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Abstract

Detecting customized moments and highlights from videos given natural language1

(NL) user queries is an important but under-studied topic. One of the challenges2

in pursuing this direction is the lack of annotated data. To address this issue, we3

present the Query-based Video Highlights (QVHIGHLIGHTS) dataset. It consists4

of over 10,000 YouTube videos, covering a wide range of topics, from everyday5

activities and travel in lifestyle vlog videos to social and political activities in6

news videos. Each video in the dataset is annotated with: (1) a human-written7

free-form NL query, (2) relevant moments in the video w.r.t. the query, and (3)8

five-point scale saliency scores for all query-relevant clips. This comprehensive9

annotation enables us to develop and evaluate systems that detect relevant moments10

as well as salient highlights for diverse, flexible user queries. We also present a11

strong baseline for this task, Moment-DETR, a transformer encoder-decoder model12

that views moment retrieval as a direct set prediction problem, taking extracted13

video and query representations as inputs and predicting moment coordinates14

and saliency scores end-to-end. While our model does not utilize any human15

prior, we show that it performs competitively when compared to well-engineered16

architectures. With weakly supervised pretraining using ASR captions, Moment-17

DETR substantially outperforms previous methods. Lastly, we present several18

ablations and visualizations of Moment-DETR.119

1 Introduction20

Internet videos are growing at an unprecedented rate. Enabling users to efficiently search and21

browse these massive collections of videos is essential for improving user experience of online video22

platforms. While a good amount of work has been done in the area of natural language query based23

video search for complete videos (i.e., text-to-video retrieval [35, 36, 15]), returning the whole video24

is not always desirable, since they can be quite long (e.g., from few minutes to hours). Instead,25

users may want to locate precise moments within a video that are most relevant to their query or see26

highlights at a glance so that they can skip to relevant portions of the video easily.27

Many datasets [12, 6, 16, 14, 26] have been proposed for the first task of ‘moment retrieval’ –28

localizing moments in a video given a user query. However, most of the datasets are reported [4, 16]29

to have a strong temporal bias, where more moments appear at the beginning of the videos than at the30

end. Meanwhile, for each video-query pair, all of the datasets provide annotations with only a single31

moment. In reality, there are often multiple moments, i.e., several disjoint moments in a video, that32

are related to a given query. For the second task of ‘highlight detection’, many datasets [32, 11, 30, 7]33

are query-agnostic, where the detected highlights do not change for different input user queries.34

1We will publicly release all our data and code (see supplementary).
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Glass is laying all over the street from broken windows beside other trash and debris in front of store buildings.

A shark is swimming underwater.

Figure 1: QVHIGHLIGHTS examples. We show localized moments in dashed green boxes. The
highlightness (or saliency) scores from 3 different annotators are shown under the frames as colored
bars, with height and color intensity proportional to the scores.

[19, 37] are the two existing datasets that collect highlights based on user queries. However, only35

a small set of frames or clips are annotated ( 20 frames out of 331 seconds long videos in [19] or36

around 10 seconds clips out of 60 seconds video in [37]), limiting their ability to accurately learn37

and evaluate highlight detection methods. Lastly, although these two tasks of moment retrieval and38

highlight detection share many common characteristics (e.g., both require learning the similarity39

between user text query and video clips), they are typically studied separately, mostly due to the lack40

of annotations supporting both tasks in a single dataset.41

To address these issues, we collect QVHIGHLIGHTS , a unified benchmark dataset that supports42

query-based video moment retrieval and highlight detection. Based on over 10,000 YouTube videos43

covering a diverse range of topics (from everyday activities and travel in lifestyle vlog videos to social44

and political activities in news videos), we collect high-quality annotations for both tasks. Figure 145

shows two examples from QVHIGHLIGHTS. For moment retrieval, we provide one or multiple46

disjoint moments for a query in a video, enabling a more realistic, accurate, and less-biased (see47

Section 3.2) evaluation of moment retrieval methods. Within the annotated moments, we also provide48

a five-point Likert-scale (from ‘Very Good’ to ‘Very Bad’) saliency/highlightness score annotation49

for each 2-second clip. This comprehensive saliency annotation gives more space for designing and50

evaluating query-based video highlight detection methods.51

Next, to present strong initial models for this task, we take inspiration from recent work such as52

DETR [3] for object detection, and propose Moment-DETR, an end-to-end transformer encoder-53

decoder architecture that views moment retrieval as a direct set prediction problem. With this54

method, we effectively eliminate the need for any manually-designed pre-processing (e.g., proposal55

generation) or post-processing (e.g., non-maximum suppression) steps commonly seen in moment56

retrieval methods. We further add a saliency ranking objective on top of the encoder outputs for57

highlight detection. While Moment-DETR does not encode any human prior in its design, our58

experiments show that it is still competitive when compared to highly-engineered architectures.59

Furthermore, with additional weakly-supervised pretraining from ASR captions, Moment-DETR60

substantially outperforms these strong methods. Lastly, we also provide detailed ablations and61

visualizations to help understand the inner workings of Moment-DETR.62

Overall, our contributions are 3-fold: (i) We collect the QVHIGHLIGHTS dataset with over 10,00063

videos, annotated with human-written natural language queries, relevant moments, and saliency64

scores. (ii) We propose Moment-DETR to serve as a strong baseline for our dataset. With weakly65

supervised pretraining, Moment-DETR substantially outperforms several baselines. (iii) We present66

detailed dataset analyses, model ablations and visualizations. We hope our work would inspire and67

encourage future work towards this important direction.68

2 Related Work69

Datasets and Tasks. Moment retrieval [12, 6, 16] requires localizing moments from a video given a70

natural language query. Various datasets [12, 6, 16, 14, 26] have been proposed or repurposed for71
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the task. However, as shown in [12, 4, 16], many of them have a strong temporal bias, where more72

moments are located at the beginning of the videos than the end. In Section 3.2 we show moments in73

QVHIGHLIGHTS distribute almost evenly over the videos. Meanwhile, while these datasets collect74

only a single moment for each query-video pair, we collect one or more moments. Highlight detection75

is another important task in our dataset. Most existing datasets [32, 11, 30, 7] are query-agnostic,76

which do not provide customized highlights for a specific user query. [19, 37] are the two known77

datasets that collect highlights based on user queries. However, they only annotate a small set of78

frames or clips, lsimiting their ability to accurately learn and evaluate highlight detection methods. In79

contrast, we provide a comprehensive five-point Likert-scale saliency/highlightness score annotation80

for all clips that are relevant to the queries. Besides, although these two tasks share some common81

characteristics, they are typically addressed separately using different benchmark datasets. In this82

work, we collect QVHIGHLIGHTS as a unified benchmark that supports both tasks. In Section 5.2 we83

also demonstrate that jointly detecting saliency is beneficial for retrieving moments.84

Methods. There are a wide range of approaches developed for addressing the moment retrieval and85

highlight detection tasks. For highlight detection, prior methods [32, 19, 11, 18, 28] are typically86

ranking-based, where models are trained to give higher scores for highlight frames or clips, via a87

hinge loss, cross-entropy loss, or reinforcement approaches. For moment retrieval, there are work88

that try to score generated moment proposals [12, 29, 4, 41, 39, 34], predict moment start-end89

indices [8, 16, 17, 38, 40] or regress moment coordinates [6]. However, most of them require a90

preprocessing (e.g., proposal generation) or postprocessing step (e.g., non-maximum suppression)91

that are hand-crafted, and are thus not end-to-end trainable. In this work, drawing inspiration from92

recent work [3] on object detection, we propose Moment-DETR that views moment retrieval as a93

direct set prediction problem. Moment-DETR takes video and user query representations as inputs,94

and directly outputs moment coordinates and saliency scores end-to-end, hence eliminating the need95

for any pre- or post-processing manually-designed human prior steps.96

3 Dataset Collection and Analysis97

Our QVHIGHLIGHTS dataset contains over 10,000 videos annotated with human written, free-form98

queries. Each query is associated with one or multiple variable-length moments in its corresponding99

video, and a comprehensive 5-point Likert-scale sailiency annotation for each clip in the moments. In100

the following, we describe our data collection process and provide various data analyses.101

3.1 Data Collection102

Collecting videos. We would like to collect a set of videos that are less-edited and contain interesting103

and diverse content for user annotation. We start with user-created lifestyle vlog videos on YouTube.104

These are created by users from all over the world, showcasing various events and aspects of their life,105

from everyday activities, to travel and sightseeing, etc. These videos are captured via different devices106

(e.g., smartphones or GoPro) with different view angles (e.g., first-person or third-person), posing107

important challenges to computer vision systems. To further increase the diversity of the dataset, we108

also consider news videos that have large portions of ‘raw footage’. These videos tend to cover more109

serious and world event topics such as natural disasters and protests. To harvest these videos, we use110

a list of queries, e.g., ‘daily vlog’, ‘travel vlog’, ‘news hurricane’, etc. We then download top videos111

that are 5-30 minutes long from YouTube’s search results, keeping videos that are uploaded after112

2016 for better visual quality, and filtering out videos with a view count under 100 or with a very113

high dislike ratio. These raw videos are then segmented into 150-second short videos for annotation.114

Collecting user queries and relevant moments. To collect free-form natural language queries and115

their associated moments in the videos, we create an annotation task on Amazon Mechanical Turk.116

In this task, we present workers with a video and ask them to watch the video and write a query in117

standard English depicting interesting activities in the video. Next, we present the same worker with118

a grid of 2-second long clips segmented from the video, and ask them to select all clips from the grid119

relevant to the query. The selection can be done very efficiently via click for selecting a single clip120

and click-and-drag for selecting consecutive clips. This 2-second clip annotation protocol allows121

for more precise annotation than using 5-second clip as in [12]. Moreover, different from previous122

work [12, 6, 16, 14, 26] where only a single moment can be selected for a query-video pair, users can123

select multiple disjoint moments in our setup. To verify the quality of the moment annotation, we use124
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Table 1: Top unique verbs and nouns in queries, in each video category.
Category #Queries Top Unique Verbs Top Unique Nouns

Daily Vlog 4,473 cook, apply, cut, clean dog, kitchen, baby, floor
Travel Vlog 4,694 swim, visit, order, travel beach, hotel, tour, plane
News 1,143 report, gather, protest, discuss news, interview, weather, police
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Figure 2: Distribution of moment lengths (left) and normalized (by video duration) center timestamps
(right). The moments vary greatly in length, and they distribute almost evenly along the videos.

a set of 600 query-video pairs, and collect 3 sets of moments for each query from different workers.125

We then calculate the Intersection-over-Union (IoU) between every pair of moments annotated for the126

same query, and take the average of the 3 IoU scores to check the inter-user agreement. We find that,127

for around 90% of queries, their moments have an average IoU score higher than 0.9, suggesting that128

the moments collected via our annotation process are of high inter-user agreement, thus high quality.129

Annotating saliency scores. The relevant moment annotation in the previous step tells us which130

clips in the videos correspond to the user queries. Though all selected clips are relevant to the query,131

they may still vary greatly in their saliency, how representative they are for the query, or whether they132

would make a good highlight. For example, we would expect a clip with a proper camera angle and133

lighting to be better than a clip with a lot of occlusions on the activities being queried, and therefore134

be a better highlight for the video. Thus, we create a second annotation task targeting at collecting135

the saliency scores for each relevant clip. We do not ask workers to select only a small set of clips as136

highlights [37] because many clips may look similar and be equally salient. Hence forcing people to137

pick only a few clips from these similar clips can cause confusion and degrade annotation quality.138

Specifically, we present all the selected clips in the first task along with the queries to another set139

of workers. For each clip, the workers are required to rate them in a Likert-scale system2 with five140

options, ‘Very Good’, ‘Good’, ‘Fair’, ‘Bad’, ‘Very Bad’. As highlightness can be subjective, we141

collect ratings from 3 different workers and use all of them for evaluation.142

Quality control. To ensure data quality, we only allow workers who have done more than 500 HITs143

and with an approval rate of 95% to participate in our annotation task. We also follow [16] to set up a144

qualification test. Our test contains seven multiple-choice questions (see supplementary file for an145

example), and workers have to correctly answer all questions in order to qualify for the task. In total,146

543 workers took the test, with a pass rate of 48%. This qualification ensures high data quality – as147

mentioned earlier in this subsection, we observe high inter-user agreement of moment annotations.148

3.2 Data Analysis149

In total, we collected 10,310 queries associated with 18,367 moments in 10,148 videos. The videos150

are from three main categories, daily vlog, travel vlog, and news events. In Table 1, we show the151

number of queries in each category and the top unique verbs and nouns in the queries. These top152

unique words reflect the major of activities occurring in the videos. For example, in daily and travel153

vlog videos, the top unique verbs are mostly associated with daily activities such as ‘cook’ and ‘clean’,154

while in news videos, they are more about serious activities such as ‘report’, ‘gather’, ‘protest’.155

Table 2 shows a comparison between QVHIGHLIGHTS and existing moment retrieval and highlight156

detection datasets. QVHIGHLIGHTS can have multiple disjoint moments paired with a single query157

(on average 1.8 moments per query in a video), while all the moment retrieval datasets can only158

have a single moment. This is a more realistic setup as relevant content to a query in a video might159

be separated by irrelevant content. It also enables a more accurate evaluation since the annotations160

2https://en.wikipedia.org/wiki/Likert_scale
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Table 2: Comparison with existing moment retrieval (top) and highlight detection (bottom) datasets.
Q=Query, MR=Moment Retrieval, HD=Highlight Detection.

Dataset Domain #Queries/#Videos Avg Avg Len (sec) Avg #Moments Supported Tasks Has
Query Len Moment/Video per Query MR HD Query

DiDeMo [12] Flickr 41.2K / 10.6K 8.0 6.5 / 29.3 1 3 - 3
ANetCaptions [14] Activity 72K / 15K 14.8 36.2 / 117.6 1 3 - 3
CharadesSTA [6] Activity 16.1K / 6.7K 7.2 8.1 / 30.6 1 3 - 3
TVR [16] TV show 109K / 21.8K 13.4 9.1 / 76.2 1 3 - 3

YouTubeHighlights [32] Activity - / 0.6K - - / 143 - - 3 -
Video2GIF [11] Open - / 80K - - / 332 - - 3 -
BeautyThumb [30] Open - / 1.1K - - / 169 - - 3 -
ClickThrough [19] Open - / 1K - - / 331 - - 3 3
ActivityThumb [37] Activity 10K / 4K 14.8 8.7 / 60.7 - - 3 3

QVHIGHLIGHTS Vlog / News 10.3K / 10.2K 11.3 24.6 / 150 1.8 3 3 3

are exhaustive and clean for a single video, i.e., all the relevant moments are properly selected and161

no irrelevant moments are selected. In Figure 2, we show the distribution of moment lengths and162

normalized (by video duration) moment center timestamps. Our dataset has a rich variety of moments163

that vary greatly in length. Around 38% of the moments have a length of equal or less than 10164

seconds, while around 23% are more than 30 seconds. The moments are almost equally distributed165

across the video, with a small peak in the middle (some moments span across the whole video),166

suggesting that our dataset suffers less from the temporal bias commonly seen in other moment167

retrieval datasets [12, 16] – where moments tend to occur nearer to the beginning of videos.168

Most of the highlight detection datasets [32, 11, 30] in Table 2 focus on query-independent high-169

light detection while QVHIGHLIGHTS focuses on query-dependent highlights detection. Click-170

Through [19] and ActivityThumbnails [37] also have highlight annotations for queries, but their171

annotations are not comprehensive: for a video, ClickThrough only annotates 20 key frames and172

ActivityThumbnails restricts highlights to less than five clips. In contrast, we adopt a two-stage173

annotation process with a comprehensive 5-scale saliency score for all relevant clips, making it more174

useful for developing effective models and more accurate for evaluating model performance.175

4 Methods: Moment-DETR176

Our goal is to simultaneously localize moments and detect highlights in videos from natural language177

queries. Given a natural language query q of Lq tokens, and a video v comprised of a sequence of Lv178

clips, we aim to localize one or more moments {mi} (a moment is a consecutive subset of clips in179

v), as well as predicting clip-wise saliency scores S ∈ RLv (the highest scored clips are selected as180

highlights). Inspired by recent progress in using transformers for object detection (DETR [3]), in181

this work we propose a strong baseline model for our QVHIGHLIGHTS dataset, ‘Moment-DETR’,182

an end-to-end transformer encoder-decoder architecture for joint moment retrieval and highlight183

detection. Moment-DETR removes many hand-crafted components, e.g., proposal generation module184

and non-maximum suppression, commonly used in traditional methods [12, 29, 4, 41, 39, 34],and185

views moment localization as a direct set prediction problem. Given a set of learned moment queries,186

Moment-DETR models the global temporal relations of the clips in the videos and outputs moment187

span coordinates and saliency scores. In the following, we present Moment-DETR in detail.188

4.1 Architecture189

Figure 3 shows the overall architecture of Moment-DETR. In the following, we explain it in details.190

Input Representations. The input to the transformer encoder is the concatenation of projected191

video and query text features. For video, we use SlowFast [5] and the video encoder (ViT-B/32) of192

CLIP [25] to extract features every 2 seconds. We then normalize the two features and concatenate193

them at hidden dimension. The resulting video feature v is denoted as Ev ∈ RLv×2816. For query194

text, we use the CLIP text encoder to extract token level features, Eq ∈ RLq×512. Next, we use195

separate 2-layer perceptrons with layernorm [13] and dropout [13] to project the video and query196

features into a shared embedding space of size d. The projected features are concatenated at length197

dimension as the input to the transformer encoder, denoted as Einput ∈ RL×d, L=Lv + Lq .198
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Figure 3: Moment-DETR model overview. The architecture is simple, with a transformer encoder-
decoder and three prediction heads for predicting saliency scores, fore-/back-ground scores and
moment coordinates. For brevity, the video and text feature extractors are not shown in this figure.

Transformer Encoder-Decoder. The video and query input sequence is encoded using a stack of T199

transformer encoder layers. Each encoder layer has the same architecture as in previous work [33, 3],200

with a multi-head self-attention layer and a feed forward network (FFN). Since the transformer201

architecture is permutation-invariant, fixed positional encodings [23, 1] are added to the input of each202

attention layer, following [3]. The output of the encoder is Eenc ∈ RL×d. The transformer decoder203

is the same as in [33, 3], with a stack of T transformer decoder layers. Each decoder layer consists of204

a multi-head self-attention layer, a cross-attention layer (that allows interaction between the encoder205

outputs and the decoder inputs), and an FFN. The decoder input is a set of N trainable positional206

embeddings of size d, referred to as moment queries.3 These embeddings are added to the input to207

each attention layer as in the encoder layers. The output of the decoder is Edec ∈ RN×d.208

Prediction Heads. Given the encoder output Eenc, we use a linear layer to predict saliency scores209

S ∈ RLv for the input video. Given the decoder output Edec, we use a 3-layer FFN with ReLU [10]210

to predict the normalized moment center coordinate and width w.r.t. the input video. We also follow211

DETR [3] to use a linear layer with softmax to predict class labels. In DETR, this layer is trained212

with object class labels. In our task, since class labels are not available, for a predicted moment, we213

assign it a foreground label if it matches with a ground truth, and background otherwise.214

4.2 Matching and Loss Functions215

Set prediction via bipartite matching. We denote ŷ = {ŷi}Ni=1 as the set of N predictions from the216

moment queries, and y = {yi}Ni=1 as the set of ground truth moments with background ∅ padding.217

Note that N is the number of moment queries and is larger than the number of ground truth moments.218

Since the predictions and the ground truth do not have a one-to-one correspondence, in order to219

compute the loss, we need to first find an assignment between predictions and ground truth moments.220

We define the matching cost Cmatch between a prediction and a ground truth moment as:221

Cmatch(yi, ŷσ(i)) = −1{ci 6=∅}p̂σ(i)(ci) + 1{ci 6=∅}Lmoment(mi, m̂σ(i)), (1)

where each ground truth can be viewed as yi = (ci,mi), with ci as the class label to indicate222

foreground or background ∅, and mi ∈ [0, 1]2 a vector that defines the normalized moment center223

coordinate and width w.r.t. an input video; ŷσ(i) is the i-th element of the prediction under a permuta-224

tion σ ∈ SN . Note that the background paddings in the ground truth are ignored in the matching cost.225

With this matching cost, we follow [3, 31], using the Hungarian algorithm to find the optimal bipartite226

matching between the ground truth and predictions: σ̂ = arg minσ∈SN

∑N
i Cmatch(yi, ŷσ(i)). Based227

on this optimal assignment σ̂, in the following, we introduce our loss formulations.228

Moment Localization Loss. This loss Lmoment is used to measure the discrepancy between the229

prediction and ground truth moments. It consists of an L1 loss and a generalized IoU loss [27]:230

Lmoment(mi, m̂σ̂(i)) = λL1||mi − m̂σ̂(i)||+ λiouLiou(mi, m̂σ̂(i)), (2)

where λL1, λiou ∈ R are hyperparameters balancing the two terms. The IoU loss Liou here computes231

1D temporal IoU instead of 2D box IoU as in [27, 3], but they share the same formulation.232

3Following [3], we use moment queries to refer to decoder positional embeddings, not the text queries.
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Saliency Loss. The saliency loss is computed via a hinge loss between two pairs of positive and233

negative clips. The first pair is a high score clip (with index thigh) and a low score clip (tlow) within234

the ground-truth moments. The second pair consists of one clip (tin) within and one clip (tout) outside235

the ground-truth moments. This loss is calculated as (∆ ∈ R is the margin):236

Lsaliency(S) = max(0,∆ + S(tlow)− S(thigh)) + max(0,∆ + S(tout)− S(tin)). (3)

Overall Loss. The final loss is defined as a linear combination of the losses introduced above:237

L = λsaliencyLsaliency(S) +

N∑
i=1

[−λcls log p̂σ̂(i)(ci) + 1{ci 6=∅}Lmoment(mi, m̂σ̂(i))] , (4)

where λsaliency, λcls ∈ R are hyperparameters for saliency and fore/background classification loss.238

Following [3], we down-weight the log-probability by a factor of 10 for the background class ∅ to239

account for class imbalance and apply classification and moment losses to every decoder layer.240

4.3 Weakly-Supervised Pretraining via ASR241

Moment-DETR is defined using an end-to-end transformer encoder-decoder architecture, eliminating242

the need for any human priors or hand-crafted components. Such a model typically requires a larger-243

scale dataset for training to unleash its true power, which would be prohibitively expensive to acquire244

with human labeling. Therefore, we additionally experiment with using captions from Automatic245

Speech Recognition (ASR) on our videos for weakly-supervised pretraining. Although very noisy,246

ASR captions have been shown to improve performance for visual recognition and text-to-video247

retrieval [22, 21, 17]. Specifically, we download ASR captions from YouTube, and use these caption248

sentences as queries, training the model to predict their corresponding timestamps. In total, we249

harvest 236K caption-timestamp pairs associated with 5406 train videos. For pretraining, the model250

architecture and learning objectives are the same as in standard training, except that we remove the251

first term in the saliency loss (Equation 3) since the saliency score annotation is not available.252

5 Experiments and Results253

5.1 Experimental Setup254

Data and Evaluation Metrics. We split QVHIGHLIGHTS into 70% train, 15% val, and 15% test255

portions. To evaluate moment retrieval with multiple moments, we use mean average precision (mAP)256

with IoU thresholds 0.5 and 0.75, as well as the average mAP over multiple IoU thresholds [0.5: 0.05:257

0.95], similar to action detection in [2]. We also report standard metric Recall@1 (R@1) used in258

single moment retrieval, where we define a prediction to be positive if it has a high IoU (>= 0.7) with259

one of the ground truth moments. For highlight detection, we use mAP as the main metric. We also260

follow [19] to use HIT@1 to compute the hit ratio for the highest scored clip. Similar to [19], we261

define a clip as positive if it has a score of ‘Very Good’. Since we have ground truth saliency scores262

from 3 users, we evaluate performance against each then take the average.263

Implementation Details. Our model is implemented in PyTorch [24]. We set the hidden size d=256,264

#layers in encoder/decoder T=2, #moment queries N=10. We use dropout of 0.1 for transformer265

layers and 0.5 for input projection layers. We set the loss hyperparameters as λL1=10, λiou=1, λcls=4,266

λs=1, ∆=0.2. The model weights are initialized with Xavier init [9]. We use AdamW [20] with267

an initial learning rate of 1e-4, weight decay 1e-4 to optimize the model parameters. The model is268

trained for 200 epochs with batch size 32. For pretraining, we use the same setup except that we train269

the model for 100 epochs with batch size 256. Both training/finetuning and pretraining are conducted270

on an RTX 2080Ti GPU, with training/finetuning taking 12 hours and pretraining 2 days.271

5.2 Results and Analysis272

Comparison with Baselines. We compare Moment-DETR with various moment retrieval and high-273

light detection methods on the QVHIGHLIGHTS test split; results are shown in Table 3. For moment274

retrieval, we provide three baselines, two proposal-based methods MCN [12] and CAL [4], and a span275

prediction method XML [16]. For highlight detection, we provide two baselines, BeautyThumb [30]276

based solely on frame quality, and DVSE [19] based on clip-query similarity. Since XML also277
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Table 3: Baseline Comparison on QVHIGHLIGHTS test split. We highlight the best score in each
column in bold, and the second best score with underline. XML+ denotes our improved XML [16]
model. PT denotes weakly supervised pretraining with ASR captions. For Moment-DETR variants,
we also report standard deviation of 5 runs with different random seeds.

Method
Moment Retrieval Highlight Detection

R1 mAP >= Very Good

@0.5 @0.7 @0.5 @0.75 avg mAP HIT@1

BeautyThumb [30] - - - - - 14.36 20.88
DVSE [19] - - - - - 18.75 21.79
MCN [12] 11.41 2.72 24.94 8.22 10.67 - -
CAL [4] 25.49 11.54 23.40 7.65 9.89 - -
XML [16] 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ 46.69 33.46 47.89 34.67 34.90 35.38 55.06

Moment-DETR 52.89 ±2.3 33.02±1.7 54.82±1.7 29.40±1.7 30.73±1.4 35.69±0.5 55.60±1.6

Moment-DETR w/ PT 59.78±0.3 40.33±0.5 60.51±0.2 35.36±0.4 36.14±0.25 37.43±0.2 60.17±0.7

Table 4: Loss ablations on QVHIGHLIGHTS val split. All models are trained from scratch.

L1 gIoU Saliency CLS Moment Retrieval Highlight Detection (>=Very Good)

R1@0.5 R1@0.7 mAP avg mAP Hit@1

3 3 3 44.84 25.87 25.05 17.84 20.19
3 3 3 51.10 31.16 27.61 35.28 54.32

3 3 3 50.90 30.97 28.84 36.61 56.71
3 3 3 3 53.94 34.84 32.20 35.65 55.55

outputs clip-wise similarity scores to the user query, we provide highlight detection results for this278

model as well. The original XML model has a smaller capacity than Moment-DETR, hence for a279

fair comparison, we increased its capacity by adding more layers and train it for the same number of280

epochs as Moment-DETR. Moreover, to leverage the saliency annotations in QVHIGHLIGHTS, we281

further added an auxiliary saliency loss to it (referred to as ‘XML+’). These enhancements improve282

the original XML model by 2.76 average mAP.283

Compared to the best baseline XML+, Moment-DETR performs competitively on moment retrieval,284

where it achieves significantly higher scores on a lower IoU threshold, i.e., R1@0.5 and mAP@0.5285

(>7% absolute improvement), but obtains lower scores on higher IoU threshold, i.e., R1@0.7 and286

mAP@0.75. We hypothesize that this is because the L1 and generalized IoU losses give large287

penalties only to large mismatches (i.e., small IoU) between the predicted and ground truth moments.288

This property encourages Moment-DETR to focus more on predictions with small IoUs with the289

ground truth, while less on those with a reasonably large IoU (e.g., 0.5). This observation is the290

same as DETR [3] for object detection, where it shows a notable improvement over the baseline in291

AP50, but lags behind in AP75. For highlight detection, Moment-DETR performs similarily to XML+.292

As discussed in Section 4.3, Moment-DETR is designed without human priors or hand-crafted293

components, thus may require more training data to learn these priors from data. Therefore, we294

also use ASR captions for weakly supervised pretraining. With pretraining, Moment-DETR greatly295

outperforms the baselines on both tasks, showing the effectiveness of our approach.4296

Loss Ablations. In Table 4, we show the impact of the losses by turning off one loss at a time. When297

turning off the saliency loss, we observe a significant performance drop for highlight detection, and298

surprisingly moment retrieval as well. We hypothesize that the moment span prediction losses (L1299

and IoU) and classification (CLS) loss do not provide strong supervision for learning the similarity300

between the input text queries and their relevant clips, while the saliency loss gives a direct signal301

to learn such similarity. Under our framework, this also suggests that jointly detecting saliency is302

beneficial to retrieve moments. When turning off one of the span predictions losses (L1 or IoU), we303

see a notable drop in moment retrieval performance while the highlight detection performance stays304

similar, showing that both losses are important for moment retrieval.305

4We also tried pretraining with XML+, and under careful tuning, the results are still worse than without
pretraining, which might because XML+’s cross-entropy loss gives strong penalties to small mismatches,
preventing it from learning effectively from noisy (thus many small mismatches) data.
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Figure 4: Visualization of all moment span predictions for all the 1550 videos on QVHIGHLIGHTS val
split, for all the 10 moment query slots in Moment-DETR decoder. x-axis denotes the normalized
moment span center coordinates w.r.t. the videos, y-axis denotes the normalized moment span width
(also indicated by color). We observe that each slot learns to predict moments in different temporal
locations and different widths. For example, the first slot mostly predicts short moments near the
beginning of the videos, while the second slot mostly predicts short moments near the end.

A family is playing basketball together on a green court outside.

An Asian woman wearing a Boston t-shirt is in her home talking.

Saliency scores

Saliency scores

Figure 5: Prediction visualization. Predictions are shown in solid red boxes or lines, ground-truth are
indicated by dashed green lines. Top row shows a correct prediction, bottom row shows a failure.

Moment Query Analysis. In Figure 4, we visualize moment span predictions for all the 1550306

QVHIGHLIGHTS val videos, for the 10 moment query slots in Moment-DETR decoder. As shown in307

the figure, each slot learns to predict moments of different patterns, i.e., different temporal locations308

and different widths. For example, some slots learn to predict short moments near the beginning309

or end of the videos (e.g., the first two slots), while some slots learn to predict both short and long310

moments near the center (e.g., the third slot). Overall, most of the slots learn to predict short moments311

while only a handful of them learn to predict long moments, possibly because there are more short312

moments in QVHIGHLIGHTS than long moments (see our data analysis in Section 3.2).313

Prediction Visualization. Figure 5 (top) shows a correct prediction from Moment-DETR. We can314

see that the model is able to correctly localize two disjoint moments relevant to the user query.315

Meanwhile, the saliency scores also align very well with the ground truth score curve (obtained316

by averaging the scores from 3 annotators). And not surprisingly, this saliency score curve also317

matches the moment predictions – where we see higher scores for localized regions than those outside.318

Figure 5 (bottom) shows a failure case, where it incorrectly localized a partially true moment (2nd319

frame) where the family is playing on a court but not playing basketball. More examples in Appendix.320

6 Conclusion321

We collect QVHIGHLIGHTS dataset for moment retrieval and highlight detection from natural322

language queries. This new dataset consists of over 10,000 diverse YouTube videos, each annotated323

with a free-form query, relevant moment timestamps and clip-wise saliency scores. Detailed data324

analyses are provided comparing the collected data to previous works. We further propose Moment-325

DETR, an encoder-decoder transformer that jointly perform moment retrieval and highlight detetcion.326

We show that this new model performs competitively with baseline methods. Additionally, it also327

learns effectively from noisy data. With weakly supervised pretraining using ASR captions, Moment-328

DETR substantially outperforms previous methods, setting a strong precedence for future work.329

Lastly, we provide ablations and prediction visualizations of Moment-DETR.330
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