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ABSTRACT

Vision Transformers (ViTs) with self-attention modules have recently achieved
great empirical success in many vision tasks. Due to non-convex interactions
across layers, however, the theoretical learning and generalization analysis is
mostly elusive. Based on a data model characterizing both label-relevant and
label-irrelevant tokens, this paper provides the first theoretical analysis of training
a three-layer ViT, i.e., one self-attention layer followed by a two-layer perceptron,
for a classification task. We characterize the sample complexity to achieve a zero
generalization error. Our sample complexity bound is positively correlated with
the inverse of the fraction of label-relevant tokens, the token noise level, and the
initial model error. We also prove that a training process using stochastic gradient
descent (SGD) leads to a sparse attention map, which is a formal verification of
the general intuition about the success of attention. Moreover, this paper indicates
that a proper token sparsification can improve the test performance by removing
label-irrelevant and/or noisy tokens, including spurious correlations. Empirical
experiments on synthetic data and CIFAR-10 dataset justify our theoretical results
and generalize to deeper ViTs.

1 INTRODUCTION

As the backbone of Transformers (Vaswani et al., 2017), the self-attention mechanism (Bahdanau
et al., 2014) computes the feature representation by globally modeling long-range interactions within
the input. Transformers have demonstrated tremendous empirical success in numerous areas, in-
cluding nature language processing (Kenton & Toutanova, 2019; Radford et al., 2019; 2018; Brown
et al., 2020), recommendation system (Zhou et al., 2018; Chen et al., 2019; Sun et al., 2019), and
reinforcement learning (Chen et al., 2021; Janner et al., 2021; Zheng et al., 2022). Starting from the
advent of Vision Transformer (ViT) (Dosovitskiy et al., 2020), Transformer-based models (Touvron
et al., 2021; Jiang et al., 2021; Wang et al., 2021; Liu et al., 2021a) gradually replace convolutional
neural network (CNN) architectures and become prevalent in vision tasks. Various techniques have
been developed to train ViT efficiently. Among them, token sparsification (Pan et al., 2021; Rao
et al., 2021; Liang et al., 2022; Tang et al., 2022; Yin et al., 2022) removes redundant tokens (image
patches) of data to improve the computational complexity while maintaining a comparable learning
performance. For example, Liang et al. (2022); Tang et al. (2022) prune tokens following criteria
designed based on the magnitude of the attention map. Despite the remarkable empirical success,
one fundamental question about training Transformers is still vastly open, which is

Under what conditions does a Transformer achieve satisfactory generalization?

Some recent works analyze Transformers theoretically from the perspective of proved Lipschitz
constant of self-attention (James Vuckovic, 2020; Kim et al., 2021), properties of the neural tangent
kernel (Hron et al., 2020; Yang, 2020) and expressive power and Turing-completeness (Dehghani
et al., 2018; Yun et al., 2019; Bhattamishra et al., 2020a;b; Edelman et al., 2022; Dong et al., 2021;
Likhosherstov et al., 2021; Cordonnier et al., 2019; Levine et al., 2020) with statistical guarantees
(Snell et al., 2021; Wei et al., 2021). Likhosherstov et al. (2021) showed a model complexity for the
function approximation of the self-attention module. Cordonnier et al. (2019) provided sufficient and
necessary conditions for multi-head self-attention structures to simulate convolution layers. None
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of these works, however, characterize the generalization performance of the learned model theoreti-
cally. Only Edelman et al. (2022) theoretically proved that a single self-attention head can represent
a sparse function of the input with a sample complexity for a generalization gap between the training
loss and the test loss, but no discussion is provided regarding what algorithm to train the Transformer
to achieve a desirable loss.

Contributions: To the best of our knowledge, this paper provides the first learning and gener-
alization analysis of training a basic three-layer Vision Transformer using stochastic gradient de-
scent (SGD). This paper focuses on a binary classification problem on structured data, where to-
kens with discriminative patterns determine the label from a majority vote, while tokens with non-
discriminative patterns do not affect the labels. We train a three-layer ViT containing a self-attention
layer followed by a two-layer perceptron using SGD from a proper initial model. This paper ex-
plicitly characterizes the required number of training samples to achieve a desirable generalization
performance, referred to as the sample complexity. Our sample complexity bound is positively corre-
lated with the inverse of the fraction of label-relevant tokens, the token noise level, and the error from
the initial model, indicating a better generalization performance on data with fewer label-irrelevant
patterns and less noise from a better initial model. The highlights of our technical contributions
include:

First, this paper proposes a new analytical framework to tackle the non-convex optimization
and generalization for three-layer ViTs. Due to the more involved non-convex interactions
of learning parameters and diverse activation functions across layers, the three-layer ViT model
considered in this paper is more complicated to analyze than three-layer CNNs considered in Allen-
Zhu et al. (2019a); Allen-Zhu & Li (2019), the most complicated neural network model that has been
analyzed so far for across-layer nonconvex interactions. We consider a structured data model with
relaxed assumptions from existing models and establish a new analytical framework to overcome
the new technical challenges to handle ViTs.

Second, this paper theoretically depicts the evolution of the attention map during the training
and characterizes how “attention” is paid to different tokens during the training. Specifically,
we show that under the structured data model, the learning parameters of the self-attention module
grow in the direction that projects the data to the label-relevant patterns, resulting in an increasingly
sparse attention map. This insight provides a theoretical justification of the magnitude-based token
pruning methods such as (Liang et al., 2022; Tang et al., 2022) for efficient learning.

Third, we provide a theoretical explanation for the improved generalization using token spar-
sification. We quantitatively show that if a token sparsification method can remove class-irrelevant
and/or highly noisy tokens, then the sample complexity is reduced while achieving the same test-
ing accuracy. Moreover, token sparsification can also remove spurious correlations to improve the
testing accuracy (Likhomanenko et al., 2021; Zhu et al., 2021a). This insight provides a guideline
in designing token sparsification and few-shot learning methods for Transformer (He et al., 2022;
Guibas et al., 2022).

1.1 BACKGROUND AND RELATED WORK

Efficient ViT learning. To alleviate the memory and computation burden in training (Dosovitskiy
et al., 2020; Touvron et al., 2021; Wang et al., 2022), various acceleration techniques have been
developed other than token sparsification. Zhu et al. (2021b) identifies the importance of different
dimensions in each layer of ViTs and then executes model pruning. Liu et al. (2021b); Lin et al.
(2022); Li et al. (2022d) quantize weights and inputs to compress the learning model. Li et al.
(2022a) studies automated progressive learning that automatically increases the model capacity on-
the-fly. Moreover, modifications of attention modules, such as the network architecture based on
local attention (Wang et al., 2021; Liu et al., 2021a; Chu et al., 2021), can simplify the computation
of global attention for acceleration.

Theoretical analysis of learning and generalization of neural networks. One line of research
(Zhong et al., 2017b; Fu et al., 2020; Zhong et al., 2017a; Zhang et al., 2020a;b; Li et al., 2022c)
analyzes the generalization performance when the number of neurons is smaller than the number
of training samples. The neural-tangent-kernel (NTK) analysis (Jacot et al., 2018; Allen-Zhu et al.,
2019a;b; Arora et al., 2019; Cao & Gu, 2019; Zou & Gu, 2019; Du et al., 2019; Chen et al., 2020;
Li et al., 2022b) considers strongly overparameterized networks and eliminates the nonconvex inter-
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actions across layers by linearizing the neural network around the initialization. The generalization
performance is independent of the feature distribution and cannot explain the advantages of self-
attention modules.

Neural network learning on structured data. Li & Liang (2018) provide the generalization anal-
ysis of a fully-connected neural network when the data comes from separated distributions. Daniely
& Malach (2020); Shi et al. (2021); Karp et al. (2021); Brutzkus & Globerson (2021) study fully
connected networks and convolutional neural networks assuming that data contains discriminative
patterns and background patterns. Allen-Zhu & Li (2022) illustrates the robustness of adversarial
training by introducing the feature purification mechanism, in which neural networks with non-linear
activation functions can memorize the data-dependent features. Wen & Li (2021) extends this frame-
work to the area of self-supervised contrastive learning. All these works consider one-hidden-layer
neural networks without self-attention.

Notations: Vectors are in bold lowercase, and matrices and tensors are in bold uppercase. Scalars
are in normal fonts. Sets are in calligraphy font. For instance, Z is a matrix, and z is a vector. zi
denotes the i-th entry of z, and Zi,j denotes the (i, j)-th entry of Z. [K] (K > 0) denotes the set
including integers from 1 to K. Id ∈ Rd×d and ei represent the identity matrix in Rd×d and the
i-th standard basis vector, respectively. We follow the convention that f(x) = O(g(x)) (or Ω(g(x)),
Θ(g(x))) means that f(x) increases at most, at least, or in the order of g(x), respectively.

2 PROBLEM FORMULATION AND LEARNING ALGORITHM

We study a binary classification problem 1 following the common setup in (Dosovitskiy et al., 2020;
Touvron et al., 2021; Jiang et al., 2021). Given N training samples {(Xn, yn)}Nn=1 generated from
an unknown distribution D and a fair initial model, the goal is to find an improved model that
maps X to y for any (X, y) ∼ D. Here each data point contains L tokens xn1 , x

n
2 , · · · ,xnL, i.e.,

Xn = [xn1 , · · · ,xnL] ∈ Rd×L, where each token is d-dimensional and unit-norm. yn ∈ {+1,−1} is
a scalar. A token can be an image patch (Dosovitskiy et al., 2020). We consider a general setup that
also applies to token sparsification, where some tokens are set to zero to reduce the computational
time. Let Sn ⊆ [L] denote the set of indices of remaining tokens in Xn after sparsification. Then
|Sn| ≤ L, and Sn = [L] without token sparsification.

Learning is performed over a basic three-layer Vision Transformer, a neural network with a single-
head self-attention layer and a two-layer fully connected network, as shown in (1). This is a simpli-
fied model of practical Vision Transformers (Dosovitskiy et al., 2020) to avoid unnecessary compli-
cations in analyzing the most critical component of ViTs, the self-attention.

F (Xn) =
1

|Sn|
∑
l∈Sn

a(l)Relu(WOWVX
nsoftmax(Xn⊤W⊤

KWQx
n
l )), (1)

where the queue weights WQ in Rmb×d, the key weights WK in Rmb×d, and the value weights
WV in Rma×d in the attention unit are multiplied with Xn to obtain the queue vector WQX

n,
the key vector WKXn, and the value vector WVX

n, respectively (Vaswani et al., 2017). WO

is in Rm×ma and A = (a(1),a(2), · · · ,aL) where a(l) ∈ Rm, l ∈ [L] are the hidden-layer and
output-layer weights of the two-layer perceptron, respectively. m is the number of neurons in the
hidden layer. Let ψ = (A,WO,WV ,WK ,WQ) denote the set of parameters to train. The training
problem minimizes the empirical risk fN (ψ),

min
ψ

: fN (ψ) =
1

N

N∑
n=1

ℓ(Xn, yn;ψ), (2)

where ℓ(Xn, yn;ψ) is the Hinge loss function, i.e.,

ℓ(Xn, yn;ψ) = max{1− yn · F (Xn), 0}. (3)

The generalization performance of a learned model ψ is evaluated by the population risk f(ψ),
where

f(ψ) = f(A,WO,WV ,WK ,WQ) = E(X,y)∼D[max{1− y · F (X), 0}]. (4)

1Extension to multi-classification is briefly discussed in Section D.
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The training problem (2) is solved via a mini-batch stochastic gradient descent (SGD), as sum-
marized in Algorithm 1. At iteration t, t = 0, 1, 2, · · · , T − 1, the gradient is computed using a
mini-batch Bt with |Bt| = B. The step size is η.

Similar to (Dosovitskiy et al., 2020; Touvron et al., 2021; Jiang et al., 2021), W (0)
V , W (0)

Q , and W
(0)
K

come from an initial model. Every entry of WO is generated from N (0, ξ2). Every entry of a(0)
l is

sampled from {+ 1√
m
,− 1√

m
} with equal probability. A does not update during the training2.

3 THEORETICAL RESULTS

3.1 MAIN THEORETICAL INSIGHTS

Before formally introducing our data model and main theory, we first summarize the major insights.
We consider a data model where tokens are noisy versions of label-relevant patterns that determine
the data label and label-irrelevant patterns that do not affect the label. α∗ is the fraction of label-
relevant tokens. σ represents the initial model error, and τ characterizes the token noise level.

(P1). A Convergence and sample complexity analysis of SGD to achieve zero generalization
error. We prove SGD with a proper initialization converges to a model with zero generalization
error. The required number of iterations is proportional to 1/α∗ and 1/(Θ(1)− σ− τ). Our sample
complexity bound is linear in α−2

∗ and (Θ(1) − σ − τ)−2. Therefore, the learning performance is
improved, in the sense of a faster convergence and fewer training samples to achieve a desirable
generalization, with a larger fraction of label-relevant patterns, a better initial model, and less token
noise.

(P2). A theoretical characterization of increased sparsity of the self-attention module dur-
ing training. We prove that the attention weights, which are softmax values of each token in the
self-attention module, become increasingly sparse during the training, with non-zero weights con-
centrated at label-relevant tokens. This formally justifies the general intuition that the attention layer
makes the neural network focus on the most important part of data.

(P3). A theoretical guideline of designing token sparsification methods to reduce sample com-
plexity. Our sample complexity bound indicates that the required number of samples to achieve zero
generalization can be reduced if a token sparsification method removes some label-irrelevant tokens
(reducing α∗), or tokens with large noise (reducing σ), or both. This insight provides a guideline to
design proper token sparsification methods.

(P4). A new theoretical framework to analyze the nonconvex interactions in three-layer ViTs.
This paper develops a new framework to analyze ViTs based on a more general data model than
existing works like (Brutzkus & Globerson, 2021; Karp et al., 2021; Wen & Li, 2021). Compared
with the nonconvex interactions in three-layer feedforward neural networks, analyzing ViTs has
technical challenges that the softmax activation is highly non-linear, and the gradient computation
on token correlations is complicated. We develop new tools to handle this problem by exploiting
structures in the data and proving that SGD iterations increase the magnitude of label-relevant tokens
only rather than label-irrelevant tokens. This theoretical framework is of independent interest and
can potentially applied to analyze different variants of Transformers and attention mechanisms.

3.2 DATA MODEL

There are M (2 < M < ma,mb) distinct patterns {µ1, µ2, · · · ,µM} in Rd, where µ1,µ2

are discriminative patterns that determine the binary labels, and the remaining M − 2 pat-
terns µ3, µ4, · · · ,µM are non-discriminative patterns that do not affect the labels. Let κ =
min1≤i ̸=j≤M ∥µi − µj∥ > 0 denote the minimum distance between patterns. Each token xnl
of Xn is a noisy version of one of the patterns, i.e.,

min
j∈[M ]

∥xnl − µj∥ ≤ τ, (5)

2It is common to fix the output layer weights as the random initialization in the theoretical analysis of neural
networks, including NTK (Allen-Zhu et al., 2019a; Arora et al., 2019), model recovery (Zhong et al., 2017b),
and feature learning (Karp et al., 2021; Allen-Zhu & Li, 2022) type of approaches. The optimization problem
here of WQ, WK , WV , and WO with non-linear activations is still highly non-convex and challenging.
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and the noise level τ ≤ κ.

The label yn is determined by the tokens that correspond to discriminative patterns through a ma-
jority vote. If the number of tokens that are noisy versions of µ1 is larger than the number of tokens
that correspond to µ2 in Xn, then yn = 1. In this case that the label yn = 1, the tokens that are
noisy µ1 are refereed to as label-relevant tokens, and the tokens that are noisy µ2 are referred to as
confusion tokens. Similarly, if there are more tokens that are noisy µ2 than those that are noisy µ1,
the former are label-relevant tokens, the latter are confusion tokens, and yn = −1. All other tokens
that are not label-relevant are called label-irrelevant tokens.

Let α∗ and α# as the average fraction of the label-relevant and the confusion tokens over the distri-
bution D, respectively. We consider a balanced dataset. Let D+ = {(Xn, yn)|yn = +1, n ∈ [N ]}
and D− = {(Xn, yn)|yn = −1, n ∈ [N ]} denote the sets of positive and negative labels, respec-
tively. Then

∣∣∣|D+| − |D−|
∣∣∣ = O(

√
N).

Our model is motivated by and generalized from those used in the state-of-art analysis of neural
networks on structured data (Li & Liang, 2018; Brutzkus & Globerson, 2021; Karp et al., 2021). All
the existing models require that only one discriminative pattern exists in each sample, i.e., either µ1

or µ2, but not both, while our model allows both patterns to appear in the same sample.

3.3 FORMAL THEORETICAL RESULTS

Before presenting our main theory below, we first characterize the behavior of the initial model
through Assumption 1. Some important notations are summarized in Table 1.

Table 1: Some important notations
σ Initialization error for value vectors δ Initialization error for query and key vectors

κ Minimum of ∥µi − µj∥ for any i, j ∈ [M ], i ̸= j. τ Token noise level

M Total number of patterns m The number of neurons in WO

α∗ Average fraction of label-relevant tokens α# Average fraction of confusion tokens

Assumption 1. Assume max(∥W (0)
V ∥, ∥W (0)

K ∥, ∥W (0)
Q ∥) ≤ 1 without loss of generality. There

exist three (not necessarily different) sets of orthonormal bases P = {p1,p2, · · · ,pM}, Q =
{q1, q2, · · · , qM}, and R = {r1, r2, · · · , rM}, where pl ∈ Rma , ql, rl ∈ Rmb , ∀l ∈ [M ],
q1 = r1, and q2 = r2

3 such that

∥W (0)
V µj − pj∥ ≤ σ, ∥W (0)

K µj − qj∥ ≤ δ, and ∥W (0)
Q µj − rj∥ ≤ δ. (6)

hold for some σ = O(1/M) and δ < 1/2.

Assumption 1 characterizes the distance of query, key, and value vectors of patterns {µj}Mj=1 to
orthonormal vectors. The requirement on δ is minor because δ can be in the same order as ∥µj∥.
Theorem 1 (Generalization of ViT). Suppose Assumption 1 holds; τ ≤ min(σ, δ); a sufficiently
large model with

m ≳ ϵ−2M2 logN for ϵ > 0, (7)
the average fraction of label-relevant patterns satisfies

α∗ ≥ α#

ϵSe−(δ+τ)(1− (σ + τ))
, (8)

for some constant ϵS ∈ (0, 12 ); and the mini-batch size and the number of sampled tokens of each
data Xn, n ∈ [N ] satisfy

B ≥ Ω(1), |Sn| ≥ Ω(1) (9)
Then as long as the number of training samples N satisfies

N ≥ Ω(
1

(α∗ − c′(1− ζ)− c′′(σ + τ))2
) (10)

3The condition q1 = r1 and q2 = r2 is to eliminate the trivial case that the initial attention value is very
small. This condition can be relaxed but we keep this form to simplify the representation.
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for some constant c′, c′′ > 0, and ζ ≳ 1− η10, after T number of iterations such that

T = Θ(
1

(1− ϵ− (σ+τ)M
π )ηα∗

) (11)

with a probability at least 0.99, the returned model achieves zero generalization error as

f(A(0),W
(T )
O ,W

(T )
V ,W

(T )
K ,W

(T )
Q ) = 0 (12)

Theorem 1 characterizes under what condition of the data the neural network with self-attention in
(1) trained with Algorithm 1 can achieve zero generalization error. To show that the self-attention
layer can improve the generalization performance by reducing the required sample complexity to
achieve zero generalization error, we also quantify the sample complexity when there is no self-
attention layer in the following proposition.
Proposition 1 (Generalization without self-attention). Suppose assumptions in Theorem 1 hold.
When there is no self-attention layer, i.e., WK and WQ are not updated during the training, if N
satisfies

N ≥ Ω(
1

(α∗(α∗ − σ − τ))2
) (13)

then after T iterations with T in (11), the returned model achieves zero generalization error as

f(A(0),W
(T )
O ,W

(T )
V ,W

(0)
K ,W

(0)
Q ) = 0 (14)

Remark 1. (Advantage of the self-attention layer) Because m ≫ ma,mb, d, the number of train-
able parameter remains almost the same with or without updating the attention layer. Combining
Theorem 1 and Proposition 1, we can see that with the additional self-attention layer, the sample
complexity4 is reduced by a factor 1/α2

∗ with an approximately equal number of network parameters.
Remark 2. (Generalization improvement by token sparsification). (10) and (11) show that the sam-
ple complexity N and the required number of iterations T scale with 1/α2

∗ and 1/α∗, respectively.
Then, increasing α∗, the fraction of label-relevant tokens, can reduce the sample complexity and
speed up the convergence. Similarly, N and T scale with 1/(Θ(1) − τ)2 and 1/(Θ(1) − τ). Then
decreasing τ , the noise in the tokens, can also improve the generalization. Note that a properly
designed token sparsification method can both increase α∗ by removing label-irrelevant tokens and
decrease τ by removing noisy tokens, thus improving the generalization performance.

Remark 3. (Impact of the initial model) The initial model W (0)
V , W (0)

K , W (0)
Q affects the learning

performance through σ and δ, both of which decrease as the initial model is improved. Then from
(10) and (11), the sample complexity reduces and the convergence speeds up for a better initial
model.

Proposition 2 shows that the attention weights are increasingly concentrated on label-relevant tokens
during the training. Proposition 2 is a critical component in proving Theorem 1 and is of independent
interest.
Proposition 2. The attention weights for each token become increasingly concentrated on those
correlated with tokens of the label-relevant pattern during the training, i.e.,

∑
i∈Sn

∗

softmax(xni
⊤W

(t)
K

⊤
W

(t)
Q xnl ) =

∑
i∈Sn

∗

exp(xni
⊤W

(t)
K

⊤
W

(t)
Q xnl )∑

r∈Sn exp(xnr
⊤W

(t)
K

⊤
W

(t)
Q xnl )

→ 1, as t increases,

(15)
for all l ∈ Sn and n ∈ [N ].

Proposition 2 indicates that only label-relevant tokens are highlighted by the learned attention of
ViTs, while other tokens have less weight. This provides a theoretical justification of magnitude-
based token sparsification methods.

4The sample complexity bounds in (10) and (13) are sufficient but not necessary. Thus, rigorously speak-
ing, one can not compare two cases based on sufficient conditions only. In our analysis, however, these two
bounds are derived with exactly the same technique with the only difference in handling the self-attention layer.
Therefore, we believe it is fair to compare these two bounds to show the advantage of ViT.
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Proof idea sketch: The main proof idea is to show that the SGD updates scale up value, query,
and key vectors of discriminative patterns, while keeping the magnitude of the projections of non-
discriminative patterns and the initial model error almost unchanged. To be more specific, by Lemma
3, 4, we can identify two groups of neurons in the hidden layer WO, where one group only learns
the positive pattern, and the other group only learns the negative pattern. Claim 1 of Lemma 2
states that during the SGD updates, the neuron weights in these two groups evolve in the direction
of projected discriminative patterns, p1 and p2, respectively. Meanwhile, Claim 2 of Lemma 2
indicates that WK and WQ update in the direction of increasing the magnitude of the query and key
vectors of label-relevant tokens from 1 to Θ(log T ), such that the attention weights correlated with
label-relevant tokens gradually become dominant. Moreover, by Claim 3 of Lemma 2, the update of
WV increases the magnitude of the value vectors of label-relevant tokens, by adding partial neuron
weights of WO that are aligned with the value vectors to these vectors. Due to the above properties
during the training, one can simplify the training process to show that the output of neural network
(1) changes linearly in the iteration number t. From the above analysis, we can develop the sample
complexity and the required number of iterations for the zero generalization guarantee.

Technical novelty: Our proof technique is inspired by the feature learning technique in analyzing
fully connect networks and convolution neural networks (Shi et al., 2021; Brutzkus & Globerson,
2021). Our paper makes new technical contributions from the following aspects. First, we provide
a new framework of studying the nonconvex interactions of multiple weight matrices in a three-
layer ViT while other feature learning works (Shi et al., 2021; Brutzkus & Globerson, 2021; Karp
et al., 2021; Allen-Zhu & Li, 2022; Wen & Li, 2021) only study one trainable weight matrix in the
hidden layer of a two-layer network. Second, we analyze the updates of the self-attention module
with the softmax function during the training, while other papers either ignore this issue without
exploring convergence analysis (Edelman et al., 2022) or oversimplify the analysis by applying the
neural-tangent-kernel (NTK) method that considers impractical over-parameterization and updates
the weights only around initialization. (Hron et al., 2020; Yang, 2020; Allen-Zhu et al., 2019a;
Arora et al., 2019). Third, we consider a more general data model, where discriminative patterns of
multiple classes can exist in the same data sample, but the data models in (Brutzkus & Globerson,
2021; Karp et al., 2021) require one discriminative pattern only in each sample.

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTS ON SYNTHETIC DATASETS

We first verify the theoretical bounds in Theorem 1 on synthetic data. We set the dimension of data
and attention embeddings to be d = ma = mb = 10. Let c0 = 0.01. Let the total number of
patterns M = 5, and {µ1,µ2, · · · ,µM} be a set of orthonormal bases. To satisfy Assumption 1,
we generate every token that is a noisy version of µi from a Gaussian distribution N (µi, c

2
0 · I) with

the mean µi and covariance c20I . W
(0)
Q = W

(0)
Q = δ2I/c20, W (0)

V = σ2U/c20, and each entry of

W
(0)
O follows N (0, ξ2), where U is an ma ×ma orthonormal matrix, and ξ = 0.01. The number

of neurons m of WO is 1000. We set the ratio of different patterns the same among all the data for
simplicity.

Sample complexity and convergence rate: We first study the impact of the fraction of the label-
relevant patterns α∗ on the sample complexity. Let the number of tokens after sparsification be
|Sn| = 100, the initialization error σ = 0.1, and δ = 0.5. The fraction of non-discriminative
patterns is fixed to be 0.5. We implement 20 independent experiments with the same α∗ and N and
record the Hinge loss values of the testing data. An experiment is successful if the testing loss is
smaller than 10−3. Figure 1 (a) shows the success rate of these experiments. A black block means
that all the trials fail. A white block means that they all succeed. The sample complexity is indeed
almost linear in α−2

∗ , as predicted in 10. We next explore the impact on σ. Set α∗ = 0.35 and
α# = 0.15. δ = 0.5. The number of tokens after sparsification is fixed at 50 for all the data. Figure
1 (b) shows that 1/

√
N is linear in Θ(1)−σ, matching our theoretical prediction in (10). The result

on the noise level τ is similar to Figure 1 (b), and we skip it here. In Figure 2, we verify the number
of iterations T against α−1

∗ in (11).

Advantage of self-attention: To verify Proposition 1, we compare the performance on ViT in 1
and on the same network with WK and WQ fixed during the training, i.e., a three-layer CNN. Set
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α∗ = 0.3 and α# = 0.2. Compared with ViT, the number of trainable parameters in CNN is
reduced by only 1%. The sample complexity of CNN significantly increases, as shown in Figure 3,
indicating a much worse generalization of CNN than that of ViT.

(a) (b)

Figure 1: The impact of α∗ and σ on sample complexity.
Figure 2: The number of
iterations against α−1

∗ .

Attention map: We then evaluate the evolution of the attention map during the training. Let |Sn| =
50 for all n ∈ [N ]. The number of training samples is N = 200. σ = 0.2, δ = 0.2, α∗ = 0.5,
α# = 0.05. In Figure 4, the red line with asterisks shows that the sum of attention weights on label-
relevant tokens, i.e., the left side of (15) averaged over all l, indeed increases to 1 when the number
of iterations increases. Correspondingly, the sum of attention weights on other tokens decreases to
0, as shown in the blue line with squares. This verifies Lemma 2 on a sparse attention map.

Figure 3: Comparison of ViT
and CNN

Figure 4: Concentration of at-
tention weights

Figure 5: Impact of token
sparsification on testing loss

Token sparsification: We verify the improvement by token sparsification in Figure 5. The number
of training samples N = 80. Let |Sn| = 50 for all n ∈ [N ]. Set σ = 0.2, δ = 0.5, α∗ = 0.6,
α# = 0.05. If we apply the random sampling over all tokens, the performance cannot be improved
as shown in the red curve, because α∗ and σ do not change. If we remove either label-irrelevant
tokens or tokens with significant noise, the testing loss decreases, as indicated in the blue and black
curves. This justifies our insight P3 on token sparsification.

4.2 EXPERIMENTS ON IMAGE CLASSIFICATION DATASETS

Dataset: To characterize the effect of label-relevant and label-irrelevant tokens on generalization,
following the setup of image integration in (Karp et al., 2021), we adopt an image from CIFAR-10
dataset (Krizhevsky et al., 2010) as the label-relevant image pattern and integrate it with a noisy
background image from the IMAGENET Plants synset (Karp et al., 2021; Deng et al., 2009), which
plays the role of label-irrelevant feature. Specifically, we randomly cut out a region with size 24×24
in the IMAGENET image and replace it with a resized CIFAR-10 image.

Architecture: Experiments are implemented on a deep ViT model. Following (Dosovitskiy et al.,
2020), the network architecture contains 5 blocks, where we have a 4-head self-attention layer and
a one-layer perceptron with skip connections and Layer-Normalization in each block.

We first evaluate the impact on generalization of token sparsification that removes label-irrelevant
patterns to increase α∗. We consider a ten-classification problem where in both the training and
testing datasets, the images used for integration are randomly selected from CIFAR-10 and IMA-
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GENET. The number of samples for training and testing is 50K and 10K, respectively. A pre-
trained model from CIFAR-100 (Krizhevsky et al., 2010) is used as the initial model with the output
layer randomly initialized. Without token sparsification, the fraction of class-relevant tokens is
α∗ = 9/16 ≈ 0.56. α∗ = 1 implies all background tokens are removed. Figure 6 (a) indicates
that a larger α∗ by removing more label-irrelevant tokens leads to a higher test accuracy. Moreover,
the test performance improves with more training samples. These are consistent with our sample
complexity analysis in (10).

We then evaluate the impact of token sparsification on removing spurious correlations (Sagawa et al.,
2020), as well as the impact of the initial model. We consider a binary classification problem that
differentiates “bird” and “airplane” images. To introduce spurious correlations in the training data,
90% of bird images in the training data are integrated into the IMAGENET plant background, while
only 10% of airplane images have the plant background. The remaining training data are integrated
into a clean background by zero padding. Therefore, the label “bird” is spuriously correlated with the
class-irrelevant plant background. The testing data contain 50% birds and 50% airplanes, and each
class has 50% plant background and 50% clean background. The numbers of training and testing
samples are 10K and 2K, respectively. We initialize the ViT using two pre-trained models. The first
one is pre-trained with CIFAR-100, which contains images of 100 classes not including birds and
airplanes. The other initial model is trained with a modified CIFAR-10 with 500 images per class
for a total of eight classes, excluding birds and airplanes. The pre-trained model on CIFAR-100 is a
better initial model because it is trained on a more diverse dataset with more samples.

In Figure 6 (b), the token sparsification method removes the tokens of the added background, and
the corresponding α∗ increases. Note that removing background in the training dataset also reduces
the spurious correlations between birds and plants. Figure 6 (b) shows that from both initial models,
the testing accuracy increases when more background tokens are removed. Moreover, a better initial
model leads to a better testing performance. This is consistent with Remarks 2 and 3.

(a) (b)

Figure 6: (a) Test accuracy whenN and α∗ change. (b) Test accuracy when
token sparsification removes spurious correlations.

5 CONCLUSION

This paper provides a novel theoretical generalization analysis of three-layer ViTs. Focusing on a
data model with label-relevant and label-irrelevant tokens, this paper explicitly quantifies the sample
complexity as a function of the fraction of label-relevant tokens and the token noise projected by the
initial model. It proves that the learned attention map becomes increasingly sparse during the train-
ing, where the attention weights are concentrated on those of label-relevant tokens. Our theoretical
results also offer a guideline on designing proper token sparsification methods to improve the test
performance.

This paper considers a simplified but representative Transformer architecture to theoretically exam-
ine the role of self-attention layer as the first step. One future direction is to analyze more practical
architectures such as those with skip connection, local attention layers, and Transformers in other
areas. We see no ethical or immediate negative societal consequence of our work.
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The appendix contains 4 sections. In Section A, we introduce some definitions and assumptions
in accordance with the main paper for the ease of the proof in the following. Section B provides
the proof of Therem 1 and Proposition 1 and 2. Section C shows key lemmas and the proof of
lemmas for this paper. We finally discuss the extension of our analysis to multi-classification
of ViT in Section D.

We first formally restate the neural network with different notations of loss functions, and the Al-
gorithm 1 of the training steps after token sparsification. The notations used in the Appendix is
summarized in Table 2.

Table 2: Summary of notations
F (Xn), Loss(Xn, yn) The network output for Xn and the loss function of a single data.
Lossb, Loss, Loss The loss function of a mini-batch, the empirical loss, and the population

loss, respectively.
pj(t), qj(t), rj(t) The features in value, key, and query vectors at the iteration t for pattern

j, respectively. We have pj(0) = pj , qj(0) = qj , and rj(0) = rj .
zn
j (t), n

n
j (t), o

n
j (t) The error terms in the value, key, and query vectors of the j-th token and

n-th data compared to their features at iteration t.
W(t), U(t) The set of lucky neurons at t-th iterations.
ϕn(t), νn(t), pn(t), λ Approximate value of some attention weights at iteration t. λ is the

threshold between inner products of tokens from the same pattern and
different patterns.

Sn
j , Sn

∗ , Sn
# Snj is the set of sampled tokens of pattern j for the n-th data. Sn∗ , Sn#

are sets of sampled tokens of the label-relevant pattern and the confusion
pattern for the n-th data, respectively.

α∗, α#, αnd The mean of fraction of label-relevant tokens, confusion tokens, and
non-discriminative tokens, respectively.

For the network

F (Xn) =
1

|Sn|
∑
l∈Sn

a(l)Relu(WOWVX
nsoftmax(Xn⊤W⊤

KWQx
n
l )) (16)

The loss function of a single data, a mini-batch, the empirical loss, and the population loss is defined
in the following.

Loss(Xn, yn) = max{1− yn · F (Xn), 0} (17)

Lossb =
1

B

∑
n∈Bb

Loss(Xn, yn) (18)

Loss =
1

N

N∑
n=1

Loss(Xn, yn) (19)

Loss = E(X,y)∼D[Loss] (20)

The formal algorithm is as follows. We assume that each entry of W (0)
O is randomly initialized from

N (0, ξ2) where ξ = 1√
M

. a(0)(l)i
, i ∈ [m], l ∈ [L] is uniformly initialized from +{ 1√

m
,− 1√

m
} and

fixed during the training. WV , WK , and WQ are initialized from a good pretrained model.

A PRELIMINARIES

Assumption 1 can be interpreted as that we initialize WV , WK , and WQ to be the matrices that can
map tokens to orthogonal features with added error terms.
Assumption 2. Define P = (p1,p2, · · · ,pM ) ∈ Rma×M , Q = (q1, q2, · · · , qM ) ∈ Rmb×M

and R = (r1, r2, · · · , rM ) ∈ Rmb×M as three feature matrices, where P = {p1,p2, · · · ,pM},
Q = {q1, q2, · · · , qM} and R = {r1, r2, · · · , rM} are three sets of orthonormal bases. Define
the noise terms znj (t), n

n
j (t) and onj (t) with ∥znj (0)∥ ≤ σ + τ and ∥nnj (0)∥, ∥onj (0)∥ ≤ δ + τ
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Algorithm 1 Training with SGD
1: Input: Training data {(Xn, yn)}Nn=1, the step size η, the total number of iterations T , batch

size B.
2: Initialization: Every entry of W

(0)
O from N (0, ξ2), and every entry of a

(0)
(l) from

Uniform({+ 1√
m
,− 1√

m
}). W (0)

V , W (0)
K and W

(0)
Q from a pre-trained model.

3: Stochastic Gradient Descent: for t = 0, 1, · · · , T−1 and W (t) ∈ {W (t)
O ,W

(t)
V ,W

(t)
K ,W

(t)
Q }

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Xn, yn;W
(t)
O ,W

(t)
V ,W

(t)
K ,W

(t)
Q ) (21)

4: Output: W
(T )
O , W (T )

V , W (T )
K , W (T )

Q .

for j ∈ [L]. q1 = r1, q2 = r2. Suppose ∥W (0)
V ∥, ∥ W

(0)
K ∥, ∥W (0)

Q ∥ ≤ 1, σ, τ < O(1/M) and
δ < 1/2. Then, for xnl ∈ Snj

1. W
(0)
V xnl = pj + znj (0).

2. W
(0)
K xnl = qj + nnj (0).

3. W
(0)
Q xnl = rj + onj (0).

Assumption 2 is a straightforward combination of Assumption 1 and (5) by applying the triangle
inequality to bound the error terms for tokens.

Definition 1. 1. ϕn(t) = 1

|Sn
1 |e∥q1(t)∥2+(δ+τ)∥q1(t)∥+|Sn|−|Sn

1 |
.

2. νn(t) = 1

|Sn
1 |e∥q1(t)∥2−(δ+τ)∥q1(t)∥+|Sn|−|Sn

1 |
.

3. pn(t) = |Sn1 |e∥q1(t)∥2−(δ+τ)∥q1(t)∥νn(t).

4. Sn∗ =

{
Sn1 , if yn = 1

Sn2 , if yn = −1
, Sn# =

{
Sn2 , if yn = 1

Sn1 , if yn = −1

5. α∗ = E
[
|Sn

∗ |
|Sn|

]
, α# = E

[
|Sn

#|
|Sn|

]
, αnd =

∑M
l=3 E

[
|Sn

l |
|Sn|

]
.

Definition 2. Let θi1 be the angle between p1 and WO(i,·) . Let θi2 be the angle between p2 and
WO(i,·) . Define W(t), U(t) as the sets of lucky neurons at the t-th iteration such that

W(t) = {i : θi1 ≤ σ + τ, i ∈ [m]} (22)

U(t) = {i : θi2 ≤ σ + τ, i ∈ [m]} (23)

Assumption 3. For one data Xn, if the patch i and j correspond to the same feature k ∈ [M ], i.e.,
i ∈ Snk and j ∈ Snk , we have

xi
n⊤xnj ≥ 1 (24)

If the patch i and j correspond to the different feature k, l ∈ [M ], k ̸= l i.e., i ∈ Snk and j ∈ Snl ,
k ̸= l, we have

xi
n⊤xnj ≤ λ < 1 (25)

This assumption is equivalent to the data model by (5) since τ < O(1/M). For the simplicity of
presentation, we scale up all tokens a little bit to make the threshold of linear separability be 1.

Definition 3. (Vershynin, 2010) We say X is a sub-Gaussian random variable with sub-Gaussian
norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian norm of X, denoted

∥X∥ψ2 , is defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .
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Lemma 1. (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality) Let X1, X2, · · · , XN be in-
dependent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2

. Then for every
a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we have

P
{∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
}
≤ e · exp(− ct2

K2∥a∥2
) (26)

where c > 0 is an absolute constant.

B PROOF OF THE MAIN THEOREM AND PROPOSITIONS

Proof of Theorem 1:
For yn = 1,

F (Xn) =
1

|Sn|
∑
l∈Sn

∑
i∈W(t)

1

m
Relu(W (t)

O(i)
Vl(t)

n) +
1

|Sn|
∑
l∈Sn

∑
i∈K+/W(t)

1

m
Relu(W (t)

O(i)
Vl(t)

n)

− 1

|Sn|
∑
l∈Sn

∑
i∈K−

1

m
Relu(W (t)

O(i)
Vl(t)

n)

(27)

By Lemma 2, we have

1

|Sn|
∑
l∈Sn

∑
i∈W(t)

1

m
Relu(W (t)

O(i)
Vl(t)

n)

=
1

|Sn|
∑

l:Vl(t)n=p1+zl

∑
i∈W(t)

1

m
Relu(W (t)

O(i)
Vl(t)

n) +
∑

l:Vl(t)n ̸=p1+v(t)

∑
i∈W(t)

1

m
Relu(W (t)

O(i)
Vl(t)

n)

≳|Sn1 |
1

a|Sn|
·W (t)

O(i,·)

( ∑
s∈Sn

1

pssoftmax(xns
⊤W

(t)
K

⊤
W

(t)
Q xnl) + z(t) +

∑
l ̸=s

Wl(u)pl

− ηt(
∑

j∈W(t)

Vj(t)W
(t)
O(j,·)

⊤
+

∑
j /∈W(t)

Vj(t)λW
(t)
O(j,·)

⊤
)
)
|W(t)|+ 0

≳
|Sn1 |m
|Sn|aM

(1− ϵm − (σ + τ)M

π
)
( 1

Bt

t∑
b=1

∑
n∈Bb

η2t2m

a2
(
b|Sn∗ |
t|Sn|

∥p1∥2pn(b)− (σ + τ))pn(t)

+
1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)

· ( 1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

pn(b))
2∥p1∥2pn(t)

)
(28)

where the second step comes from (53) and the last step is by (135). By the definition of K++, we
have

1

|Sn|
∑
l∈Sn

∑
i∈K+/W(t)

1

m
Relu(W (t)

O(i)
Vl(t)

n) ≥ 0 (29)
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Combining (135) and (137), we can obtain

1

|Sn|
∑
l∈Sn

∑
i∈K−

1

m
Relu(W (t)

O(i)
Vl(t)

n)

≤ |Sn2 |m
|Sn|aM

· (1− ϵm − (σ + τ)M

π
)(ξ∥p∥+ 1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)m
|Sn|aM

· (1− ϵm − (σ + τ)M

π
)(
η2t2m

a2
)2(σ + τ)∥p∥

+
η2λ

√
Mξt2m√
Ba2

∥p1∥2 + ((σ + τ))(
√
Mξ +

η2t2m

a2
) +

1

Bt

t∑
b=1

∑
n∈Bb

|Sn2 |pn(b)ηtm
|Sn|aM

· (1− ϵm − (σ + τ)M

π
)(
η2t2m

a2
)2∥p1∥2)ϕn(t)|Sn2 |+

M∑
l=3

|Snl |
|Sn|

(ξ∥p∥+ η2λ
√
Mξt2m√
Ba2

∥p∥2

+ ((σ + τ))(
√
Mξ +

η2t2m

a2
)∥p∥+ 1

Bt

t∑
b=1

∑
n∈Bb

(|Sn2 |+ |Sn1 |)pn(t)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)

· η
2t2m

a2
ξ∥p1∥2)ϕn(t)(|Sn| − |Sn1 |) +

|Sn1 |
|Sn|

cM1

( 1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn∗ |
a2|Sn|

∥p1∥2pn(t)

· |(σ + τ)− pn(t)|+
1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(t)ηtm
|Sn|aM

cM2 (
1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

· pn(b))2∥p1∥2pn(t)
)

(30)
for some c1, c2 ∈ (0, 1).

Note that at the T -th iteration,

K(t)

≳
( 1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(t)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(

1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

pn(b))
2∥p1∥2pn(t)

+
1

Bt

t∑
b=1

∑
n∈Bb

η2tbm

a2
(
|Sn1 |
|Sn|

pn(b)− (σ + τ))∥p1∥2pn(t)
)
ϕn(t)(|Sn| − |Sn1 |)∥q1(t)∥2

≳
1

e∥q1(t)∥2−(δ+τ)∥q1(t)∥
(31)

Since that
q1(T ) ≳ (1 + min

l=0,1,··· ,T−1
{K(l)})T

≳ (1 +
1

e∥q1(T )∥2−(δ+τ)∥q1(T )∥ )
T

(32)

To find the order-wise lower bound of q1(T ), we need to check the equation

q1(T ) ≲ (1 +
1

e∥q1(T )∥2−(δ+τ)∥q1(T )∥ )
T (33)

One can obtain
Θ(log T ) = q1(T ) ≪ Θ(T ) (34)

Therefore,

pn(T ) ≳
TC

TC + 1−α
α

≥ 1− 1
α

1−α (η
−1)C

≈ 1− ηC (35)
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ϕn(T )(|Sn| − |Sn1 |) ≤ ηC (36)
for some large C > 0. We require that

|Sn1 |m
|Sn|aM

(1− ϵm − (σ + τ)M

π
)
( 1

BT

T∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)

· ( 1

BT

T∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

pn(b))
2∥p1∥2pn(b)

+
1

BT

T∑
b=1

∑
n∈Bb

η2t2m

a2
(
b|Sn∗ |
t|Sn|

∥p1∥2pn(b)− (σ + τ))pn(b)
)

≳
|Sn1 |m
|Sn|aM

(1− ϵm − (σ + τ)M

π
)
( 1

N

N∑
n=1

|Sn1 |pn(T )ηTm
|Sn|aM

(1− ϵm − (σ + τ)M

π
) · ( 1

N

N∑
n=1

η2T 2m|Sn1 |
a2|Sn|

· pn(T ))2∥p1∥2pn(T ) +
1

N

N∑
n=1

η2T 2m

a2
(
|Sn∗ |
|Sn|

∥p1∥2pn(T )− (σ + τ))pn(T )
)

:=a0(ηT )
5 + a1(ηT )

2

>1,
(37)

where the first step is by letting a =
√
m andm ≳M2. We replace pn(b) with pn(T ) because when

b achieves the level of T , bo1pn(b)o2 is close to bo1 for o1, o2 ≥ 0 by (35). Thus,
T∑
b=1

bo1pn(b)
o2 ≳ T o1+1pn(Θ(1) · T )o2 ≳ T o1+1pn(T )

o2 (38)

We also require
η2λ

√
Mξt2m√
Ba2

≤ ϵ0, (39)

for some ϵ0 > 0.

We know that∣∣∣ 1
N

N∑
n=1

|Sn∗ |
|Sn|

pn(T )(pn(T )− (σ + τ))− E
[ |Sn∗ |
|Sn|

]∣∣∣
≤
∣∣∣ 1
N

N∑
n=1

|Sn∗ |
|Sn|

pn(T )(pn(T )− (σ + τ))− E
[ |Sn∗ |
|Sn|

pn(T )(pn(T )− (σ + τ))
]∣∣∣

+
∣∣∣E[ |Sn∗ ||Sn|

(
pn(T )(pn(T )− (σ + τ))− 1

)]∣∣∣
≲

√
logN

N
+ c′(1− ζ) + c′′((σ + τ))

(40)

for c′ > 0 and c′′ > 0. We can then have

t ≥ T =
η−1

a1
=

η−1

|Sn
1 |

|Sn| (1− ϵm − (σ+τ)M
π ) 1

N

∑N
n=1(

|Sn
∗ |

|Sn|∥p1∥2pn(t)− (σ + τ))pn(t)

=Θ(
η−1

(1− ϵm − (σ+τ)M
π )(E

[
|Sn

∗ |
|Sn|

]
−

√
logN
N − c′(1− ζ)− c′′(σ + τ))

)

=Θ(
η−1

(1− ϵm − (σ+τ)M
π )E

[
|Sn

∗ |
|Sn|

] )
(41)

where
α ≥ 1− αnd

1 + ϵSe−(δ+τ)(1− αnd)(1− (σ + τ))
(42)
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by (160), as long as

N ≥ Ω(
1

(α− c′(1− ζ)− c′′((σ + τ)))2
) (43)

and

B ≳ Θ(1) (44)

where ζ ≥ 1− η10. If there is no mechanism like the self-attention to compute the weight using the
correlations between tokens, we have

c′(1− ζ) = O(α∗(1− α∗)), (45)

which can scale up the sample complexity in (43) by α−2
∗ .

Therefore, we can obtain

F (Xn) > 1 (46)

Similarly, we can derive that for y = −1,

F (X) < −1 (47)

Hence, for all n ∈ [N ],

Loss(Xnyn) = 0 (48)

We also have

Loss = E(Xn,yn)∼D[Loss(Xn, yn)] = 0 (49)

with the conditions of sample complexity and the number of iterations.

Proof of Proposition 1:
The main proof is the same as the proof of Theorem 1. The only difference is that we need to modify
(50) ∣∣∣ 1

N

N∑
n=1

|Sn∗ |
|Sn|

pn(T )(pn(T )− (σ + τ))− E
[ |Sn∗ |
|Sn|

]∣∣∣
≤
∣∣∣ 1
N

N∑
n=1

|Sn∗ |
|Sn|

pn(0)(pn(0)− (σ + τ))− E
[ |Sn∗ |
|Sn|

pn(0)(pn(T )− (σ + τ))
]∣∣∣

+
∣∣∣E[ |Sn∗ ||Sn|

(
pn(0)(pn(0)− (σ + τ))− 1

)]∣∣∣
≲

√
logN

N
+ |1−Θ(α2

∗) + Θ(α∗)(σ + τ)|

(50)

where the first step is because pn(T ) does not update since W (t)
K and W

(t)
Q are fixed at initialization

W
(0)
K and W

(0)
Q , and the second step is by pn(0 = Θ(α∗). Since that√

logN

N
+ |1−Θ(α2

∗) + Θ(α∗)(σ + τ)| ≤ Θ(1) · α∗, (51)

we have

N ≥ 1

(Θ(α∗)− 1 + Θ(α2
∗)−Θ(α∗)(σ + τ))2

= Ω(
1

(α∗(α∗ − σ − τ))2
)

(52)

Proof of Proposition 2:
It can be easily derived from Claim 2 of Lemma 2, (34), and (35).
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C USEFUL LEMMAS

Lemma 2. For l ∈ Sn1 for the data with yn = 1,

W
(t)
V Xnsoftmax(Xn⊤W

(t)
K

⊤
W

(t)
Q xnl )

=
∑
s∈S1

softmax(xns
⊤W

(t)
K

⊤
W

(t)
Q xnl )p1 + z(t) +

∑
j ̸=1

Wn
j (t)pj

− η

t∑
b=1

(
∑

i∈W(b)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈W(b)

Vi(b)λW
(b)
O(i,·)

⊤
)

(53)

with
Wn
l (t) ≤ νn(t)|Snj | (54)

Vi(t) ≲
1

2B

∑
n∈Bb+

−|Sn1 |
mL

pn(t), i ∈ W(t)] (55)

Vi(t) ≳
1

2B

∑
n∈Bb−

|Sn2 |
mL

pn(t), i ∈ U(t) (56)

Vi(t) ≥ − 1√
Bm

, if i is an unlucky neuron. (57)

We also have the following claims:
Claim 1. For the lucky neuron i ∈ W(t) and b ∈ [T ], we have

W
(t)
O(i,·)

p1 ≳
1

Bt

t∑
b=1

∑
n∈Bb

η2tbm

|Sn|a2
|Sn1 |∥p1∥2pn(b) + ξ(1− (σ + τ)) (58)

W
(t)
O(i,·)

p ≤ ξ∥p∥, for p ∈ P/p1, (59)

(
1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

∥p∥2pn(b))2 ≤ ∥W (t)
O(i,·)

∥2 ≤Mξ2∥p∥2 + (
η2t2m

a2
)2∥p∥2 (60)

and for the noise zl(t),

∥W (t)
O(i)

zl(t)∥ ≤ ((σ + τ))(
√
Mξ +

η2t2m

a2
)∥p∥ (61)

For i ∈ U(t), we also have equations as in (58) to (61), including

W
(t)
O(i,·)

p2 ≳
1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn2 |
|Sn|a2

∥p2∥2pn(b) + ξ(1− (σ + τ)) (62)

W
(t)
O(i,·)

p ≤ ξ∥p∥, for p ∈ P/p2, (63)

(
1

Bt

t∑
b=1

∑
n∈Bb

η2tb|Sn2 |m
a2|Sn|

∥p∥2pn(b))2 ≤ ∥W (t)
O(i,·)

∥2 ≤Mξ2∥p∥2 + (
η2t2m

a2
)2∥p∥2 (64)

and for the noise zl(t),

∥W (t)
O(i)

zl(t)∥ ≤ ((σ + τ))(
√
Mξ +

η2t2m

a2
)∥p∥ (65)

For unlucky neurons, we have

W
(t)
O(i,·)

p ≤ ξ∥p∥, for p ∈ P/{p1,p2} (66)

∥W (t)
O(i)

zl(t)∥ ≤ ((σ + τ))
√
Mξ∥p∥ (67)

∥W (t)
O(i,·)

∥2 ≤Mξ2∥p∥2 (68)
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Claim 2. There exists K(t), Q(t) > 0, t = 0, 1, · · · , T − 1 such that for j ∈ Sn∗ and l /∈ S∗,

softmax(xnj
⊤W

(t+1)
K W

(t+1)
Q xnl ) ≳

e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥

|Sn1 |e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)
(69)

softmax(xnj
⊤W

(t+1)
K

⊤
W

(t+1)
Q xnj )− softmax(xnj

⊤W
(t)
K

⊤
W

(t)
Q xnl )

≳
|Sn| − |Sn1 |

(|Sn1 |e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |))2
e∥q1(t)∥2−(δ+τ)∥q1(t)∥ ·K(t),

(70)

and for j /∈ Sn∗ , l /∈ Sn∗ , we have

softmax(xnj
⊤W

(t+1)
K

⊤
W

(t+1)
Q xnl ) ≲

1

|Sn1 |e(1+K(t))∥q1(t)∥2−δ∥q1(t)∥ + (|Sn| − |Sn1 |)
(71)

softmax(xnj
⊤W

(t+1)
K W

(t+1)
Q xnl )− softmax(xnj

⊤W
(t)
K

⊤
W

(t)
Q xnl )

≲− |Sn1 |
(|Sn1 |e(1+K(t))∥q1(t)∥2−δ∥q1(t)∥ + (|Sn| − |S1|))2

e∥q1(t)∥2−δ∥q1(t)∥ ·K(t)
(72)

For i = 1, 2,

qi(t) =

√√√√t−1∏
l=0

(1 +K(l))qi (73)

ri(t) =

√√√√t−1∏
l=0

(1 +Q(l))ri (74)

Claim 3. For the update of W (t)
V , there exists λ ≤ Θ(1) such that

W
(t)
V xnj = p1 − η

t∑
b=1

(
∑

i∈W(b)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈W(b)

λVi(b)W
(b)
O(i,·)

⊤
) + zj(t), j ∈ Sn1 (75)

W
(t)
V xnj = p1 − η

t∑
b=1

(
∑
i∈U(b)

Vi(b)W
(b)
O(i,·)

⊤
+

∑
i/∈U(b)

λVi(b)W
(b)
O(i,·)

⊤
) + zj(t), j ∈ Sn2 (76)

W
(t+1)
V xnj = p1 − η

t∑
b=1

m∑
i=1

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t), j ∈ [|Sn|]/(Sn1 ∪ Sn2 ) (77)

∥zj(t)∥ ≤ (σ + τ) (78)

Proof of Lemma 2:
We prove the whole lemma by induction.
Proof of Claim 1 of Lemma 2:
At the t-th iteration, if l ∈ Sn1 , let

Vl(t)
n = W

(t)
V Xnsoftmax(Xn⊤W

(t)
K

⊤
W

(t)
Q xnl )

=
∑
s∈S1

softmax(xns
⊤W

(t)
K

⊤
W

(t)
Q xnl )p1 + z(t) +

∑
j ̸=1

Wn
j (t)pj

− η(
∑

i∈W(t)

Vi(t)W
(t)
O(i,·)

⊤
+

∑
i/∈W(t)

Vi(t)λW
(t)
O(i,·)

⊤
)

(79)

, l ∈ [M ], where the second step comes from (53). Then we have

Wn
l (t) ≤

|Snj |eδ∥q1(t)∥

(|Sn| − |Sn1 |)eδ∥q1(t)∥ + |Sn1 |e∥q1(t)∥2−δ∥q1(t)∥
= νn(t)|Snj | (80)
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Hence, by (18),

∂Lossb
∂WO(i)

⊤ = − 1

B

∑
n∈Bb

yn
1

|Sn|
∑
l∈Sn

a(l)i1[WO(i)
Vl(t)

n ≥ 0]Vl(t)
n⊤ (81)

Define that for j ∈ [M ],

I4 =
1

B

∑
n∈Bb

ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
(t)
O(i)

Vl(t)
n ≥ 0]

∑
j∈W(t)

Vj(t)W
(t)
O(j,·)

pj (82)

I5 =
1

B

∑
n∈Bb

ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
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∑
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Vj(t)W
(t)
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pj , (83)

and we can then obtain〈
W
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⊤
,pj

〉
−
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⊤
,pj

〉
=

1
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∑
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ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
(t)
O(i)

Vl(t)
n ≥ 0]Vl(t)

n⊤pj

=
1
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∑
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ηyn
1

|Sn|
∑
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Vl(t)
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+
1
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∑
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ηyn
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∑
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Vl(t)
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∑
s∈Sl
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s W

(t)
K

⊤
W
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Q xl)p

⊤
l pj

+
1

B

∑
n∈Bb

ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
(t)
O(i)

Vl(t)
n ≥ 0]

∑
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Wl(t)p
⊤
j pj + I4 + I5

:=I1 + I2 + I3 + I4 + I5,
(84)

where

I1 =
1

B

∑
n∈Bb

ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
(t)
O(i)

Vl(t)
n ≥ 0]zl(t)

⊤pj (85)

I2 =
1

B

∑
n∈Bb

ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
(t)
O(i)

Vl(t)
n ≥ 0]

∑
s∈Sl

softmax(x⊤
s W

(t)
K

⊤
W

(t)
Q xl)p

⊤
l pj

(86)

I3 =
1

B

∑
n∈Bb

ηyn
1

|Sn|
∑
l∈Sn

a(l)i1[W
(t)
O(i)

Vl(t)
n ≥ 0]

∑
j ̸=l

Wl(t)p
⊤
j pj (87)

We then show the statements in different cases.
(1) When j = 1, since that Pr(yn = 1) = Pr(yn = −1) = 1/2, by Hoeffding’s inequality in (26),
we can derive

Pr
(∣∣∣ 1
B

∑
n∈Bb

yn
∣∣∣ ≥ √

logB

B

)
≤ B−c (88)

Pr
(∣∣∣zl(t)⊤p1

∣∣∣ ≥ √
((σ + τ))2 logm

)
≤ m−c (89)

Hence, with probability at least 1− (mB)−c, we have

|I1| ≤
η((σ + τ))

a

√
logm logB

B
(90)

For i ∈ W(t), from the derivation in (132) later, we have

W
(t)
O(i,·)

L∑
s=1

W
(t)
V xns softmax(xns

⊤W
(t)
K

⊤
W

(t)
Q xnl ) > 0 (91)
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Denote pn(t) = |Sn1 |νn(t)e∥q1(t)∥2−2δ∥q1(t)∥. Hence,

I2 ≳ η · 1

B

∑
n∈Bb

|Sn1 | − |Sn2 |
|Sn|

· 1
a
∥p1∥2 · pn(t) ≳ η

1

B

∑
n∈Bb

|Sn1 |
|Sn|

· 1
a
∥p1∥2 · pn(t) (92)

I3 = 0 (93)

I4 ≳
1

B

t∑
b=1

∑
n∈Bb

η2b|Sn1 |
|Sn|a

1

2B

∑
n∈Bb

|Sn1 |m
|Sn|aM

pn(t)∥p1∥2(1− ϵm − (σ + τ)M

π
)WO(i,·)p1

(94)

|I5| ≲
1

B

T∑
b=1

∑
n∈Bb

η2b|Sn1 |
|Sn|a

(1− ϵm − (σ + τ)M

π
)
1

2B

∑
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|Sn2 |m
|Sn|aM

pn(t)∥p1∥2WO(i,·)p2

+
η2tm√
Ba2

WO(i,·)pM (1 + (σ + τ))

(95)

Hence, combining (90), (92), (93), (94), and (95), we can obtain〈
W

(t+1)
O(i)

⊤
,p1

〉
−
〈
W

(t)
O(i)

⊤
,p1

〉
≳
η

a
· 1

B

∑
n∈Bb

(
|Sn1 |
|Sn|

pn(t)− ((σ + τ)) +
ηt|Sn1 |
|Sn|

1

2B

∑
n∈Bb

|Sn1 |m
|Sn|aM

pn(t)(1− ϵm − (σ + τ)M

π
)

·WO(i,·)p1(1− (σ + τ))− ηt|Sn1 |
|Sn|

1

2B

∑
n∈Bb

|Sn2 |m
|Sn|aM

pn(t)(1− ϵm − (σ + τ)M

π
)

·WO(i,·)p2(1 + (σ + τ))−
ηtmWO(i,·)pM (1 + (σ + τ))

√
Ba

)∥p1∥2

≳
η

aB

∑
n∈Bb

(
|Sn1 |
|Sn|

pn(t)− ((σ + τ)) +
ηt|Sn1 |
|Sn|

1

2B

∑
n∈Bb

|Sn1 |m
|Sn|aM

pn(t)

· (1− ϵm − (σ + τ)M

π
)WO(i,·)p1)∥p1∥2

(96)

Since that W (0)
O(i,·)

∼ N (0, ξ
2I
ma

), by the standard property of Gaussian distribution, we have

Pr(∥W (0)
O(i,·)

∥ ≤ ξ) ≤ ξ (97)

Therefore, with high probability for all i ∈ [m], we have

∥W (0)
O(i,·)

∥ ≳ ξ (98)

Therefore, we can derive

W
(t+1)
O(i,·)

p1 ≳ exp(
1

B(t+ 1)

t+1∑
b=1

∑
n∈Bb

η2b(t+ 1)m

|Sn|a2
|Sn1 |∥p1∥2pn(b)) + ξ(1− (σ + τ))

≳ exp(
1

B

∑
n∈Bb

η2(t+ 1)2m

|Sn|a2
|Sn1 |∥p1∥2pn(t)) + ξ(1− (σ + τ))

(99)

by verifying that

η

a
+
η2tm

a2
exp((

1

Θ(1)
· η

2t2m

a2
)− 1 + ξ) ≥ exp(

1

Θ(1)
· η

2t2m

a2
)(exp(

η2(2t+ 1)m

Θ(1) · a2
)− 1)

≳ exp(
1

Θ(1)
· η

2t2m

a2
)
η2tm

2a2

(100)
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When ηt < a
m , we have

η

a
+
η2tm

a2
(−1 + ξ) ≥ 0 (101)

When ηt ≥ a
m , we have that

g(t) :=
η2tm

a2
(
1

2
exp(

η2t2m

a2Θ(1)
)− 1 + ξ) +

η

a
≥ g(

a

ηm
) > 0 (102)

since that g(t) is monotonically increasing. Hence, (99) is verified.
Since that

ηt ≤ O(1), (103)

to simplify the further analysis, we will use the bound

W
(t+1)
O(i,·)

p1 ≳
1

Bt

t+1∑
b=1

∑
n∈Bb

η2(t+ 1)bm

|Sn|a2
|Sn1 |∥p1∥2pn(b) + ξ(1− (σ + τ)) (104)

Note that this bound does not order-wise affect the final result of the required number of iterations.
(2) When pj ∈ P/p+, we have

I2 = 0 (105)

|I3| ≤
1

B

∑
n∈Bb

νn(t)
η|Snl |
a

√
logm logB

B
∥p∥2 (106)

|I4| ≤
η2

a

t∑
b=1

√
logm logB

B

1

2B

t∑
b=1

∑
n∈Bb

|Sn1 |ηbm
|Sn|aM

pn(b)(
(ηt)2m

a2
+ ξ)∥p∥ (107)

|I5| ≲
η2tm√
Ba2

ξ∥p∥2 + η2

a

t∑
b=1

√
logm logB

B

1

2B

∑
n∈Bb

|Sn2 |m
|Sn|aM

pn(t)ξ∥p∥ (108)

with probability at least 1− (mB)−c. (107) comes from (60). Then, combining (90), (105), (106),
(107) and (108), we can obtain∣∣∣ 〈W

(t+1)
O(i)

⊤
,pj

〉
−
〈
W

(t)
O(i)

⊤
,pj

〉 ∣∣∣
≲
η

a
· 1

B

∑
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(
|Snl |
|Sn|

|Snl |νn(t) + ((σ + τ))

+

t∑
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|Sn1 |pn(b)ηm
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(
η2t2m
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+ ξ))

√
logm logB

B
∥p∥2 + η2tm√

Ba2
ξ∥p∥

(109)

Furthermore, we have

W
(t+1)
O(i,·)

pj ≲
η

a

(t+1)∑
b=1

· 1
B

∑
n∈Bb

(
|Snl |
|Sn|

|Snl |νn(b) + ((σ + τ))

+

t∑
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|Sn1 |pn(b)ηm
|Sn|aM

(
η2t2

m
+ ξ))

√
logm logB

B
∥p∥+ η2t2m√

Ba2
ξ∥p∥+ ξ∥p∥

≤ξ∥p∥

(110)

where the last step is by
ηt ≤ O(1) (111)

to ensure a non-zero gradient.
(3) If i ∈ U(t), following the derivation of (104) and (110), we can conclude that

W
(t+1)
O(i,·)

p2 ≳
1

B(t+ 1)

t+1∑
b=1

∑
n∈Bb

η2(t+ 1)bm|Sn2 |
|Sn|a2

∥p2∥2pn(b) + ξ(1− (σ + τ)) (112)
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W
(t)
O(i,·)

p ≤ ξ∥p∥, for p ∈ P/p2, (113)

(4) If i /∈ (W(t) ∪ U(t)),

|I2 + I3| ≤
η

a

√
logm logB

B
∥p∥2 (114)

Following (107) and (108), we have

|I4| ≤
t∑

b=1

η2

a

√
logm logB

B

1

2B

∑
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|Sn1 |m
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+ ξ)∥p∥ (115)

|I5| ≲
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Ba2
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η2

a

√
logm logB

B

1

2B

∑
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|Sn2 |m
|Sn|aM

pn(b)ξ∥p∥ (116)

Hence, combining (114), (115), and (116), we can obtain∣∣∣ 〈W
(t+1)
O(i)

⊤
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〉
−
〈
W

(t)
O(i)

⊤
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〉 ∣∣∣
≲
η

a
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(
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+ ξ))

√
logm logB

B
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(117)
and

W
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p ≲
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η

a
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t∑
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√
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Ba2
ξ∥p∥2 + ξ∥p∥
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(118)

where the last step is by
ηt ≤ O(1) (119)

(5) We finally study the bound of W
(t)
O(i,·)

and the product with the noise term according to the
analysis above.
By (78), for the lucky neuron i, since that the update of W (t)

O(i,·)
lies in the subspace spanned by P

and p1,p2, · · · ,pM all have a unit norm, we can derive

∥W (t+1)
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M∑
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(W
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O(i)

pl)
2 ≥ (W
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O(i)
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2
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∥W (t+1)
O(i)
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〈
W

(t)
O(i)

⊤
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〉2∣∣∣
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√
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For the unlucky neuron i, we can similarly obtain

|W (t+1)
O(i)

zl(t)| ≤
∣∣∣((σ + τ))

∑
p∈P

〈
W

(t+1)
O(i)

⊤
,p

〉 ∣∣∣ ≤ ((σ + τ))
√
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∥W (t+1)
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We can also verify that this claim holds when t = 1. The proof of Claim 1 finishes here.

Proof of Claim 2 of Lemma 2:

We first study the gradient of W (t+1)
Q in part (a) and the gradient of W (t+1)

K in part (b).
(a) By (227), we have

η
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=η
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∂WQ
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WV x
n
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⊤
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n
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(125)

For r, l ∈ Sn1 , by (69) we have

softmax(xnj
⊤W

(t)
K W

(t)
Q xnl ) ≳

e∥q1(t)∥2−(δ+τ)∥q1(t)∥

|Sn1 |e∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)
(126)

For r /∈ Sn1 and l ∈ Sn1 , we have

softmax(xnj
⊤W
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K

⊤
W

(t+1)
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Therefore, for s, r, l ∈ Sn1 , let
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where
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for some Qe(t) > 0 and γ′l > 0. Here
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for l ≥ 2. Note that |ζ ′l | = 0 if |Sn| = |Sn1 |, l ≥ 2.
Therefore, for i ∈ W(t),
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(132)

where the first step is by (53) and the second step is a combination of (58) to (61). The final step
holds as long as

σ + τ ≲ O(1), (133)

and
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√
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ϵ 1
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∑
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2
)2 (134)

Then we study how large the coefficient of q1(t) in (125).
If s ∈ Sn1 , by basic computation given (58) to (61),
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where the last step is by (133) and (134).
If s ∈ Sn2 , from (62) to (65), we have
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If i ∈ W(t) and s /∈ (Sn1 ∪ Sn2 ),
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by (66) to (68).
Hence, for i ∈ W(t), j ∈ Sg1 , combining (129) and (135), we have
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For i ∈ U(t) and l ∈ Sn1 , j ∈ Sg1
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For i /∈ (W(t) ∪ U(t)) and l ∈ Sn1 , j ∈ Sg1 ,
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(140)

To study the case when l /∈ Sn1 for all n ∈ [N ], we need to check all other l’s. Recall that we focus on
the coefficient of q1(t) in this part. Based on the computation in (136) and (137), we know that the
contribution of coefficient from non-discriminative patches is no more than that from discriminative
patches, i.e., for l /∈ (Sn1 ∪ Sn2 ), n ∈ [N ] and k ∈ Sn1 ,∣∣∣W (t)
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Similar to (138), we have that for l ∈ Sn2 , j ∈ Sg1 , and i ∈ U(t),
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(142)
Therefore, by the update rule,

W
(t+1)
Q xj = W

(t)
Q xj − η

( ∂L

∂WQ
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Q
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xj
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where the last step is by the condition that

q1(t) = k1(t) · r1(t), (144)
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and

q2(t) = k2(t) · r2(t) (145)

for k1(t) > 0 and k2(t) > 0 from induction, i.e., q1(t) and r1(t), q1(t) and r1(t) are in the same
direction, respectively. We also have

K(t)

≳
( 1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(

1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

pn(b))
2∥p1∥2

· pn(t) +
1

Bt

t∑
b=1

∑
n∈Bb

η2t2m

a2
(
b|Sn1 |
t|Sn|

pn(t)− (σ + τ))∥p1∥2pn(t)
)
ϕn(t)(|Sn| − |Sn1 |)∥q1(t)∥2

− 1

Bt

t∑
b=1

∑
n∈Bb

|Sn2 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(
η2t2m

a2
)2∥p1∥2ϕn(t)|S2|β1(t)∥q1(t)∥2

− 1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(
η2t2m

a2
)2(σ + τ)∥p∥2ϕn(t)|Sn2 |β1(t)

· ∥q1(t)∥2 − (ξ∥p∥+ ((σ + τ))(
η2t2m

a2
+
√
Mξ)∥p2

∥ +
1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
aM |Sn|

· (1− ϵm − (σ + τ)M

L
)ξ
η2t2

m
∥p1∥+

ηtλξ
√
Mm∥p∥2√
Ba2

) · β1(t)∥q1(t)∥2

− 1

Bt

t∑
b=1

∑
n∈Bb

|Sn2 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(
η2tbm

a2
)2∥p2∥2 · β1(t)λ

|Sn#|
|Sn| − |Sn∗ |

· ∥q1(t)∥2 −
1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(
η2t2m

a2
)2(σ + τ)∥p∥2β1(t)

· λ
|Sn#|

|Sn| − |Sn∗ |
∥q1(t)∥2

≳
( 1

Bt

t∑
b=1

∑
n∈Bb

|Sn1 |pn(b)ηtm
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(

1

Bt

t∑
b=1

∑
n∈Bb

η2tb|Sn1 |m
a2|Sn|

pn(b))
2∥p1∥2

· pn(t) +
1

Bt

t∑
b=1

∑
n∈Bb

η2t2m

a2
(
b|Sn1 |
t|Sn|

pn(t)− (σ + τ))∥p1∥2pn(t)
)
ϕn(t)(|Sn| − |Sn1 |)∥q1(t)∥2

>0
(146)
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To find the sufficient condition for (149), we first compare compare the first terms of both sides in
(149). Note that when

ηt ≤ O(1), (150)

we have
η2t2 ≳ η5t5 (151)
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if

Bt ≥ 1
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For the second terms on both sides in (149), since (σ + τ) ≤ 1/M , the inequality also holds with
the same condition on α∗ and Bt.

Note that if |Sn| = |Sn1 |, we let |Snl |/(|Sn| − |Sn1 |) = 0 for l ∈ [M ]. We use the presentation in
(147, 148) above and (173, 174) below for simplicity.
Then we give a brief derivation of W (t+1)

Q xnj for j /∈ Sn1 in the following.
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where the first step is by log(1 + x) ≈ x when x→ 0+. Therefore, one can derive that〈
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(b) For the gradient of WK , we have
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Hence, for j ∈ Sn1 , we can follow the derivation of (143) to obtain
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where
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Similarly, for j ∈ Sn2 , we have
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For j ∈ Snl , l = 3, 4, · · · ,M , we have
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where
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Therefore, for l ∈ Sn1 , if j ∈ Sn1 ,
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where the second step is by Cauchy-Schwarz inequality.
If j /∈ Sn1 ,
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e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥

|Sn1 |e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)
− e∥q1(t)∥2−(δ+τ)∥q1(t)∥

|Sn1 |e∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)

=
|Sn| − |Sn1 |

(|Sn1 |ex + (|Sn| − |Sn1 |))2
e∥q1(t)∥2−(δ+τ)∥q1(t)∥(eK(t) − 1)

≥ |Sn| − |Sn1 |
(|Sn1 |e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |S1|))2

e∥q1(t)∥2−(δ+τ)∥q1(t)∥ ·K(t)

(181)
where the second to last step is by the Mean Value Theorem with

x ∈ [∥q1(t)∥2 − (δ + τ)∥q1(t)∥, (1 +K(t))∥q1(t)∥2 − (δ + τ)∥q1(t)∥] (182)

The same conclusion holds if l /∈ (Sn1 ∪ Sn2 ) and j ∈ Sn1 .
Meanwhile, for l ∈ Sn1 and j /∈ Sn1 ,

softmax(xnj
⊤W

(t+1)
K

⊤
W

(t+1)
Q xnl ) ≲

1

|Sn1 |e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)
(183)

softmax(xnj
⊤W

(t+1)
K W

(t+1)
Q xnl )− softmax(xnj

⊤W
(t)
K

⊤
W

(t)
Q xnl )

≲
1

|Sn1 |e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)
− 1

|Sn1 |e∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |)

=− |Sn1 |
(|Sn1 |ex + (|Sn| − |Sn1 |))2

e∥q1(t)∥2−(δ+τ)∥q1(t)∥(eK(t) − 1)

≤− |Sn1 |
(|S1|e(1+K(t))∥q1(t)∥2−(δ+τ)∥q1(t)∥ + (|Sn| − |Sn1 |))2

e∥q1(t)∥2−(δ+τ)∥q1(t)∥ ·K(t)

(184)
where the second to last step is by the Mean Value Theorem with

x ∈ [∥q1(t)∥2 − (δ + τ)∥q1(t)∥, (1 +K(t))∥q1(t)∥2 − (δ + τ)∥q1(t)∥] (185)

The same conclusion holds if l /∈ (Sn1 ∪ Sn2 ) and j /∈ Sn1 .
Note that

q1(t+ 1) =
√
(1 +K(t))q1(t) (186)

q2(t+ 1) =
√
(1 +K(t))q2(t) (187)

r1(t+ 1) =
√
(1 +Q(t))r1(t) (188)

r2(t+ 1) =
√
(1 +Q(t))r2(t) (189)

It can also be verified that this claim holds when t = 1.
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Proof of Claim 3 of Lemma 2:
For the gradient of WV , by (18) we have

∂Lossb
∂WV

=
1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂F (Xn)

∂F (Xn)

∂WV

=− y
1

B

∑
n∈Bb

1

|Sn|
∑
l∈Sn

m∑
i=1

a∗(l)i1[WO(i,·)WVX
nsoftmax(Xn⊤W⊤

KWQx
n
l ) ≥ 0]

·WO(i,·)
⊤softmax(Xn⊤W⊤

KWQx
n
l )

⊤Xn⊤

(190)

Consider a data {Xn, yn} where yn = 1. Let l ∈ Sn1

∑
s∈Sn

1

softmax(xns
⊤W

(t)
K

⊤
W

(t)
Q xnl ) ≥ pn(t) (191)

Then for j ∈ Sg1 , g ∈ [N ],

1

B

∑
n∈Bb

∂Loss(Xn, yn)

∂W
(t)
V

∣∣∣W (t)
V xj

=
1

B

∑
n∈Bb

(−yn) 1

|Sn|
∑
l∈Sn

m∑
i=1

a(l)i1[W
(t)
O(i,·)

∑
s∈Sn

softmax(xns
⊤W

(t)
K

⊤
W

(t)
Q xnl )W

(t)
V xns ≥ 0]

·W (t)
O(i,·)

⊤ ∑
s∈Sn

softmax(xns
⊤W

(t)
K

⊤
W

(t)
Q xl)x

n
s
⊤xgj

=
∑

i∈W(t)

Vi(t)WO(i,·)
⊤ +

∑
i/∈W(t)

λVi(t)WO(i,·)
⊤,

(192)
If i ∈ W(t), by the fact that Sn# contributes more to Vi(t) compared to Snl for l ≥ 3 and Assumption
3, we have

Vi(t) ≲
1

2B

∑
n∈Bb+

− |Sn1 |
a|Sn|

pn(t) +
|Sn2 |
a|Sn|

|λ|νn(t)(|Sn| − |Sn1 |)

≲
1

2B

∑
n∈Bb+

− |Sn1 |
a|Sn|

pn(t)

(193)

Similarly, if i ∈ U(t),

Vi(t) ≳
1

2B

∑
n∈Bb−

|Sn2 |
a|Sn|

pn(t) (194)

if i is an unlucky neuron, by Hoeffding’s inequality in (26), we have

Vi(t) ≥
1√
B

· 1
a
·
√
Mξ∥p∥

≳− 1√
Ba

(195)
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For i ∈ W(0), we have

− η

t∑
b=1

W
(b)
O(i,·)

∑
j∈W(b)

Vj(b)W
(b)
O(j,·)

⊤

≳
ηm

M
(1− ϵm − (σ + τ)M

π
)

1

2Bt

t∑
b=1

∑
n∈Bb+

|Sn1 |
a|Sn|

pn(b)(1− (σ + τ))

· ( 1

Bt

∑
n∈Bb

η2b2m|Sn1 |
a2|Sn|

∥p∥2pn(b))2

≳(1− ϵm − (σ + τ)M

π
)

1

2Bt

t∑
b=1

∑
n∈Bb+

|Sn1 |pn(b)m
aM |Sn|

pn(b) · (
1

Bt

t∑
b=1

∑
n∈Bb

η2tbm|Sn1 |
a2|Sn|

∥p∥2pn(b))2

(196)

− η

t∑
b=1

W
(b)
O(i,·)

∑
j∈U(b)

Vj(b)WO
(b)

(j,·)

⊤

≲− 1

Bt

t∑
b=1

∑
n∈Bb

|Sn2 |pn(b)m
|Sn|aM

(1− ϵm − (σ + τ)M

π
)(
η2t2m

a2
)2(σ + τ)∥p1∥2

(197)

−ηtWO(i,·)

∑
j /∈(W(t)∪U(t))

Vj(t)WO(j,·)
⊤ ≲

η2t2mλξ
√
M∥p∥2√

Ba2
(198)

Hence,
(1) If j ∈ Sn1 for one n ∈ [N ],

W
(t+1)
V xnj = W

(t)
V xnj − η

( ∂L

∂WV

∣∣∣W (t)
V

)
xnj

= p1 − η

t+1∑
b=1

∑
i∈W(b)

Vi(b)W
(b)
O(i,·)

⊤
− η

t+1∑
b=1

∑
i/∈W(b)

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t)

(199)

(2) If j ∈ Sn2 , we have

W
(t+1)
V xj = W

(0)
V xnj − η

( ∂L

∂WV

∣∣∣W (0)
V

)
xnj

= p2 − η

t+1∑
b=1

∑
i∈U(b)

Vi(b)W
(b)
O(i,·)

⊤
− η

t+1∑
b=1

∑
i/∈U(b)

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t)

(200)

(3) If j ∈ Sn/(Sn1 ∪ Sn2 ), we have

W
(t+1)
V xnj = W

(0)
V xnj − η

( ∂L

∂WV

∣∣∣W (0)
V

)
xnj

= pk − η

t+1∑
b=1

m∑
i=1

λVi(b)W
(b)
O(i,·)

⊤
+ zj(t)

(201)

Here
∥zj(t)∥ ≤ (σ + τ) (202)

for t ≥ 1. Note that this claim also holds when t = 1.
Lemma 3. If the number of neurons m is larger enough such that

m ≥ ϵ−2
m M2 logN, (203)

the number of lucky neurons at the initialization |W(0)|, |U(0)| satisfies

|W(0)|, |U(0)| ≥ m

M
(1− ϵm − (σ + τ)M

π
) (204)
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Proof:
Let θl be the angle between the initial weight and pl for one i ∈ [m] and all l ∈ [M ]. For the lucky
neuron i ∈ W(0), θ1 should be the smallest among {θl}Ml=1 with noise ∆θ. Hence, the probability
of the lucky neuron can be bounded as

Pr
(
θ1 +∆θ ≤ θl −∆θ ≤ 2π, 2 ≤ l ≤M

)
=

L∏
l=2

Pr
(
θ1 +∆θ ≤ θl −∆θ ≤ 2π

)
=(

2π − θ1 − 2∆θ

2π
)L−1,

(205)

where the first step is because the Gaussian W
(0)
O(i,·)

and orthogonal pl, l ∈ [M ] generate indepen-

dent W (0)
O(i,·)

pl. From the definition of W(0), we have

2 sin
1

2
∆θ ≤ (σ + τ), (206)

which implies
∆θ ≲ (σ + τ) (207)

for small σ > 0. Therefore,

Pr
(
i ∈ W(0)

)
=

∫ 2π

0

1

2π
· (2π − θ1 − 2∆θ

2π
)M−1dθ1

= − 1

M
(
2π − 2∆θ − x

2π
)M

∣∣∣2π
0

≳
1

M
(1− ∆θ

π
)M

≳
1

M
(1− (σ + τ)M

π
),

(208)

where the first step comes from that θ1 follows the uniform distribution on [0, 2π] due to the Gaussian
initialization of WO. We can define the random variable vi such that

vi =

{
1, if i ∈ W(0),

0, else
(209)

We know that vi belongs to Bernoulli distribution with probability 1
M (1− (σ+τ)M

π ). By Hoeffding’s
inequality in (26), we know that with probability at least 1−N−10,

1

M
(1− (σ + τ)M

π
)−

√
logN

m
≤ 1

m

m∑
i=1

vi ≤
1

M
(1− (σ + τ)M

π
) +

√
logN

m
(210)

Let m ≥ Θ(ϵ−2
m M2 logB), we have

|W(0)| =
m∑
i=1

vi ≥
m

M
(1− ϵm − (σ + τ)M

π
) (211)

where we require

(σ + τ) ≤ π

M
(212)

to ensure a positive probability in (211). Likewise, the conclusion holds for U(0).
Lemma 4. Let W(t) and U(t) be defined in Definition 2. We then have

W(0) ⊆ W(t) (213)

U(0) ⊆ U(t) (214)
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as long as
B ≳ Θ(1) (215)

Proof:
We show this lemma by induction.
(1) t = 0. For i ∈ W(0), by Definition 2, we know that the angle between W

(0)
O(i,·)

and p1 is smaller
than (σ + τ). Hence, we have

W
(0)
O(i,·)

p1(1− (σ + τ)) ≥ W
(0)
O(i,·)

p(1 + (σ + τ)) (216)

for all p ∈ P/p1.
(2) Suppose that the conclusion holds when t = s. When t = s+ 1, from Lemma 2 Claim 1, we
can obtain 〈

W
(s+1)
O(i)

⊤
,p1

〉
−
〈
W

(s)
O(i)

⊤
,p1

〉
≳
η

m
· 1

B

∑
n∈Bb

(
|Sn1 |
|Sn|

pn(s)−
((σ + τ))ηs|Sn1 |√

NmT |Sn|
pn(s)−

ξ

N
)∥p1∥2

(217)

and ∣∣∣ 〈W
(s+1)
O(i)

⊤
,p

〉
−

〈
W

(s)
O(i)

⊤
,p

〉 ∣∣∣
≲
η

m
· 1

B

∑
n∈Bb

(
|Snl |
|Sn|

|Snl |νn(s)∥p∥+
((σ + τ))ηs|Sn1 |

Tm|Sn|
pn(s)

+
|Sn1 |pn(s)(σ + τ)∥p1∥

|Sn|M
)

√
logm logB

B
∥p∥+ η

Bm
ξ∥p∥

(218)

Combining (217) and (218), we can approximately compute that if

B ≳ (
1 + (σ + τ)

1− (σ + τ)
)2 ≳ Θ(1), (219)

we can derive
W

(s+1)
O(i,·)

p1(1− (σ + τ)) ≥ W
(s+1)
O(i,·)

p(1 + (σ + τ)) (220)

Therefore, we have
W(0) ⊆ W(s+ 1) (221)

In conclusion, we can obtain
W(0) ⊆ W(t) (222)

for all t ≥ 0.
One can develop the proof for U(t) following the above steps.

D EXTENSION TO MULTI-CLASSIFICATION

Consider the classification problem with four classes, we use the label y ∈ {+1,−1}2 to denote
the corresponding class. Similarly to the previous setup, there are four orthogonal discriminative
patterns. In the output layer, al(i) for the data (Xn, yn) is changed into an R2 vector al(i) for
l ∈ [|Sn|] and i ∈ [m]. Hence, we define

F (Xn) =
1

|Sn|
∑
l∈Sn

al(i)Relu(WOWVX
nsoftmax(Xn⊤W⊤

QWKxnl )) (223)

F1(X
n) =

1

|Sn|
∑
l∈Sn

al1(i)Relu(WOWVX
nsoftmax(Xn⊤W⊤

QWKxnl )) (224)

F2(X
n) =

1

|Sn|
∑
l∈Sn

al2(i)Relu(WOWVX
nsoftmax(Xn⊤W⊤

QWKxnl )) (225)
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The dataset D can be divided into four groups as

D1 ={(Xn,yn)|yn = (1, 1)}
D2 ={(Xn,yn)|yn = (1,−1)}
D3 ={(Xn,yn)|yn = (−1, 1)}
D4 ={(Xn,yn)|yn = (−1,−1)}

(226)

The hinge loss function for data (Xn,yn) will be

Loss(Xn,yn) = max{1− yn⊤F (Xn), 0} (227)

We can divide the weights WO(i,·) (i ∈ [m]) into two groups, respectively.

W1 ={i|al(i) =
1

m
· (1, 1)}

W2 ={i|al(i) =
1

m
· (1,−1)}

W3 ={i|al(i) =
1

m
· (−1, 1)}

W4 ={i|al(i) =
1

m
· (−1,−1)}

(228)

Therefore, for WOu in the network (223), we have

∂Loss(Xn,yn)

∂WO(i,·)
⊤ = −yn1

∂F1(X
n)

∂WO1(i,·)

− yn2
∂F2(X

n)

WO2(i,·)

(229)

where the derivation of ∂F1(X
n)

∂WO1(i,·)
and ∂F2(X

n)
∂WO2(i,·)

can be found in the analysis of binary classification

above. For any i ∈ W2, following the proof of Claim 1 of Lemma 2, if the data (Xn, yn) ∈ D2, we
have

− ∂Loss(Xn,yn)

∂WO(i,·)
⊤ = yn1

∂F1(X
n)

∂WO1(i,·)

+ yn2
∂F2(X

n)

WO2(i,·)

≈∝ 1 · 1

m
p2 − 1 · (− 1

m
)p2 =

2

m
p2 (230)

(W
(t+1)
O(i,·)

−W
(t)
O(i,·)

)p2 ∝ ∥p2∥2 > 0 (231)

if (Xn, yn) ∈ D1, we have

− ∂Loss(Xn,yn)

∂WO(i,·)
⊤ ≈∝ 1 · 1

m
p1 + 1 · (− 1

m
)p1 = 0 (232)

(W
(t+1)
O(i,·)

−W
(t)
O(i,·)

)p1 ≈= 0 (233)

if (Xn, yn) ∈ D3, we have

− ∂Loss(Xn,yn)

∂WO(i,·)
⊤ ≈∝ −1 · 1

m
p3 + 1 · (− 1

m
)p3 = − 2

m
p3 (234)

(W
(t+1)
O(i,·)

−W
(t)
O(i,·)

)p3 ≤ 0 (235)

if (Xn, yn) ∈ D4, we have

− ∂Loss(Xn,yn)

∂WO(i,·)
⊤ ≈∝ −1 · 1

m
p4 − 1 · (− 1

m
)p4 = 0 (236)

(W
(t+1)
O(i,·)

−W
(t)
O(i,·)

)p4 ≈ 0 (237)

By the algorithm, WO(i,·) will update along the direction of p2 for i ∈ W2. We can analyze WV ,
WK and WQ similarly.
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