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Abstract

We propose a recipe on how to build a general, powerful, scalable (GPS) graph1

Transformer with linear complexity and state-of-the-art results on a diverse set2

of benchmarks. Graph Transformers (GTs) have gained popularity in the field of3

graph representation learning with a variety of recent publications but they lack a4

common foundation about what constitutes a good positional or structural encoding,5

and what differentiates them. In this paper, we summarize the different types of6

encodings with a clearer definition and categorize them as being local, global7

or relative. Further, GTs remain constrained to small graphs with few hundred8

nodes, and we propose the first architecture with a complexity linear to the number9

of nodes and edges O(N + E) by decoupling the local real-edge aggregation10

from the fully-connected Transformer. We argue that this decoupling does not11

negatively affect the expressivity, with our architecture being a universal function12

approximator for graphs. Our GPS recipe consists of choosing 3 main ingredients:13

(i) positional/structural encoding, (ii) local message-passing mechanism, and (iii)14

global attention mechanism. We build and open-source a modular framework that15

supports multiple types of encodings and that provides efficiency and scalability16

both in small and large graphs. We test our architecture on 11 benchmarks and17

show very competitive results on all of them, show-casing the empirical benefits18

gained by the modularity and the combination of different strategies.19

1 Introduction20

Graph Transformers (GTs) alleviate fundamental limitations pertaining to the sparse message passing21

mechanism, e.g., over-smoothing [44], over-squashing [1], and expressiveness bounds [57, 42],22

by allowing nodes to attend to all other nodes in a graph (global attention). This benefits several23

real-world applications, such as modeling chemical interactions beyond the covalent bonds [59], or24

graph-based robotic control [35]. Global attention, however, requires nodes to be better identifiable25

within the graph and its substructures [13]. This has led to a flurry of recently proposed fully-26

connected graph transformer models [13, 34, 59, 41, 29] as well as various positional encoding27

schemes leveraging spectral features [13, 34, 36] and graph features [15, 8]. Furthermore, standard28

global attention incurs quadratic computational costs O(N2) for a graph with N nodes and E edges,29

that limits GTs to small graphs with up to a few hundred nodes.30

Whereas various GT models focus on particular node identifiability aspects, a principled framework31

for designing GTs is still missing. In this work, we address this gap and propose a recipe for building32

general, powerful, and scalable (GPS) graph Transformers. The recipe defines (i) embedding modules33

responsible for aggregating positional encodings (PE) and structural encodings (SE) with the node,34

edge, and graph level input features; (ii) processing modules that employ a combination of local35

message passing and global attention layers (see Figure 1).36
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Figure 1: Modular GPS graph Transformer, with examples of PE and SE. Task specific layers for
node/graph/edge-level predictions, such as pooling or output MLP, are omitted for simplicity.

The embedding modules organize multiple proposed PE and SE schemes into local and global levels37

serving as additional node features whereas positional and structural relative features contribute to38

edge features. The processing modules define a computational graph that allows to balance between39

message-passing graph neural networks (MPNNs) and Transformer-like global attention, including40

attention mechanisms linear in the number of nodes O(N).41

To the best of our knowledge, application of efficient attention models has not yet been thoroughly42

studied in the graph domain, e.g., only one work [10] explores the adaptation of Performer-style [11]43

attention approximation on small graphs. Particular challenges emerge with explicit edge features that44

are incorporated as attention bias in fully-connected graph transformers [34, 59]. Linear transformers45

do not materialize the attention matrix directly, hence incorporating edge features becomes a non-46

trivial task. In this work, we hypothesize that explicit edge features are not necessary for the global47

graph attention and adopt Performer [11] and BigBird [62] as exemplary linear attention mechanisms.48

Our contributions are as follows. (i) Provide a general, powerful, scalable (GPS) GT blueprint that49

incorporates positional and structural encodings with local message passing and global attention,50

visualized in Figure 1. (ii) Provide a better definition of PEs and SEs and organize them into local,51

global, and relative categories. (iii) Show that GPS with linear global attention, e.g., provided by52

Performer [11] or BigBird [62], scales to graphs with several thousand nodes and demonstrates53

competitive results even without explicit edge features within the attention module, whereas existing54

fully-connected GTs [34, 59] are limited to graphs of up to few hundred nodes. (iv) Conduct55

an extensive ablation study that evaluates contribution of PEs, local MPNN, and global attention56

components in perspective of several benchmarking datasets. (v) Finally, following the success of57

GraphGym [61] we implement the blueprint within a modular and performant GRAPHGPS package.58

2 Related Work59

Graph Transformers (GT). Considering the great successes of Transformers in natural language60

processing (NLP) [52, 30] and recently also in computer vision [16, 23, 22], it is natural to study their61

applicability in the graph domain as well. Particularly, they are expected to help alleviate the problems62
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of over-smoothing and over-squashing [1, 51] in MPNNs, which are analogous to the vanishing63

gradients and lack of long-term dependencies in NLP. Fully-connected Graph Transformer [13]64

was first introduced together with rudimentary utilisation of eigenvectors of the graph Laplacian as65

the node positional encoding (PE), to provide the otherwise graph-unaware Transformer a sense of66

nodes’ location in the input graph. Building on top of this work, SAN [34] implemented an invariant67

aggregation of Laplacian’s eigenvectors for the PE, alongside conditional attention for real and virtual68

edges of a graph, which jointly yielded significant improvements. Concurrently, Graphormer [59, 48]69

proposed using pair-wise graph distances (or 3D distances) to define relative positional encodings,70

with outstanding success on large molecular benchmarks. Further, GraphiT [41] used relative PE71

derived from diffusion kernels to modulate the attention between nodes. Finally, GraphTrans [29]72

proposed the first hybrid architecture, first using a stack of MPNN layers, before fully-connecting the73

graph. Since, the field has continued to propose alternative GTs: SAT [8], EGT [27], GRPE [45].74

Positional and structural encodings. There have been many recent works on PE and SE, notably75

on Laplacian PE [13, 34, 3, 36], shortest-path and node degree centrality [59], kernel distance [41],76

random-walk SE [15], structure-aware [8, 6, 5], and more. Some works also propose dedicated77

networks to learn the PE/SE from an initial encoding [34, 15, 36, 8]. To better understand the78

different PE/SE and the contribution of each work, we categorize them in Table 1 and examine their79

effect in Section 3.2. In most cases, PE/SE are used as soft bias, meaning they are simply provided80

as input features. But in other cases, they can be used to direct the messages [3] or create bridges81

between distant nodes [33, 51].82

Linear Transformers. The quadratic complexity of attention in the original Transformer archi-83

tecture [52] motivated the search for more efficient attention mechanisms that would scale linearly84

with the sequence length. Most of such linear transformers are developed for language modeling85

tasks, e.g., Linformer [54], Reformer [32], Longformer [4], Performer [11], BigBird [62], and have a86

dedicated Long Range Arena benchmark [49] to study the limits of models against extremely long87

input sequences. Pyraformer [37] is an example of a linear transformer for time series data, whereas88

S4 [21] is a more general signal processing approach that employs the state space model theory89

without the attention mechanism. In the graph domain, linear transformers are not well studied.90

Choromanski et al. [10] are the first to adapt Performer-style attention kernelization to small graphs.91

3 Methods92

In this work we provide a general, powerful, scalable (GPS) architecture for graph Transformers,93

following our 3-part recipe presented in Figure 1. We begin by categorization of existing positional94

(PE) and structural encodings (SE), a necessary ingredient for graph Transformers. Next, we analyse95

how these encodings also increase expressive power of MPNNs. The increased expressivity thus96

provides double benefit to our hybrid MPNN+Transformer architecture, which we introduce in97

Section 3.3. Last but not least, we provide an extensible implementation of GPS in GRAPHGPS98

package, built on top of PyG [18] and GraphGym [61].99

3.1 Modular positional and structural encodings100

One of our contribution is to provide a modular framework for PE/SE. It was shown in previous works101

that they are one of the most important factors in driving the performance of graph Transformers.102

Thus, a better understanding and organization of the PE and SE will aid in building of a more modular103

architecture and in guiding of the future research.104

We propose to organize the PE and SE into 3 categories: local, global and relative in order to105

facilitate the integration within the pipeline and facilitate new research directions. They are presented106

visually in Figure 1, with more details in Table 1. Although PE and SE can appear similar to some107

extent, they are different yet complementary. PE gives a notion of distance, while SE gives a notion108

of structural similarity. One can always infer certain notions of distance from large structures, or109

certain notions of structure from short distances, but this is not a trivial task, and the objective of110

providing PE and SE remains distinct, as discussed in the following subsections.111

Despite presenting a variety of possible functions, we focus our empirical evaluations on the global112

PE, relative PE and local SE since they are known to yield significant improvements. We leave the113

empirical evaluation of other encodings for future work.114
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Table 1: The proposed categorization of positional encodings (PE) and structural encodings (SE).
Some encodings are assigned to multiple categories in order to show their multiple expected roles.

Encoding type Description Examples

Local PE
node features

Allow a node to know its position and role
within a local cluster of nodes.
Within a cluster, the closer two nodes are
to each other, the closer their local PE
will be, such as the position of a word in
a sentence (not in the text).

• Sum each column of non-diagonal elements of the m-steps
random walk matrix.

• Distance between a node and the centroid of a cluster con-
taining the node.

Global PE
node features

Allow a node to know its global position
within the graph.
Within a graph, the closer two nodes are,
the closer their global PE will be, such as
the position of a word in a text.

• Eigenvectors of the Adjacency, Laplacian [14, 34] or distance
matrices.

• Distance from the graph’s centroid.
• Unique identifier for each connected component of the graph.

Relative PE
edge features

Allow two nodes to understand their dis-
tances or directional relationships.
Edge embedding that is correlated to the
distance given by any global or local PE,
such as the distance between two words.

• Pair-wise node distances from heat kernels, random-walks,
Green’s function, graph geodesic [3, 34, 41], or any
local/global PE.

• Gradient of eigenvectors [3, 34] or any local/global PE.
• Boolean indicating if two nodes are in the same cluster.

Local SE
node features

Allow a node to understand what sub-
structures it is a part of.
Given an SE of radius m, the more similar
the m-hop subgraphs around two nodes
are, the closer their local SE will be.

• Degree of a node [59].
• Diagonal of the m-steps random-walk matrix [15].
• Time-derivative of the heat-kernel diagonal (gives the degree

at t = 0).
• Enumerate or count predefined structures such as triangles,

rings, etc. [6, 64].
• Ricci curvature [51].

Global SE
graph features

Provide the network with information
about the global structure of the graph.
The more similar two graphs are, the
closer their global SE will be.

• Eigenvalues of the Adjacency or Laplacian matrices [34].
• Graph properties: diameter, girth, number of connected com-

ponents, number of nodes, number of edges, nodes-to-edges
ratio.

Relative SE
edge features

Allow two nodes to understand how much
their structures differ.
Edge embedding that is correlated to the
difference between any local SE.

• Gradient of any local SE.
• Boolean indicating if two nodes are in the same sub-structure

[5] (similar to the gradient of sub-structure enumeration).

Positional encodings (PE) are meant to provide an idea of the position in space of a given node115

within the graph. Hence, when two nodes are close to each other within a graph or subgraph, their PE116

should also be close. A simple approach is to compute the pair-wise distance between each pairs of117

nodes or their eigenvectors as proposed in [59, 34], but this is not compatible with linear Transformers118

since it requires to materialize the full attention matrix [11]. Instead, we want the PE to either be119

features of the nodes or real edges of the graph, thus a better fitting solution is to use the eigenvectors120

of the graph Laplacian or their gradient [14, 3, 34]. More PE examples are available in Table 1.121

Structural encodings (SE) are meant to provide an embedding of the structure of graphs or subgraphs122

to help increase the expressivity and the generalizability of graph neural networks (GNN). Hence,123

when two nodes share similar subgraphs, or when two graphs are similar, their SE should also be close.124

Simple approaches are to identify pre-defined patterns in the graphs as one-hot encodings, but they125

require expert knowledge of graphs [6, 5]. Instead, using the diagonal of the m-steps random-walk126

matrix encodes richer information into each node [15], such as for odd m it can indicate if a node is a127

part of an m-long cycle. Structural encodings can also be used to define the global graph structure,128

for instance using the eigenvalues of the Laplacian, or as relative edge features to identify if nodes129

are contained within the same clusters, with more examples in Table 1.130

3.2 Why do we need PE and SE in MPNN?131

As reviewed earlier, several recent GNNs make use of positional encodings (PE) and structural132

encodings (SE) as soft biases to improve the model expressivity (summarized in Table 1), which133

also leads to better generalization. In this section, we present an examination of PE and SE by134

showing how message-passing networks, despite operating on the graph structure, remain blind to135

the information encapsulated by the PE and SE.136
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1-Weisfeiler-Leman test (1-WL). It is well known that standard MPNNs are as expressive as the137

1-WL test, meaning that they fail to distinguish non-isomorphic graphs under a 1-hop aggregation.138

We argue that the selected local, global and relative PE/SE allow MPNNs to become more expressive139

than the 1-WL test, thus making them fundamentally more expressive at distinguishing between nodes140

and graphs. To this end, we study the following two types of graphs (Figure 2 and Appendix C.1).141
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(b) Decalin molecular graph

Figure 2: Example graphs
with anonymous nodes with-
out distinguishing features.

Circular Skip Link (CSL) graph. In a CSL graph-pair [43], we142

want to be able to distinguish the two non-isomorphic graphs. Since143

the 1-WL algorithm produces the same color for every node in both144

graphs, also every MPNN will fail to distinguish them. However,145

using a global PE (e.g., Laplacian PE [14]) assigns each node a unique146

initial color and makes the CSL graph-pair distinguishable. This147

demonstrates that an MPNN cannot learn such a PE from the graph148

structure alone. Next, using a local SE (e.g., diagonals of m-steps149

random walk) can successfully capture the difference in the skip links150

of the two graphs [39], resulting in their different node coloring [15].151

Decalin molecule. In the bicyclic Decalin graph, Figures 2b and C.1b,152

the node a is isomorphic to node b, and so is the node c to node d. A153

1-WL coloring of the nodes, and analogously MPNN, would generate154

one color for the nodes a, b and another color for c, d. The same155

applies to the aforementioned local SE [15]. In case of link prediction,156

this causes potential links (a, d) and (b, d) to be indistinguishable [63].157

Using a distance-based relative PE on the edges or an eigenvector-158

based global PE, however, would allow to differentiate the two links.159

3.3 GPS layer: an MPNN+Transformer hybrid160

In this section we introduce the GPS layer, which is a hybrid MPNN+Transformer layer. First we161

argue how it alleviates the limitation of a closely related work. Next, we list the layer update equations162

which can be instantiated with a variety of MPNN and Transformer layers. Finally, we present its163

characteristics in terms of modularity, scalability and expressivity.164

Preventing early smoothing. Why not use an architecture like GraphTrans [29] comprising of a few165

layers of MPNNs before the Transformer? Since MPNNs are limited by problems of over-smoothing,166

over-squashing, and low expressivity against the WL test [1, 51], these layers could irreparably fail to167

keep some information in the early stage. Although they could make use of PE/SE or more expressive168

MPNNs [3, 15], they are still likely to lose information. An analogous 2-stage strategy was successful169

in computer vision [16, 22] thanks to the high expressivity of convolutional layers on grids, but we170

do not expect it to achieve the same success on graphs due to the limitations of message-passing.171

Update function. At each layer, the features are updated by aggregating the output of an MPNN layer172

with that of a global attention layer, as shown in Figures 1 and D.1, and described by the equations173

below. Note that the edge features are only passed to the MPNN layer, and that residual connections174

with batch normalization [28] are omitted for clarity. Both the MPNN and GlobalAttn layers are175

modular, i.e., MPNN can be any function that acts on a local neighborhood and GlobalAttn can be176

any fully-connected layer.177

X`+1
,E`+1 = GPS`

�
X`

,E`
,A

�
(1)

computed as X`+1
M , E`+1 = MPNN`e

�
X`

,E`
,A

�
, (2)

X`+1
T = GlobalAttn`

�
X`

�
, (3)

X`+1 = MLP`
�
X`+1

M + X`+1
T

�
, (4)

where A 2 RN⇥N is the adjacency matrix of a graph with N nodes and E edges; X` 2 RN⇥d` ,E` 2178

RE⇥d` are the d`-dimensional node and edge features, respectively; MPNN`e and GlobalAttn` are179

instances of an MPNN with edge features and of a global attention mechanism at the `-th layer with180

their corresponding learnable parameters, respectively; MLP` is a 2-layer MLP block.181

Modularity is achieved by allowing drop-in replacement for a number of module choices, including182

the initial PE/SE types, the networks that processes those PE/SE, the MPNN and global attention183

layers that constitute a GPS layer, and the final task-specific prediction head. Further, as research184

advances in different directions, GRAPHGPS allows to easily implement new PE/SE and other layers.185
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Scalability is achieved by allowing for a computational complexity linear in both the number of186

nodes and edges O(N + E); excluding the potential precomputation step required for various PE,187

such as Laplacian eigen-decomposition. By restricting the PE/SE to real nodes and edges, and188

by excluding the edge features from the global attention layer, we can avoid materializing the full189

quadratic attention matrix. Therefore we can utilize a linear Transformer with O(N) complexity,190

while the complexity of an MPNN is O(E). For sparse graphs such as molecular graphs, regular191

graphs, and knowledge graphs, the edges are practically proportional to the nodes E = ⇥(N),192

meaning the entire complexity can be considered linear in the number of nodes O(N). Empirically,193

even on small molecular graphs, our architecture reduces computation time compared to other GT194

models, e.g., a model of ~6M parameters requires 196s per epoch on the ogbg-molpcba [25] dataset,195

compared to 883s for SAN [34] on the same GPU type.196

Expressivity in terms of sub-structure identification and the Weisfeiler-Leman (WL) test is achieved197

via providing a rich set of PE/SE, as proposed in various works [3, 34, 15, 5, 6] and detailed in Section198

3.1. Further, the Transformer allows to resolve the expressivity bottlenecks caused by over-smoothing199

[34] and over-squashing [1] by allowing information to spread across the graph via full-connectivity.200

Finally, in Section 3.4, we demonstrate that, given the right components, the proposed architecture201

does not lose edge information and is a universal function approximator on graphs.202

3.4 Theoretical expressivity203

In this section, we first discuss how the MPNN layer allows to propagate edge and neighbor informa-204

tion on the nodes. Then, we show that the proposed model is a universal function approximator on205

graphs, similarly to the SAN architecture [34].206

Preserving edge information in the Transformer layer. Most GTs do not fully utilize edge features207

of the input graph. The Graph Transformer [13], SAN [34] and Graphormer [59] only use edge208

features to condition the attention between a pair of nodes, that is, they influence the attention gating209

mechanism but are not explicitly involved in updating of the node representations. GraphiT [41]210

does not consider edge features at all. Recent 2-step methods GraphTrans [29] and SAT [8] can use211

edge features in their first MPNN step, however this step is applied only once and typically includes212

several k rounds of message passing. Therefore this latter approach may suffer from initial over-213

smoothing, as k-hop neighborhoods together with the respective edge features need to be represented214

in a fixed-sized node representation.215

On the other hand, in GPS, interleaving one round of local neighborhood aggregation via an MPNN216

layer with global self-attention mechanism reduces the initial representation bottleneck and enables217

iterative local and global interactions. In the attention, the key-query-value mechanism only explicitly218

depends on the node features, but assuming efficient representation encoding by the MPNN, the node219

features can implicitly encode edge information, thus edges can play a role in either the key, query, or220

values. In Appendix C.2, we give a more formal argument on how, following an MPNN layer, node221

features can encode edge features alongside information related to node-connectivity.222

Universal function approximator on graphs. Kreuzer et al. [34][Sec. 3.5] demonstrated the223

universality of graph Transformers. It was shown that, given the full set of Laplacian eigenvectors, the224

model was a universal function approximator on graphs and could provide an approximate solution to225

the isomorphism problem, making it more powerful than any Weisfeiler-Leman (WL) isomorphism226

test given enough parameters. Here, we argue that the same holds for our architecture since we can227

also use the full set of eigenvectors, and since all edge information can be propagated to the nodes.228

4 Experiments229

We perform ablation studies on 4 datasets to evaluate the contribution of the message-passing module,230

the global attention module, and the positional or structural encodings. Then, we evaluate GPS on a231

diverse set of 11 benchmarking datasets, and show state-of-the-art (SOTA) results in many cases.232

We test on datasets from different sources to ensure diversity, providing their detailed description in233

Appendix A.1. From the Benchmarking GNNs [14], we test on the ZINC, PATTERN, CLUSTER,234

MNIST, CIFAR10. From the open graph benchmark (OGB) [25], we test on all graph-level datasets:235

ogbg-molhiv, ogbg-molpcba, ogbg-code2, and ogbg-ppa, and from their large-scale challenge we236

test on the OGB-LSC PCQM4Mv2 [26]. Finally, we also select MalNet-Tiny [19] with 5000 graphs,237

each of up to 5000 nodes, since the number of nodes provide a scaling challenge for Transformers.238
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Table 2: Summary of the ablation studies. Details of the architectural choices, parameters, standard
deviation, and computation times are presented in Appendix B.

(a) Ablation of the Transformer and MPNN layers. We
observe a major drop when using only a Transformer
without an MPNN. Further, most datasets benefit from
using a Transformer, without any negative impact.

Ablation ZINC PCQM4Mv2CIFAR10 MalNet
subset -Tiny

MAE # MAE # Acc. " Acc. "

G
lo

ba
l

A
tte

nt
io

n none 0.070 0.1213 69.95 92.23
Transformer 0.070 0.1159 72.31 93.50
Performer 0.071 0.1142 70.67 92.64
BigBird 0.071 0.1237 70.48 92.34

M
PN

N

none 0.113 0.3294 68.86 73.90
GINE 0.070 0.1284 71.11 92.27
GatedGCN 0.086 0.1159 72.31 92.64
PNA 0.070 0.1409 73.42 91.67

(b) Ablation of the PE and SE types. RWSE provides
consistent gains at relatively low computational cost,
while SignNetDeepSets is the single best performing en-
coding, albeit at increased computational cost.

Ablation ZINC PCQM4Mv2CIFAR10 MalNet
subset -Tiny

MAE # MAE # Acc. " Acc. "

PE
/S

E

none 0.113 0.1355 71.49 92.64
RWSE 0.070 0.1159 71.96 92.77
LapPE 0.116 0.1201 72.31 92.74
SignNetMLP 0.090 0.1158 71.74 92.57
SignNetDeepSets 0.079 0.1144 72.37 93.13
EquivStableLapPE 0.161 0.1209 72.10 92.27

*Encodings are color-coded by their positional or structural type.

4.1 Ablation studies239

In this section, we evaluate multiple options for the three main components of our architecture240

in order to gauge their contribution to predictive performance and to better guide dataset-specific241

hyper-parameter optimization. First, we quantify benefits of the considered global-attention modules242

in 4 tasks. Then, we note that the MPNN layer is an essential part for high-performing models, and243

identify the layer type most likely to help. Finally, we observe when different global PE or local SE244

provide significant boost in the performance. All ablation results are averaged over multiple random245

seeds and summarized in Table 2, with additional information available in Appendix B.246

Global-Attention module. Here we consider global attention implemented as O(N2) key-query-247

value Transformer attention or linear-time attention mechanisms of Performer or BigBird. We notice248

in Table 2a that using a Transformer is always beneficial, except for the ZINC dataset where no249

changes are observed. This motivates our architecture and the hypothesis that long-range dependencies250

are generally important. We further observe that Performer falls behind Transformer in terms of the251

predictive performance, although it provides a gain over the baseline and the ability to scale to very252

large graphs. Finally, BigBird in our setting offers no significant gain, while also being slower than253

Performer (see Appendix B).254

Having no gain on the ZINC dataset is expected since the task is a combination of the computed255

octanol-water partition coefficient (cLogP) [56] and the synthetic accessibility score (SA-score) [17],256

both of which only count occurrences of local sub-structures. Hence, there is no need for a global257

connectivity, but a strong need for structural encodings.258

Message-passing module. Next, we evaluate the effect of various message-passing architectures,259

Table 2a. It is apparent that they are fundamental to the success of our method: removing the layer260

leads to a significant drop in performance across all datasets. Indeed, without an MPNN, the edge261

features are not taken into consideration at all. Additionally, without reinforcing of the local graph262

structure, the network can overfit to the PE/SE. This reiterates findings of Kreuzer et al. [34], where263

considerably larger weights were assigned to the local attention.264

We also find that although a vanilla PNA [12] generally outperforms GINE [24] and GatedGCN [14],265

adding the PE and SE results in major performance boost especially for the GatedGCN. This is266

consistent with results of Dwivedi et al. [15] and shows the importance of these encodings for gating.267

Perhaps the necessity of a local message-passing module is due to the limited amount of graph data,268

and scaling to colossal datasets [46] that we encounter in language and vision could change that.269

Indeed, the Graphormer architecture [59] was able to perform very well on the full PCQM4Mv2270

dataset without a local module. However, even large Transformer-based language models [7] and271

vision models [23] can benefit from an added local aggregation and outperform pure Transformers.272
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Table 3: Test performance in five benchmarks from [14]. Shown is the mean ± s.d. of 10 runs with
different random seeds. Highlighted are the top first, second, and third results.

Model ZINC MNIST CIFAR10 PATTERN CLUSTER
MAE # Accuracy " Accuracy " Accuracy " Accuracy "

GCN [31] 0.367 ± 0.011 90.705 ± 0.218 55.710 ± 0.381 71.892 ± 0.334 68.498 ± 0.976
GIN [57] 0.526 ± 0.051 96.485 ± 0.252 55.255 ± 1.527 85.387 ± 0.136 64.716 ± 1.553
GAT [53] 0.384 ± 0.007 95.535 ± 0.205 64.223 ± 0.455 78.271 ± 0.186 70.587 ± 0.447
GatedGCN [14] 0.282 ± 0.015 97.340 ± 0.143 67.312 ± 0.311 85.568 ± 0.088 73.840 ± 0.326
GatedGCN-LSPE [15] 0.090 ± 0.001 – – – –
PNA [12] 0.188 ± 0.004 97.94 ± 0.12 70.35 ± 0.63 – –
DGN [3] 0.168 ± 0.003 – 72.838 ± 0.417 86.680 ± 0.034 –
GSN [6] 0.101 ± 0.010 – – – –

CIN [5] 0.079 ± 0.006 – – – –
CRaWl [50] 0.085 ± 0.004 97.944 ± 0.050 69.013 ± 0.259 – –
GIN-AK+ [64] 0.080 ± 0.001 – 72.19 ± 0.13 86.850 ± 0.057 –

SAN [34] 0.139 ± 0.006 – – 86.581 ± 0.037 76.691 ± 0.65
Graphormer [59] 0.122 ± 0.006 – – – –
K-Subgraph SAT [8] 0.094 ± 0.008 – – 86.848 ± 0.037 77.856 ± 0.104
EGT-SPE(+DO) [27] 0.154 ± 0.011 97.722 ± 0.222 67.004 ± 0.624 86.730 ± 0.036 77.909 ± 0.245
GPS (ours) 0.070 ± 0.004 98.051 ± 0.126 72.298 ± 0.356 90.324 ± 0.132 77.95 ± 0.305

Positional/Structural Encodings. Finally, we evaluate the effects of various PE/SE schemes,273

Table 2b. We find them generally beneficial to downstream tasks, in concordance to the vast literature274

on the subject (see Table 1). The benefits of the different encodings are very dataset dependant,275

with the random-walk structural encoding (RWSE) being more beneficial for molecular data and the276

Laplacian eigenvectors encodings (LapPE) being more beneficial in image superpixels. However,277

using SignNet with DeepSets encoding [36] as an improved way of processing the LapPE seems to be278

consistently successful across tasks. We hypothesize that SignNet can learn structural representation279

using the eigenvectors, for example, to generate local heat-kernels that approximate random walks [2].280

4.2 Benchmarking GPS281

We compare GPS against a set of popular message-passing neural networks (GCN, GIN, GatedGCN,282

PNA, etc.), graph transformers (SAN, Graphormer, etc.), and other recent graph neural networks283

with SOTA results (CIN, CRaWL, GIN-AK+, ExpC). To ensure diverse benchmarking tasks, we use284

datasets from Benchmarking-GNNs [14], OGB [25] and its large-scale challenge [26], with more285

details given in Appendix A.1. We report the mean and standard deviation over 10 random seeds.286

Benchmarking GNNs [14]. We first benchmark our method on 5 tasks from Benchmarking GNNs287

[14], namely ZINC, MNIST, CIFAR10, PATTERN, and CLUSTER, shown in Table 3. We observe288

that our GPS gives SOTA results on 4 datasets, showcasing the ability to perform very well on a289

variety of synthetic tasks designed to test the model expressivity.290

Open Graph Benchmark [25]. Next, we benchmark on all 4 graph-level tasks from OGB, namely291

molhiv, molpcba, ppa, and code2, Table 4. On the molhiv dataset, we observed our model to suffer292

from overfitting, but to still outperform SAN, while other graph Transformers do not report results.293

For the molpcba, ppa, and code2, GPS always ranks among the top 3 models, highlighting again the294

versatility and expressiveness of the GPS approach. Further, GPS outperforms every other GT on all295

4 benchmarks, except SAT on code2.296

OGB-LSC PCQM4Mv2 [26]. The large-scale PCQM4Mv2 dataset has been a popular benchmark297

for recent GTs, particularly due to Graphormer [59] winning the initial challenge. We report the298

results in Table 5, observing significant improvements over message-passing networks at comparable299

parameter budget. GPS also outperforms GRPE [45], EGT [27], and Graphormer [59] with less300

than half their parameters, and with significantly less overfitting on the training set. Contrarily301

to Graphormer, we do not need to precompute spatial distances from approximate 3D molecular302

conformers [60], the RWSEs we utilize are graph-based only.303

MalNet-Tiny. The MalNet-Tiny [19] dataset consists of function call graphs with up to 5,000 nodes.304

These graphs are considerably larger than previously considered inductive graph-learning benchmarks,305

which enables us to showcase scalability of GPS to much larger graphs than prior methods. Our GPS306
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Table 4: Test performance in graph-level OGB benchmarks [25]. Shown is the mean ± s.d. of 10 runs.
Models that were first pre-trained on another dataset or use an ensemble are not included here.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2
AUROC " Avg. Precision " Accuracy " F1 score "

GCN+virtual node 0.7599 ± 0.0119 0.2424 ± 0.0034 0.6857 ± 0.0061 0.1595 ± 0.0018
GIN+virtual node 0.7707 ± 0.0149 0.2703 ± 0.0023 0.7037 ± 0.0107 0.1581 ± 0.0026
GatedGCN-LSPE – 0.267 ± 0.002 – –
PNA 0.7905 ± 0.0132 0.2838 ± 0.0035 – 0.1570 ± 0.0032
DeeperGCN 0.7858 ± 0.0117 0.2781 ± 0.0038 0.7712 ± 0.0071 –
DGN 0.7970 ± 0.0097 0.2885 ± 0.0030 – –
GSN (directional) 0.8039 ± 0.0090 – – –
GSN (GIN+VN base) 0.7799 ± 0.0100 – – –
CIN 0.8094 ± 0.0057 – – –
GIN-AK+ 0.7961 ± 0.0119 0.2930 ± 0.0044 – –
CRaWl – 0.2986 ± 0.0025 – –
ExpC [58] 0.7799 ± 0.0082 0.2342 ± 0.0029 0.7976 ± 0.0072 –

SAN 77.85 ± 0.247 0.2765 ± 0.0042 – –
GraphTrans (GCN-Virtual) – 0.2761 ± 0.0029 – 0.1830 ± 0.0024
K-Subtree SAT – – 0.7522 ± 0.0056 0.1937 ± 0.0028
GPS (ours) 0.7880 ± 0.0101 0.2907 ± 0.0028 0.8015 ± 0.0033 0.1894 ± 0.0024

Table 5: Evaluation on PCQM4Mv2 [26] dataset. For GPS evaluation, we treated the validation set of
the dataset as a test set, since the test-dev set labels are private. For more details refer to Appendix A.

Model PCQM4Mv2
Test-dev MAE # Validation MAE # Training MAE # Param.

GCN 0.1398 0.1379 n/a 2.0M
GCN-virtual 0.1152 0.1153 n/a 4.9M
GIN 0.1218 0.1195 n/a 3.8M
GIN-virtual 0.1084 0.1083 n/a 6.7M

GRPE [45] 0.0898 0.0890 n/a 46.2M
EGT [27] 0.0872 0.0869 n/a 89.3M
Graphormer [48] n/a 0.0864 0.0348 48.3M

GPS-small n/a 0.0938 0.0653 6.2M
GPS-medium n/a 0.0858 0.0726 19.4M

reaches 92.72% ± 0.7pp test accuracy when using Performer global attention. Interestingly, using307

Transformer global attention leads to further improved GPS performance, 93.36% ± 0.6pp (based on308

10 runs), albeit at the cost of doubled run-time. In both cases, we used comparable architecture to309

Freitas et al. [19], with 5 layers and 64 dimensional hidden node representation, and outperform their310

best GIN model with 90% accuracy. See Appendix B for GPS ablation study on MalNet-Tiny.311

5 Conclusion312

Our work is setting the foundation for a unified architecture of graph neural networks, with modular313

and scalable graph Transformers and a broader understanding of the role of graphs with positional and314

structural encodings. In our ablation studies, we demonstrated the importance of each module: the315

Transformer, flexible message-passing, and rich positional and structural encodings all contributed to316

the success of GPS on a wide variety of benchmarks. Indeed, considering 5 Benchmarking-GNN317

tasks [14], 4 OGB tasks [25], and 2 others, we outperformed every graph Transformer on 10 out of318

11 tasks while also achieving state-of-the-art on 7 of them. We further showed that the model can319

scale to very large graphs of several thousand nodes, far beyond any previous graph Transformer. By320

open-sourcing the GRAPHGPS package, we hope to accelerate the research in efficient and expressive321

graph Transformers, and move the field closer to a unified hybrid Transformer architecture for graphs.322

Limitations. We find that graph transformers are sensitive to hyperparameters and there is no one-323

size-fits-all solution for all datasets. We also identify a lack of challenging graph datasets necessitating324

long-range dependencies where linear attention architectures could exhibit all scalability benefits.325

Societal Impact. As a general graph representation learning method, we do not foresee imme-326

diate negative societal outcomes. However, its particular application, e.g., in drug discovery or327

computational biology, will have to be thoroughly examined for trustworthiness or malicious usage.328
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