl

in
e

Max Margin IRL [20, 16] 3 3 3 × ×
Max Likelihood IRL [14] 3 3 3 × ×
Max Entropy IRL [12] 3 3 3 × ×
ValueDICE [18] 3 × × × ×
Behavioral Cloning [24] × 3 3 × 3
Regularized BC [22] 3 3 3 × 3
EDM [15] 3 3 × 3 3

Ours (Offline) – 3 3 3 3 3

This introduces a requirement to separately model the reward and policy, and train these two functions39

jointly, often in an adversarial fashion. Drawing on connections between RL and energy-based40

models [9, 10], we propose learning a single model for the Q-value. The Q-value then implicitly41

defines both a reward and policy function. This turns a difficult min-max problem over policy and42

reward functions into a simpler minimization problem over a single function, the Q-value. Since our43

problem has a one-to-one correspondence with the min-max problem studied in adversarial IL [13],44

we maintain the generality and guarantees of these previous approaches, resulting in a meaningful45

reward that may be used for inverse reinforcement learning. Furthermore, our method may be used to46

minimize a variety of statistical divergences between the expert and learned policy. We show that we47

recover several previously-described approaches as special cases of particular divergences, such as48

the regularized behavioural cloning of [22], and the conservative Q-learning of [19].49

In our experiments, we find that our method is performant even with very sparse data - surpassing50

prior methods using one expert demonstration in the completely offline setting - and can scale to51

complex image-based tasks like Atari reaching expert performance. Moreover, our learnt rewards are52

highly predictive of the original environment rewards.53

Concretely, our contributions are as follows:54

• We present a modifiedQ-learning update rule for imitation learning that can be implemented55

on top of soft-Q learning or soft actor-critic (SAC) algorithms in fewer than 15 lines of code.56

• We introduce a simple framework to minimize a wide range of statistical distances: Integral57

Probability Metrics (IPMs) and f-divergences, between the expert and learned distributions.58

• We empirically show state-of-art results in a variety of imitation learning settings: online59

and offline IL. On the complex Atari suite, we outperform prior methods by 3-7x while60

requiring 3x less environment steps.61

• We characterize our learnt rewards and show a high positive correlation with the ground-truth62

rewards, justifying the use of our method for Inverse Reinforcement Learning.63

2 Background64

Preliminaries We consider environments represented as a Markov decision process (MDP), which65

is defined by a tuple (S,A, p0,P, r, γ). S,A represent state and action spaces, p0 and P(s′|s, a)66

represent the initial state distribution and the dynamics, r(s, a) represents the reward function, and67

γ ∈ (0, 1) represents the discount factor. RS×A = {x : S × A → R} will denote the set of all68

functions in the state-action space and R will denote the extended real numbers R ∪ {∞}. Section69

3 and 4 will work with finite state and action spaces S and A, but our algorithms and experiments70
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later in the paper use continuous environments. Π is the set of all stationary stochastic policies that71

take actions in A given states in S. We work in the γ-discounted infinite horizon setting, and we72

will use an expectation with respect to a policy π ∈ Π to denote an expectation with respect to73

the trajectory it generates: Eπ[r(s, a)] , E[
∑∞
t=0 γ

tr(st, at)], where s0 ∼ p0, at ∼ π(·|st), and74

st+1 ∼ P(·|st, at) for t ≥ 0. For a policy π ∈ Π, we define its occupancy measure ρπ : S ×A → R75

as ρπ(s, a) = π(a|s)∑∞t=0 γ
tP (st = s|π). We refer to the expert policy as πE and its occupancy76

measure as ρE . In practice, πE is unknown and we have access to a sampled dataset of demonstrations.77

For brevity, we refer to ρπ as ρ for a learnt policy in the paper.78

Soft Q-functions For a reward r ∈ RS×A and π ∈ Π, the soft Bellman operator Bπ :79

RS×A → RS×A defined as (BπQ)(s, a) = r(s, a) + γEs′∼P (s,a)V
π(s′) with V π(s) =80

Ea∼π(·|s) [Q(s, a)− log π(a|s)]. The soft Bellman operator is contractive [9] and defines a unique81

soft Q-function for r, given as Q = BπQ.82

Max Entropy Reinforcement Learning For a given reward function r ∈ RS×A, maximum83

entropy RL [10, 4] aims to learn a policy that maximizes the expected cumulative discounted reward84

along with the entropy in each state: maxπ∈Π Eπ[r(s, a)] +H(π). Where H(π) , Eπ[− log π(a|s)]85

is the discounted causal entropy of the policy π. The optimal policy satisfies [29, 4]:86

π∗(a|s) =
1

Zs
exp (Q(s, a)), (1)

where Q is the soft Q-function and Zs is the normalization factor given as
∑
a′ exp (Q (s, a′)).87

Q satisfies the soft-Bellman equation:88

Q(s, a) = r(s, a) + γEs′∼P(·|s,a)

[
log
∑
a′

exp(Q(s′, a′))
]

(2)

In continuous action spaces, Zs becomes intractable and soft actor-critic methods like SAC [9] can89

be used to learn an explicit policy.90

Max Entropy Inverse Reinforcement Learning Given demonstrations sampled using the91

policy πE , maximum entropy Inverse RL aims to recover the reward function in a fam-92

ily of functions R that rationalizes the expert behavior by solving the optimization problem:93

maxr∈Rminπ∈Π EπE [r(s, a)] − (Eπ[r(s, a)] +H(π)), where the expected reward of πE is em-94

pirically approximated. It looks for a reward function that assigns high reward to the expert policy95

and a low reward to other policies, while searching for the best policy for the reward function in an96

inner loop.97

The Inverse RL objective can be reformulated in terms of its occupancy measure, and with a convex98

reward regularizer ψ : RS×A → R [13]99

max
r∈R

min
π∈Π

L(π, r) = EρE [r(s, a)]− Eρ[r(s, a)]−H(π)− ψ(r) (3)

In general, we can exchange the max-min resulting in an objective that minimizes the statistical100

distance parameterized by ψ, between the expert and the policy [13]101

min
π∈Π

max
r∈R

L(π, r) = min
π∈Π

dψ(ρ, ρE)−H(π), (4)

with dψ , ψ∗(ρE − ρ), where ψ∗ is the convex conjugate of ψ.102

3 Inverse soft Q-learning (IQ-Learn) Framework103

A naive solution to the IRL problem in (Eq. 3) involves (1) an outer loop learning rewards and (2)104

executing RL in an inner loop to find an optimal policy for them. However, we know that this optimal105

policy can be obtained analytically in terms of softQ-functions (Eq. 1). Interestingly, as we will show106

later, the rewards can also be represented in terms of Q (Eq. 2). Together, these observations suggest107

it might be possible to directly solve the IRL problem by optimizing only over the Q-function.108

To motivate the search of an imitation learning algorithm that depends only on the Q-function, we109

characterize the space of Q-functions and policies obtained using Inverse RL. We will study π ∈ Π,110
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r ∈ R and Q-functions Q ∈ Ω whereR = Ω = RS×A. We assume Π is convex, compact and that111

πE ∈ Π1. We define V π(s) = Ea∼π(·|s) [Q(s, a)− log π(a|s)].112

We start with analysis developed in [13]: The regularized IRL objective L(π, r) given by Eq. 3, is113

concave in the policy and convex in rewards. And has a unique saddle point where it is optimized.114

To characterize the Q-functions it is useful to transform the optimization problem over rewards to a115

problem over Q-functions. We can get a one-to-one correspondence between r and Q:116

Define the inverse soft bellman operator T π : RS×A → RS×A such that117

(T πQ)(s, a) = Q(s, a)− γEs′∼P (s,a)V
π(s′),

Lemma 3.1. The inverse soft bellman operator T π is bijective, and (T π)−1 = Bπ .118

The proof of this lemma is in Appendix A.1. For a policy π, we are thus justified in changing119

between rewards and their corresponding soft-Q functions. We can freely transform functions from120

the reward-policy space: Π×R to the Q-policy space: Π× Ω, giving us the lemma:121

Lemma 3.2. If L(π, r) = EρE [r(s, a)]− Eρ[r(s, a)]−H(π)− ψ(r) and122

J (π,Q) = EρE [(T πQ)(s, a)]− Eρ[(T πQ)(s, a)]−H(π)− ψ(T πQ), then for all policies π ∈ Π,123

L(π, r) = J (π, (T π)−1r) for all r ∈ R, and J (π,Q) = L(π, T πQ), for all Q ∈ Ω.124

Lemma 3.1 and 3.2 allow us to adapt the Inverse RL objective L(π, r) to learningQ through J (π,Q).125

Simplifying our new objective (using Lemma A.3 in Appendix):126

J (π,Q) = Es,a∼ρE [Q− γEs′∼P(·|s,a)V
π(s′)]− (1− γ)Es0∼p0 [V π(s0)]− ψ(T πQ), (5)

We are now ready to study J (π,Q), the Inverse RL optimization problem in the Q-policy space. As127

the regularizer ψ depends on both Q and π, a general analysis over all functions in RS×A becomes128

too difficult. We restrict ourselves to regularizers induced by a convex function g : R→ R such that129

ψg(r) = EρE [g(r(s, a))] (6)

This allows us to simplify our analysis to the set of all real functions while retaining generality2. We130

further motivate this choice in Section 4.131

Proposition 3.3. In the Q-policy space, there exists a unique saddle point (π∗, Q∗) that optimizes J .132

i.e. Q∗ = argmaxQ∈Ω minπ∈Π J (π,Q) and π∗ = argminπ∈Π maxQ∈Ω J (π,Q). Furthermore,133

π∗ and r∗ = T π∗Q∗ are the solution to the Inverse RL objective L(π, r).134

Thus we have, maxQ∈Ω minπ∈Π J (π,Q) = maxr∈Rminπ∈Π L(π, r).135

This tells us, even after transforming to Q-functions we have retained the saddle point property of the136

original IRL objective and optimizing J (π,Q) recovers this saddle point. In the Q-policy space, we137

can get an additional property:138

Proposition 3.4. For a fixed Q, argminπ∈Π J (π,Q) is the solution to max entropy RL with rewards139

r = T πQ. Thus, this forms a manifold in the Q-policy space, that satisfies140

πQ(a|s) =
1

Zs
exp(Q(s, a)),

with normalization factor Zs =
∑
a expQ(s, a) and πQ defined as the π corresponding to Q.141

Proposition 3.3 and 3.4 are telling us that if we know Q, then the inner optimization problem in142

terms of policy is trivial, and obtained in a closed form! Thus, we can recover an objective that only143

requires learning Q:144

max
Q∈Ω

min
π∈Π

J (π,Q) = max
Q∈Ω

J (πQ, Q) (7)

Furthermore, we have:145

Proposition 3.5. Let J ∗(Q) = J (πQ, Q). Then J ∗ is concave in Q.146

Thus, this new optimization objective is well-behaved and is maximized only at the saddle point.147

1The full policy class satisfies all these assumptions
2Averaging over the expert occupancy allows the regularizer to adjust to arbitrary experts
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Figure 1: Properties of IRL objective in reward-policy space and Q-policy
space.

In Appendix C, we expand148

on our analysis and charac-149

terize the behavior for dif-150

ferent choices of regularizer151

ψ, while giving proofs of all152

our propositions. Figure 1153

summarizes the properties154

for the IRL objective: there155

exists a optimal policy man-156

ifold depending on Q, al-157

lowing optimization along158

it (using J ∗) to converge to the saddle point. We further present analysis of IL methods that learn159

Q-functions like SQIL [23] and ValueDICE [18] and find subtle fallacies affecting their learning.160

Note that although the same analysis holds in the reward-policy space, the optimal policy manifold161

depends on Q, which isn’t trivially known unlike when in the Q-policy space.162

4 Approach163

In this section, we develop our inverse soft-Q learning (IQ-Learn) algorithm, such that it recovers the164

optimal softQ-function for a MDP from a given expert distribution. We start by learning energy-based165

models for the policy similar to soft Q-learning and later learn an explicit policy similar to actor-critic166

methods.167

4.1 General Inverse RL Objective168

For designing a practical algorithm using regularizers of the form ψg (from Eq. 6), we define g using169

a concave function φ : Rψ → R, such that g(x) =

{
x− φ(x) if x ∈ Rψ
+∞ otherwise170

with the rewards constrained in Rψ .171

For this choice of ψ, the Inverse RL objective L(π, r) takes the form of Eq. 4 with a distance measure:172

dψ(ρ, ρE) = max
r∈Rψ

EρE [φ(r(s, a))]− Eρ[r(s, a)], (8)

This forms a general learning objective that allows the use of a wide-range of statistical distances173

including Integral Probability Metrics (IPMs) and f-divergences (see Appendix B). 3174

4.2 Choice of Statistical Distances175

While choosing a practical regularizer, it can be useful to obtain certain properties on the reward176

functions we recover. Some (natural) nice properties are: having rewards bounded in a range, learning177

smooth functions or enforcing a norm-penalty.178

In fact, we find these properties correspond to the Total Variation distance, the Wasserstein-1 dis-179

tance and the χ2-divergence respectively. The regularizers and the induced statistical distances are180

summarized in Table 2:

Table 2: Enforced reward property, corresponding regularizer ψ and statistical distance (Rmax,K, α ∈ R+ )
Reward Property ψ dψ

Bound range ψ = 0 if |r| ≤ Rmax and +∞ otherwise 2Rmax · TV(ρ, ρE)

Smoothness ψ = 0 if ‖r‖Lip ≤ K and +∞ otherwise K ·W1(ρ, ρE)

L2 Penalization ψ(r) = αr2 1
4α
· χ2(ρ, ρE)181

We find that these choice of regularizers4 work very well in our experiments. In Appendix B, we182

further give a table for the well known f -divergences, the corresponding φ and the learnt reward183

estimators, along with a result ablation on using different divergences. Compared to χ2, we find other184

f -divergences like Jensen-Shannon result in similar performances but are not as readily interpretable.185

3We recover IPMs when using identity φ and restricted reward familyR
4The additional scalar terms scale the entropy regularization strength and can be ignored in practice

5



4.3 Inverse soft-Q update (Discrete control)186

Optimization along the optimal policy manifold gives the concave objective (Prop 3.5):187

max
Q∈Ω

J ∗(Q) = EρE [φ(Q(s, a)− γEs′∼P(·|s,a)V
∗(s′))]− (1− γ)Eρ0 [V ∗(s0)], (9)

with V ∗(s) = log
∑
a expQ(s, a).188

For eachQ, we get a corresponding reward r(s, a) = Q(s, a)−γEs′∼P(·|s,a)[log
∑
a′ expQ (s′, a′)].189

This correspondence is unique (Lemma A.1 in Appendix), and every update step can be seen as190

finding a better reward for IRL.191

Note that estimating V ∗(s) exactly is only possible in discrete action spaces. Our objective forms a192

variant of soft-Q learning: to learn the optimal Q-function given an expert distribution.193

4.4 Inverse soft actor-critic update (Continuous control)194

In continuous action spaces, it might not be possible to exactly obtain the optimal policy πQ, which195

forms an energy-based model of the Q-function, and we use an explicit policy π to approximate πQ.196

For any policy π, we have a objective (from Eq. 5):197

J (π,Q) = EρE [φ(Q− γEs′∼P(·|s,a)V
π(s′))]− (1− γ)Eρ0 [V π(s0)] (10)

For a fixed Q, soft actor-critic (SAC) update: min
π

Es∼D,a∼π(·|s)[Q(s, a) − log π(a|s)], brings π198

closer to πQ while always minimizing Eq. 10 (Lemma A.4 in Appendix). Here D is the distribution199

of previously sampled states, or a replay buffer.200

Thus, we obtain the modified actor-critic update rule to learn Q-functions from the expert distribution:201

1. For a fixed π, optimize Q by maximizing J (π,Q).202

2. For a fixed Q, apply SAC update to optimize π towards πQ.203

This differs from ValueDICE [18], where the actor is updated adverserially and the objective may not204

always converge (Appendix C).205

5 Practical Algorithm206

Algorithm 1 Inverse soft Q-Learning (both variants)
1: Initialize Q-function Qθ , and optionally a policy πφ
2: for step t in {1...N} do
3: Train Q-function using objective from Equation 9:

θt+1 ← θt − αQ∇θ[−J (θ)]
(Use V ∗ for Q-learning and V πφ for actor-critic)

4: (only with actor-critic) Improve policy πφ with SAC style
actor update:
φt+1 ← φt − απ∇φEs∼D,a∼πφ(·|s)[Q(s, a)− log πφ(a|s)]

5: end for

Algorithm 2 Recover policy and reward
1: Given trained Q-function Qθ , and optionally a trained policy πφ
2: Recover policy π:

(Q-learning) π := 1
Z
expQθ

(actor-critic) π := πφ
3: For state s, action a and s′ ∼ P(·|s,a)
4: Recover reward r(s,a, s′) = Qθ(s,a)− γV π (s′)

Pseudocode in Algorithm 1, shows207

our Q-learning and actor-critic208

variants, with differences with con-209

ventional RL algorithms in red (we210

optimize -J to use gradient de-211

scent). We can implement our al-212

gorithm IQ-Learn in 15 lines of213

code on top of standard implemen-214

tations of (soft) DQN [10] for dis-215

crete control or soft actor-critic216

(SAC) [9] for continuous control,217

with a change on the objective for218

the Q-function. Default hyperpa-219

rameters from [10, 9] work well,220

except for tuning the entropy reg-221

ularization. Target networks were222

helpful for continuous control. We223

elaborate details in Appendix D.224

5.1 Training methodology225

Corollary 2.1 in Appendix A states E(s,a)∼µ[V π(s)−γEs′∼P(·|s,a)V
π(s′)] = (1−γ)Es∼p0 [V π(s)],226

where µ is any policy’s occupancy. We use this to stabilize training instead of using Eq. 9 directly.227
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Online: Instead of directly estimating Ep0 [V π(s0)] in our algorithm, we can sample (s, a, s′) from228

a replay buffer and get a single-sample estimate E(s,a,s′)∼replay[V π(s) − γV π(s′)]. This removes229

the issue where we are only optimizing Q in the inital states resulting in overfitting of V π(s0), and230

improves the stability for convergence in our experiments. We find sampling half from the policy231

buffer and half from the expert distribution gives the best performances. Note that this is makes our232

learning online, requiring environment interactions.233

Offline: Although Ep0 [V π(s0)] can be estimated offline we still observe an overfitting issue. Instead234

of requiring policy samples we use only expert samples to estimate E(s,a,s′)∼expert[V
π(s)− γV π(s′)]235

to sufficiently approximate the term. This methodology gives us state-of-art results for offline IL.236

5.2 Recovering rewards237

Instead of the conventional reward function r(s, a) on state and action pairs, our algorithm allows238

recovering rewards for each transition (s, a, s′) using the learnt Q-values as follows:239

r(s, a, s′) = Q(s, a)− γV π (s′) (11)

Now, Es′∼P(·|s,a)[Q(s, a) − γV π (s′)] = Q(s, a) − γEs′∼P(·|s,a)[V
π (s′)] = T πQ(s, a). This is240

just the reward function r(s, a) we want. So by marginalizing over next-states, our expression241

correctly recovers the reward over state-actions. Thus, Eq. 11 gives the reward over transitions.242

Our rewards require s′ which can be sampled from the environment, or by using a dynamics model.243

5.3 Implementation of Statistical Distances244

Implementing TV and W1 distances is fairly trivial and we give details in Appendix B. For the245

χ2-divergence, we note that it corresponds to φ(x) = x− 1
4αx

2. On substituting in Eq. 9, we get246

max
Q∈Ω

EρE [(Q(s, a)− γEs′∼P(·|s,a)V
∗(s′))]− (1− γ)Ep0 [V ∗(s0)]− 1

4αEρE [(Q(s, a)− γEs′∼P(·|s,a)V
∗(s′))2]

In a fully offline setting, this can be further simplified as (using the offline methodology in Sec 5.1):247

min
Q∈Ω

− EρE [(Q(s, a)− V ∗(s))] +
1

4α
EρE [(Q(s, a)− γEs′∼P(·|s,a)V

∗(s′))2] (12)

This is interestingly the same as the Q-learning objective in CQL [19], an state-of-art method for248

offline RL (using 0 rewards), and shares similarities with regularized behavior cloning [23] 5.249

5.4 Learning state-only reward functions250

Previous works like AIRL [7] propose learning rewards that are only function of the state, and claim251

that these form of reward functions generalize between different MDPs. We find our method can252

predict state-only rewards by using the policy and expert state-marginals with a modification to Eq. 9:253

max
Q∈Ω

J ∗(Q) = Es∼ρE(s)[Ea∼π(·|s)[φ(Q(s, a)− γEs′∼P(·|s,a)V
∗(s′))]]− (1− γ)Ep0 [V ∗(s0)]

Interestingly, our objective no longer depends on the the expert actions πE and can be used for IL254

using only observations. For the sake of brevity, we expand on this in Section 1 in Appendix A.255

6 Related Work256

Classical IL: Imitation learning has a long history, with early works using supervised learning to257

match a policy’s actions to those of the expert [11, 25]. A significant advance was made with the258

formulation of IL as the composition of RL and IRL [21, 1, 30], recovering the expert’s policy by259

inferring the expert’s reward function, then finding the policy which maximizes reward under this260

reward function. These early approaches required a hand-designed featurization of the MDP, limiting261

their applicability to complex MDPs.262

5The simplification to get Eq. (12) is not applicable in the online IL setting where our method differs
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Online IL: More recent work aims to leverage the power of modern machine learning approaches to263

learn good featurizations and extend IL to complex settings. Recent work generally falls into one264

of two settings: online or offline. In the online setting, the IL algorithm is able to interact with the265

environment to obtain dynamics information. GAIL [13] takes the nested RL/IRL formulation of266

earlier work , optimizing over all reward functions with a convex regularizer. This results in the267

objective in Eq. (3), with a max-min adversarial problem similar to a GAN [8]. A variety of further268

work has built on this adversarial approach [17, 7, 2]. A separate line of work aims to simplify the269

problem in Eq. (3) by using a fixed r or π. In SQIL [23], r is chosen to be the 1-0 indicator on the270

expert demonstrations, while ASAF [3] takes the GAN approach and uses a discriminator (with role271

similar to r) of fixed form, consisting of a ratio of expert and learner densities.272

Offline IL: In the offline setting, the learner has no access to the environment. The simple behavioural273

cloning (BC) [24] approach is offline, but doesn’t use any dynamics information. ValueDICE [18]274

is a dynamics-aware offline approach with an objective somewhat similar to ours, motivated from275

minimization of a variational representation of the KL-divergence between expert and learner policies.276

ValueDICE requires adversarial optimization to learn the policy and Q-functions, with a biased277

gradient estimator for training. We show a way to recover a unbiased gradient estimate for the278

KL-divergence in Appendix C. The EDM method [15] incorporates dynamics via learning an explicit279

energy based model for the expert state occupancy, although some theoretical details have been called280

into question (see [26], appendix D). Finally, the very recent AVRIL approach [5] uses a variational281

method to solve a probabilistic formulation of IL, finding a posterior distribution over r and π.282

7 Experiments283

7.1 Experimental Setup284

We compare IQ-Learn ("IQ") to prior work on a diverse collection of RL tasks and environments -285

ranging from low-dimensional control tasks: CartPole, Acrobot, LunarLander - to more challenging286

continuous control MuJoCo tasks: HalfCheetah, Hopper, Walker and Ant. Furthermore, we test on287

the visually challenging Atari Suite with high-dimensional image inputs. We compare on offline IL -288

with no access to the the environment while training, and online IL - with environment access. We289

show results on W1 and χ2 as our statistical distances, as we found them more effective than TV290

distance. In all cases, we train until convergence and average over multiple seeds. Hyperparameter291

settings and training details are detailed in Appendix D.292

7.2 Benchmarks293

Offline IL We compare to the state-of-art IL methods EDM and AVRIL, following the same294

experimental setting as [5]. Furthermore, we compare with ValueDICE which also learns Q-functions,295

albeit with drawbacks such as adversarial optimization. We also experimented with SQIL, but found296

that it was not competitive in the offline setting. Finally, we utilize BC as an additional IL baseline.297

Online IL We use MuJoCo and Atari environments and compare against state-of-art online IL298

methods: ValueDICE, SQIL and GAIL. We only show results on χ2 as W1 was harder to stabilize299

on complex environments6. Using target updates stabilizes the Q-learning on MuJoCo. For brevity,300

further online IL results are shown in the Appendix D.301

7.3 Results302

Offline IL We present results on the three offline control tasks in Figure 2. On all tasks, IQ strongly303

outperforms prior works we compare to in performance and sample efficiency. Using just one expert304

trajectory, we achieve expert performance on Acrobot and reach near expert on Cartpole.305

Mujoco Control We present our results on the MuJoCo tasks using a single expert demo in306

Table 3. IQ achieves expert-level performance in all the tasks while outperforming prior methods like307

ValueDICE and GAIL. We did not find SQIL competitive in this setting, and skip it for brevity.308

6χ2 and W1 can be used together to still have a convex regularization and is more stable
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Figure 2: Offline IL results. We plot the average environment returns vs the number of expert trajectories.

Table 3: Mujoco Results. We show our performance on
MuJoCo control tasks using a single expert trajectory.

Task GAIL ValueDICE IQ (Ours) Expert
Hopper 3252.5 3312.1 3546.4 3532.7
Half-Cheetah 3080.0 3835.6 5076.6 5098.3
Walker 4013.7 3842.6 5134.0 5274.5
Ant 2299.1 1806.3 4362.9 4700.0

Atari We present our results on Atari309

using 20 expert demos in Figure 3. We310

reach expert performance on Space In-311

vaders while being near expert on Pong and312

Breakout. Compared to prior methods like313

SQIL, IQ obtains 3-7x normalized score7314

and converges in ∼300k steps, being 3x315

faster compared to Q-learning based RL methods that take more than 1M steps to converge. Other316

popular methods like GAIL and ValueDICE perform near random even with 1M env steps.317
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Figure 3: Atari Results. We show the returns vs the number of env steps. (Averaged over 5 seeds)

7.4 Recovered Rewards318

IQ has the added benefit of recovering rewards and can be used for IRL. On Hopper task, our learned319

rewards have a Pearson correlation of 0.99 with the true rewards. In Figure 4, we visualize our320

recovered rewards in a simple grid environment. We elaborate details in Appendix D.321

Figure 4: Reward Visualization. We use a discrete GridWorld environment with 5 possible actions: up, down,
left, right, stay. Agent starts in a random state. (With 30 expert demos)

8 Discussion and Outlook322

We present a new principled framework for learning soft-Q functions for IL and recovering the optimal323

policy and the reward, building on past works in IRL [30]. Our algorithm IQ-Learn outperforms prior324

methods with very sparse expert data and scales to complex image-based environments. We also325

recover rewards highly correlated with actual rewards. It has applications in autonomous driving and326

complex decision-making, but proper considerations need to be taken into account to ensure safety327

and reduce uncertainty, before any deployment. Finally, human or expert data can have errors that328

can propogate. A limitation of our method is that our recovered rewards depend on the environment329

dynamics, preventing trivial use on reward transfer settings. One direction of future work could be to330

learn a reward model from the trained soft-Q model to make the rewards explicit.331

7normalizing rewards obtained from random behavior to 0 and expert to 1
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