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Abstract

We study the problem of jointly solving an inverse problem coupled with correcting1

for model mismatch. Typically, inversion algorithms assume that a forward model,2

which relates a source to its resulting measurements, is known and fixed. Using3

collected indirect measurements and the forward model, the goal becomes to4

recover the source. When the forward model is unknown, or imperfect, artifacts5

due to model mismatch occur in the recovery of the source. We aim to recover6

the desired source with imperfect knowledge of the forward model. In this paper7

we propose DeepGEM, a variational Expectation-Maximization (EM) framework8

that can be used to solve for the unknown parameters of the forward model in9

an unsupervised manner. DeepGEM makes use of a normalizing flow generative10

network to efficiently capture complex posterior distributions, which leads to more11

accurate evaluation of the source’s posterior distribution used in EM. We showcase12

the effectiveness of our DeepGEM approach by achieving strong performance13

on the challenging problem of blind seismic tomography, where we significantly14

outperform the standard method used in seismology. We also demonstrate the15

generality of DeepGEM by applying it to blind deconvolution.16

1 Introduction17

Physics-based inversion methods typically recover an unknown source from indirect measurements18

by assuming that the source and measurements are related via a known forward model [14, 7, 29]. For19

example, non-blind deconvolution algorithms often assume that a measured blurry image is related to20

its true sharp image via a known spatially-invariant blur kernel [9]; and traditional seismic inversion21

methods assume that the spatially-varying velocity of the Earth’s interior is known a priori when22

solving for an earthquake’s hypocenter [29]. However, these “known” forward models are generally23

idealized and ignore intricacies of the systems that are either hard to capture or simply unknown.24

Inversion algorithms with forward model mismatch result in biased reconstructions. For instance, bias25

is regularly seen in non-blind deconvolution results, where reconstruction artifacts are often present26

due to the use of an incorrect blur kernel [9].27

Reducing model mismatch is key to reducing inversion bias and eliminating artifacts in recovered28

sources. When considering how learning can help, a natural first idea might be to learn a direct map29

from measurements to the desired source via supervised learning. However, such a “model-free”30

approach is generally not practical, due to the lack of available ground truth training data. For31

example, the blur kernel caused by handheld camera shake cannot be reproduced to get a training set32

of sharp-blurry pairs to train a deconvolution approach. In seismic tomography, synthetic earthquakes33

cannot be placed densely throughout the interior of the Earth to measure the ground response as a34

function of hypocenter location. An alternative approach, which we adopt, is to develop unsupervised35

methods that treat the true forward model as something that is unobserved and must be inferred.36

An additional consideration is that we must solve for the true forward model from a single dataset,37
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without knowledge of the true source that produces the measurements – this problem setting is38

commonly referred to as blind inversion.39

In this paper, we propose Deep Generalized Expectation-Maximization (DeepGEM) for solving40

inverse problems that are plagued by model mismatch. Using the indirect measurements as input,41

DeepGEM jointly estimates the source and forward model that together produce the observed42

measurements. DeepGEM is a variational inference based framework that makes use of deep learning43

machinery to easily capture and optimize complex probabilistic distributions that cannot be easily44

integrated in analytic Expectation-Maximization (EM) solutions. Our proposed framework is generic45

and can be applied to blind inversion problems described by differentiable forward models. In46

Section 4 we showcase the effectiveness of our DeepGEM approach on the challenging problem of47

blind seismic tomography, where we significantly outperform methods used in seismology. We also48

demonstrate the generality of DeepGEM by applying it to blind deconvolution in Section 5.49
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Figure 1: DeepGEM applied to blind seismic tomography. (a) A simulated cross section of the
Earth’s interior (velocity structure), along with the locations of receivers on the surface (red triangles)
that collect measurements. (b) The time it takes for a wave traveling from a source below the surface
to reach the specified receiver is visualized for each location in the region of interest. The overlaid
dots represent the true locations of simulated earthquakes and indicate the measured travel times
that constrain optimization. (c) The subsurface velocity reconstruction obtained using a baseline
approach optimized with the help of a seismologist. Note that the bright anomaly is missing from this
reconstruction. Overlaid dots represent the inferred earthquake locations. (d) DeepGEM reconstructed
subsurface velocity and inferred earthquake locations. Note that DeepGEM is able to accurately
recover the gradient of the velocity field as well as partially recover the central anomaly.

2 Background and related work50

The joint optimization of a forward model with source recovery is a very challenging ill-posed51

problem, leading to many possible solutions that are hard to disambiguate. For example, in blind52

deconvolution the blurry image observed can be equivalently explained by a sharp source image53

convolved with an extended kernel or a blurry source image convolved with a impulse kernel; to54

prefer one solution over another, additional information, such as image priors, must be considered.55

Previous work on inversion in poorly characterized systems (e.g., model mismatch) focused on56

limited contexts, such as spatially-invariant blind deconvolution [20, 21, 13, 10] and CT with a simple57

rotational error [33]. These methods tend to be highly specialized to each application domain, and58

cannot be easily generalized. In contrast, we propose a flexible model-based Bayesian framework59

that can be applied across multiple differentiable inversion problems subject to model mismatch.60

2.1 Model-based Bayesian inversion61

In model-based inversion, unobserved sources x and observed measurements y are related through a62

forward model: y = f(x). When model mismatch is suspected, one can parameterize the forward63

model as fθ(x) and then solve for the true model parameters θ∗. A common approach is to solve a64

maximum a posteriori (MAP) objective: either MAPθ,x or MAPθ.65

MAPθ,x solves for the optimal point estimate of the pair {θ̂, x̂} that maximizes a joint objective:66

{θ̂, x̂} = arg max
θ,x

[log p(θ, x|y)] = arg max
θ,x

[log p(y|θ, x) + log p(θ) + log p(x)] . (1)
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In practice, formal probabilistic definitions of p(θ) and p(x) are often unknown and replaced with67

regularization terms (e.g., total variation, sparsity) [21, 20]. Although MAPθ,x provides a straightfor-68

ward approach to solve for θ, the energy landscape (1) is typically poorly behaved due to the ill-posed69

nature of the problem [21]. As a result, optimization is likely to get stuck in a (bad) local minimum.70

MAPθ attempts to smooth the energy landscape by reducing the number of parameters that must be71

optimized. This is done by solving for parameters of the forward model, θ, that perform best under72

the full volume of possible x interpretations:73

θ̂ = arg max
θ

[log p(θ|y)] = arg max
θ

[
log

(∫
x

p(y|θ, x)p(x)dx

)
+ log p(θ)

]
. (2)

Since this marginalization integral is often intractable, Expectation-Maximization (EM) algorithms74

have long been used for solving MAPθ efficiently [11]. EM is an iterative algorithm that alternates75

between: “E”-Step) calculating the posterior of x conditioned on the current estimated forward model76

parameters θ(t−1); and M-Step) updating θ to maximize the expected value of the log likelihood:77

θ(t) = arg max
θ

[
Ex∼p(x|y,θ(t−1)) [log p(y|θ, x)] + log p(θ)

]
. (3)

The advantage of MAPθ over MAPθ,x optimization for the blind deconvolution problem was de-78

scribed in [21] and its success demonstrated via EM optimization in [20]. However, it is important79

to note that evaluating the expectation in (3) over complex distributions is often intractable. For80

instance, the authors of [20] were forced to restrict the posterior distribution to a Gaussian distri-81

bution. Alternatively, stochastic EM methods [5, 8] bypasses the need to evaluate the expectation82

directly, approximating it by sampling the distribution. In this paper, we solve MAPθ using complex83

distributions parameterized by deep neural networks.84

Forward model parameterization Model-based inversion requires that the parametric form of85

fθ(x) is well matched with the true forward model, which is not always known. Alternatively, neural86

networks can be used approximate the forward model, where θ represents the network weights. This87

setup is flexible, in that it can be used to approximate arbitrarily complex forward models, with88

the downside that it is often not interpretable when the parameters have no physical meaning. In89

this work, we develop and make use of interpretable, physically-motivated deep neural networks to90

parameterize fθ(·) for the problems of blind seismic tomography and blind deconvolution.91

2.2 Deep variational distributions92

We are interested in solving blind inverse problems using the EM algorithm to optimize the MAPθ93

objective. Optimizing in this fashion requires the use of the posterior distribution p(x|y, θ(t−1)) in94

evaluating Eq. 3. As inverse problems are often ill-posed, we expect that the posterior distribution of95

source x conditioned on the forward model parameters θ is likely to be complex and perhaps even96

multi-modal. Therefore, it is important to be able to parameterize a flexible family of distributions to97

best estimate this conditional posterior.98

Deep Probabilistic Imaging (DPI) [31] uses a normalizing flow-based generative model, Gφ(·), to99

solve for the uncertainty of an unknown source x given a fixed forward model f(x) and measurements100

y. DPI solves the variational objective:101

φ̂ = argmin
φ

KL(qφ(x)||p(x|y)) = argmin
φ
Ex∼qφ(x) [− log p(y|x)− log p(x) + log qφ(x)] , (4)

where qφ(x) is the implicit distribution defined by Gφ(z) for z ∈ R|x| ∼ N (0, 1) and log p(y|x) ∝102

||y − f(x)||2 + c when there exists i.i.d. Gaussian noise on the measurements, y. After inference,103

qφ(x) can be efficiently sampled by evaluating Gφ(z) for a Gaussian sample z.104

The DPI variational objective is equivalent to the Variational Autoencoder [16, 27] objective, except105

with a fixed decoder, f(x). In practice, vanilla VAEs constrain the posterior to be a Gaussian106

distribution, relying on the reparameterization trick for tractable optimization. Alternatively, DPI107

uses flow-based networks to efficiently sample and directly evaluate qφ(x) [17, 12]. DPI’s use of a108

flow-based network allows for complicated and multi-modal posterior distributions constrained only109

by the space of possible invertible network architectures. Our proposed DeepGEM approach utilizes110

similar tools to model flexible distributions over x, while simultaneously learning the forward model111

parameters θ.112
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3 Methods113

We propose a deep variational EM approach (DeepGEM) that optimizes the MAPθ objective in Eq. 2114

to recover the parameters of a forward model fθ(x) using only measurements y. Once learned, the115

updated forward model can then be used to estimate the posterior distribution of the unknown source,116

x. DeepGEM iterates between two stages that are inspired by the standard EM algorithm: (1) an117

“E”-step that learns a variational distribution, qφ(t)(x), to approximate the posterior distribution of118

x given the current forward model parameters θ(t−1), and (2) an M-step (refer to Eq. 3) that solves119

for θ(t) that maximizes the expected value of the log likelihood function of θ, with respect to the120

posterior distribution qφ(t)(x) estimated in the prior “E”-step. Each step is alternated and solved to121

convergence.122

3.1 “Expectation” step (“E”-step)123

The goal of DeepGEM’s “E”-step is to solve for the posterior distribution p(x|y, θ(t−1)) that facilitates124

optimizing Eq. 3. Because this posterior distribution can be very complex, and even multi-modal, we125

propose to use a flexible variational approach to learn the parameters φ of an approximate posterior126

distribution qφ(x). The variational distribution qφ(x) can then be used to evaluate Eq. 3 via efficient127

sampling.128

Using DPI, we solve for a flexible variational distribution, qφ(x) that well approximates the posterior129

distribution p(x|y, θ(t−1)). DPI uses a normalizing flow network, Gφ(z), with input z ∈ R|x|, where130

x = Gφ(z) ∼ qφ(x) when z ∼ N (0,1). Normalizing flow networks allow for exact computation of131

the log-likelihood log qφ(x) needed to solve132

φ(t+1) = arg min
φ

KL(qφ(x)||p(x|y, θ(t−1)))

≈ arg min
φ

1

N

N∑
n=1

[− log p(y|θ(t−1), xn)− log p(xn) + log qφ(xn)]

for xn = Gφ(zn), zn ∼ N (0,1), (5)

(as derived from Eq. 4) where log p(x) is a prior on the source and log p(y|x, θ(t)) is the data133

likelihood. When assuming the measurements y experience i.i.d additive Gaussian noise with134

standard deviation σy , log p(y|θ(t), xn) = 1
2σ2
y
‖y − fθ(t)(xn))‖2 + c.135

3.2 Maximization step (M-step)136

The goal of DeepGEM’s M-step is to use the parameterized approximate posterior distribution,137

qφ(t)(x), from the prior “E”-step to update θ, the parameters of the unknown forward model fθ(·).138

This is achieved by sampling from the learned normalizing flow network, Gφ(t)(·), to stochastically139

solve Eq. 3 :140

θ(t) ≈ arg max
θ

[
1

N

N∑
n=1

[log p(y|θ, xn)] + log p(θ)

]
for xn = Gφ(t)(zn), zn ∼ N (0,1), (6)

where p(θ) is a prior on the forward model. This prior can be used to encourage the forward model141

parameters to remain close to an initial model θ̃ by defining log p(θ) ∝ ||θ − θ̃||2 + c.142

4 Case study: blind seismic tomography143

Two fundamental seismic inverse problems are spatially localizing an earthquake’s hypocenter (also144

referred to as source localization) and tomographic reconstruction of the Earth’s subsurface [29].145

These problems are interconnected: source localization relies on knowing how fast waves propagate146

through different regions of the Earth’s interior, referred to as the Earth’s velocity structure. However,147

in standard seismological practice, due to difficulties in solving these problems jointly, they are148

generally treated separately: source localization is performed initially using oversimplified velocity149

models [29], and then the tomography problem is performed by taking those best-fitting hypocenters150
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as ground truth [25]. This approach typically results in the need to over-regularize the inverse151

problem by smoothing out high-frequency information [2], and can only be improved by carefully152

incorporating other forms of information such as waveform-derived quantities [15, 22, 4, 23] or153

by performing costly experiments such as controlled explosions. In contrast, we demonstrate our154

DeepGEM approach on blind seismic tomography, solving for the subsurface velocity (parameterized155

by θ) when the source hypocenters, x, are unknown. Measurements, y, used to constrain the inverse156

problem are the time it takes for the first wave to propagate from its source to a receiver on the Earth’s157

surface, referred to as a travel time measurement (refer to Fig. 1).158

4.1 Seismic tomography background159

Physics of earthquake source localization: The earthquake source location, also called the hypocen-160

ter, is the location where the earthquake nucleates [29]. The source location can be triangulated using161

travel times from multiple receivers. However, when there are very few receivers (< 3 in 3D, < 2 in162

2D), the source localization is ill-posed and there exists multiple equally optimal solutions.163

Physics of travel time tomography: Travel time tomography is a method for reconstructing the164

velocity structure using the absolute arrival times of earthquake waves from the earthquake to the165

receiver [29]. Given perfect knowledge of the earthquake locations x and receivers r at every166

position in the ground, the exact velocity can be computed by solving the Eikonal equation V (r) =167

‖∇rT (x, r)‖−12 , where T (x, r) is the travel time from an earthquake to a receiver. The solution to168

the Eikonal equation is physically sound; however, seismologists often use simplifications, such as169

straight ray tomography, for efficiency [2].170

Deep Learning for travel time tomography: EikoNet [30] implicitly solves the Eikonal equation171

[32] by learning a mapping from a source-receiver pair (x, r) to its associated travel time, learning θ172

such that fθ(x, r) ≈ T (x, r) where T (x, r) is the true travel time. The velocity structure can then be173

extracted from the learned EikoNet by solving the Eikonal equation through automatic differentiation.174

In particular, the computed velocity V (s) at location s is ‖∇sfθ(x, s)‖−12 . Note that this computed175

velocity depends on the source location x. Ideally, the velocity should be invariant to the source176

location; however, in practice, this is only true when EikoNet is trained with densely-sampled (x, r)177

pairs. Additionally, the travel time from a source to a receiver, T (x, r), should be identical to the178

travel time from a receiver to a source, T (r, x), but remains unconstrained by EikoNet.179

4.2 DeepGEM setup for blind seismic tomography180

For blind seismic tomography, we parameterize the forward model using a modification of EikoNet,181

fθ(x, r), with unknown source location x and known receiver location r as inputs and y ≈ T (x, r),182

the absolute travel time between x and r, as output. In order to solve Eqs. 5 and 6 for an updated183

forward model, we must define priors p(x) and p(θ). The prior over source locations, p(x), is often184

well defined, typically a Gaussian distribution N (x̄, σx) with a standard deviation of σx ∼ 2 km.185

We construct a prior over the forward model, p(θ), that encourages EikoNet to learn a velocity close186

to Ṽ (s). Additionally, as discussed above, there are constraints specific to seismic tomography that187

are not explicitly enforced through EikoNet’s architecture: (1) velocity reconstruction invariance188

with respect to the source location, and (2) travel time symmetry between sources and receivers. We189
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Figure 2: (Left) A visualization of the homogeneous, gradient, and layer models used in p(θ)’s Lθ
term. (Right) Visualizations used to describe source configurations and earthquake source posteriors.
(a) Visualizations of the true and initialized source locations are plotted as stars (true) connected to
circles, which indicate the expected source locations according to p(x). Note that the expected source
locations deviate significantly from the true locations. (b) Visualizations of the learned posterior
distribution, qφ(x|y, θ), for each source are plotted as colored histograms and overlaid with stars (of
the same color) indicating the true source location.
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Figure 3: DeepGEM reconstructions significantly outperform baselines, and improve with
more sources and better Lθ prior models. Each row corresponds to the reconstructions obtained
from a single noisy observation of travel times, where the true Earth velocity is shown in Fig. 1(a).
Results shown are simulated using 20 surface receivers and a varying number of sources (9, 25,
and 49) in a uniform grid. Columns 3-6 show DeepGEM results obtained using different Lθ priors.
Note that results improve as the Lθ prior becomes closer to the true velocity structure, and as the
number of sources increases. As a reference, column 2 shows the velocity reconstruction obtained
using DeepGEM under fixed, perfectly known source locations. Columns 7-8 show results obtained
by the baseline approaches. The velocity reconstruction MSE is included in the top right of each
reconstruction. DeepGEM substantially outperforms both straight ray and MAPθ,x baselines.

augment the prior p(θ) to include these constraints, implemented as soft constraints:190

log p(θ) = λθ

Lθ︷ ︸︸ ︷∑
r∈R,
s∈S

||Ṽ (s)− Vr(s)||2 +λV

LV︷ ︸︸ ︷∑
ri,rj∈R,
s∈S

∥∥Vri(s)− Vrj (s)∥∥2 +λT

LV︷ ︸︸ ︷∑
r∈R,
s∈S

‖T (s, r)− T (r, s)‖2 .

(7)

The velocity constraint is represented through LV and travel time constraint through LT , with191

corresponding hyperparameters λV and λT . S is a set of points sampled uniformly from the region192

of interest,R is the set of all receiver locations, and Vr(s) = ||∇sfθ(r, s)||−12 .193

Implementation details: In our experiments we define a realistic prior over unknown source194

locations as p(x) = N (x̄, σx), where x̄ ∼ N (x, σx) and σx = 2 km. We assume the measurements195

y are sampled from a Gaussian distribution with mean ỹ – true travel times computed using the196

package eikonalfm [28, 32] – and a realistic standard deviation of σy = 0.2 seconds. To simulate197

real world passive tomography, we assume receivers are located only along the surface (the top edge198

of the 2D image) of the region of interest, which is 20 km ×20 km, and sources can be anywhere199

within the region of interest.200

The posterior distribution of the source locations, x, is estimated using a Real-NVP network Gφ(·)201

with 16 affine coupling layers. An updated EikoNet (described in the supplemental material) has been202

modified to parameterize fθ(x). This EikoNet is pretrained with samples from the prior p(x) as input203

and the simulated travel time measurements as output. We use Adam as the optimizer [34] with a204

batch size of 32 and an E-step learning rate of 1e-3 and M-step learning rate of 5e-5. Hyperparameters205

(λT , λV , λθ) were empirically chosen by inspecting the loss on a grid search over hyperparameters.206

Results presented have been run with 10 EM iterations, each with 800 “E”-step epochs and 2000207

M-step epochs. Each DeepGEM model takes ∼6 hours on a NVIDIA Quatro RTX 5000, for a total208

of ∼500 hours of development time.209

4.3 Results210

Comparison to Baseline Approaches: We compare results from DeepGEM to results obtained211

using a baseline run by a seismologist. This iterative baseline alternates between source inversion212

and straight ray tomography, and is the standard approach used for blind tomography. Further detail213

on this baseline is provided in the supplemental material. The gradient model shown in Fig. 2 is used214

to perform the initial source inversion for this baseline; nonetheless, we find that the solution quickly215

diverges. Therefore, we rely on the expertise of the domain expert to decide when to terminate the216
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Source 
Count

Velocity 
Error 

(km/s)

Source 
Loc. Error 

(m)

9 0.52 ±
0.063

62.88 ±
21.77

25 0.42 ±
0.043

36.62 ±
4.93

49 0.44 ±
0.181

33.78 ±
4.56

100 0.27 ±
0.021

30.38 ±
1.43

Table 1: Velocity and source 
localization error on random 

source configurations

Figure 4: DeepGEM consistently recovers prominent features across various source configura-
tions. Row 2 shows DeepGEM results obtained using different random source configurations, where
the true Earth velocity is shown in Fig. 1(a). As a reference, row 1 shows the velocity reconstruction
obtained using DeepGEM under fixed, perfectly known source locations. As can be seen by the table,
both velocity and localization error decrease with an increasing number of sources in the region of
interest. Each mean and standard deviation is computed using 5 random realizations of true source
configurations.

optimization. As seen in Fig. 3, DeepGEM consistently outperforms this human-in-the-loop baseline217

across all source configurations. In Fig. 3 we also compare with a MAPθ,x solution. MAPθ,x is218

consistently outperformed by the DeepGEM MAPθ approach across all source configurations.219

Sensitivity to Lθ Prior Choice: We evaluate DeepGEM’s recovery of the true velocity structure220

shown in Fig. 1 using one of three different Lθ priors shown in Fig. 2: homogeneous, gradient, and221

layer, as well as Lθ = 0. The homogeneous model takes on value of 6.419 km/s, the average velocity222

value of the true velocity structure. The gradient captures the increasing velocity as depth increases,223

and the layer model represents the true model without the added anomaly. As shown in Fig. 3, the224

mean squared error tends to decrease with the gradient and layer Lθ prior models, which are closer to225

the true velocity structure.226

Sensitivity to Source Configuration: We evaluate results with sources that are both uniformly227

and randomly spaced throughout the region of interest. Improved performance is expected when228

the number of sources is increased and/or when sources are well distributed. To better understand229

DeepGEM’s performance we introduce an ablation, where the velocity structure is learned by training230

fθ(·) with access to perfect source locations x (i.e., p(x) is a delta function). As is shown in Fig 3,231

even when training with true source locations, the anomaly is not well resolved until ∼49 sources.232

Fig. 3 shows one realization of DeepGEM results obtained from different counts of uniformly spaced233

sources. As expected, the MSE between the reconstructed and true velocity structure tends to234

decrease as the number of sources increases. Fig. 4 shows results obtained using five randomly235

generated source configurations, with 49 sources each. These results demonstrate that, although236

the reconstructed velocity structure is somewhat sensitive to the underlying source configuration,237

the primary features of the true velocity can still be recovered in all cases. Velocity and source238

localization error obtained for different random configurations are shown in the accompanying table.239

Sensitivity to Number of Receivers: In the case of a single receiver, there exists an entire ring of240

source locations that result in the same travel time measurement. Fig. 5 contains results from this241

challenging one-receiver setting using DeepGEM with/without measurement noise and with/without242

known source locations. Since there is only one receiver, the velocity model is able to easily243

overfit. However, perhaps surprisingly, artifacts are more severe when source locations are perfectly244

constrained. These artifacts are caused by the velocity model overfitting to noise in the travel time245

measurements, and are substantially reduced when noise-free travel time measurements are used.246

Note that the recovered source location posterior qφ(x) obtained by the “E”-step is non-Gaussian.247

Sensitivity to Velocity Structure: In Fig. 6, DeepGEM is tested on randomly generated velocity248

fields, each generated from a Gaussian random field (GRF) described in the supplemental material.249

These results show that DeepGEM works well at recovering the primary features across a variety250
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Figure 5: DeepGEM recovery with a single receiver. Velocity reconstructions shown in columns 3
and 5 demonstrate that DeepGEM is able to learn some of the true velocity features (see Fig. 1(a)),
even when limited to measurements from a single receiver. However, these reconstructions show clear
signs of overfitting to the measurement data. This is demonstrated by observing that the DeepGEM
reconstruction with perfectly known source locations is significantly better with a single receiver
when no measurement error is included on the measurements (comparing columns 1 and 2).
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Figure 6: Performance of DeepGEM recovery on random velocity fields. Ten random velocity
fields were drawn from a GRF-based distribution and used to simulate travel time measurements
with 20 receivers and 100 randomly placed sources. (left) Reconstructions obtained for 3 of these
configurations are shown. (right) A table lists the mean and standard deviation of velocity and source
error obtained across the ten models, each recovered using different Lθ priors.

of different velocity structures. As compared to when Lθ = 0, the Lθ gradient prior biases the251

reconstruction towards smoother velocity structures. The accompanying table contains error statistics252

for ten different randomly generated velocity fields.253

5 Case study: blind deconvolution254

We apply DeepGEM to the problem of blind deconvolution to further demonstrate the generality of255

our approach. Blind deconvolution is a classic ill-posed imaging problem that aims to reconstruct256

a sharp image from a blurry image with an unknown PSF [18, 13, 24, 20, 21, 19, 6, 1, 26]. Blurry257

images, caused by handheld camera shake, can be modeled using a single spatially-invariant blur258

kernel:259

y = x ∗ kθ + ε for ε ∼ N (0, σ), (8)
where y is the blurry image, ∗ represents a 2D convolution, x is the true sharp image, kθ is the260

spatially invariant blur kernel, and ε is additive Gaussian noise.261

5.1 DeepGEM setup for blind deconvolution262

For blind deconvolution, we parameterize the forward model fθ(·) using a deep network consisting of263

multiple convolution layers without non-linear activation, as proposed in [3]. Multiple convolutional264

layers without activation simply overparameterizes a linear blur kernel, which has been emperically265

shown to produce multiple good minima that are easier to converge to. To ensure the blur kernel is266
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non-negative and volume preserving, we use a Softmax layer and normalize the kernel. For an n267

layer network with weights θi for i = 1, ..., n, the resulting parameterized forward model is:268

fθ(x) = x ∗ k̂θ = x ∗
[

Softmax(θ1 ∗ θ2 ∗ ...θn)

‖Softmax(θ1 ∗ θ2 ∗ ...θn)‖1

]
(9)

Implementation details: We demonstrate DeepGEM using simple Total Variation (TV) regulariza-269

tion in place of log p(x). We assume a Gaussian prior on the noise on the blurry measurements where270

ε ∼ N (0, 0.01) as well as a sparsity prior on the reconstructed kernel through an `0.8 soft constraint.271

The posterior distribution of the sharp image, x, is estimated using a Real-NVP network Gφ(·) with272

16 affine coupling layers. We use 5 convolution layers to parameterize kθ. We use Adam as the273

optimizer [34] with a batch size of 64 and an E-step learning rate of 5e-4 and M-step learning rate of274

1e-4. Hyperparameters, weights used for sparsity and TV priors, were empirically chosen by a grid275

search over hyperparameters. Results presented have been run with 10 EM iterations, each with 400276

“E”-step epochs and 400 M-step epochs, which takes ∼1 hour on a NVIDIA Tesla V100.277

5.2 Results278

In Fig. 7 we show results from DeepGEM on two different blurry images [21]. The blurry image279

in Fig. 7(a) exhibits artifacts from the blur kernel in the form of repeated features. This is due to280

the blur kernel being similar to the sum of two delta point spread functions. The recovered source281

image is much sharper, containing clear text with minimal ringing artifacts. The reconstructed kernel282

roughly matches the true kernel’s shape with two lobes along the same diagonal. In Fig. 7(b), ringing283

in the blurry image is also reduced. Although the reconstructed kernel is not located spatially at the284

same location as the true kernel, this does not significantly harm reconstruction; since the kernels285

are shift-invariant, the reconstructed image and learned kernel can both be shifted such that they286

reconstruct the same blurry image. Please refer to the supplemental material for more results.287

Blurry Image True Sharp Image and
Blur Kernel

Reconstructed Image
and Blur Kernel

Blurry Image True Sharp Image and
Blur Kernel

Reconstructed Image
and Blur Kernel

(a) (b)

Figure 7: Blurry measured images (columns 1 and 4) generated using the true sharp image and blur
kernel (shown in columns 2 and 5). Reconstructed sharp image and the corresponding inferred blur
kernel from DeepGEM (columns 3 and 6).

6 Conclusions288

In this paper we present DeepGEM, a deep probabilistic framework for tackling blind inverse289

problems through estimation of the forward model. DeepGEM achieves strong performance in the290

task of joint seismic tomography and earthquake source localization, substantially outperforming291

standard approaches currently being used in seismology on synthetic data. The proposed framework292

is flexible and can be applied to different applications that require estimation or fine tuning of forward293

model parameters. We demonstrate this flexibility by also applying the approach to the simple, but294

challenging, blind deconvolution problem. Future work includes applying this method to real seismic295

data, extending to other applications, and incorporating data-driven priors. Our results highlight the296

benefit of blending physically sound model-based techniques with learning machinery for inversion297

with model mismatch.298

Broader Impacts. DeepGEM can be used to solve for a system’s model mismatch, which can then299

help improve our understanding of complex physical systems. However, this tool is not trustworthy300

enough for safety-critical systems. Nonetheless, this approach can benefit society through a better301

understanding of fundamental science and advanced earthquake prediction models via seismic302

imaging.303
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