© ® N O O A~ W N =

o

11

The Reverse Turing Test
for Evaluating Interpretability Methods on Unknown
Tasks

Anonymous Author(s)
Affiliation
Address
email

Abstract

The Turing Test evaluates a computer program’s ability to mimic human be-
haviour. The Reverse Turing Test, reversely, evaluates a human’s ability to mimic
machine behaviour in a forward prediction task. We propose to use the Reverse
Turing Test to evaluate the quality of interpretability methods. The Reverse Tur-
ing Test improves on previous experimental protocols for human evaluation of
interpretability methods by a) including a training phase, and b) masking the task,
which, combined, enables us to evaluate models independently of their quality,
in a way that is unbiased by the participants’ previous exposure to the task. We
present a human evaluation of LIME across five NLP tasks in a Latin Square de-
sign and analyze the effect of masking the task in forward prediction experiments.
Additionally, we demonstrate a fundamental limitation of LIME and show how
this limitation is detrimental for human forward prediction in some NLP tasks.

Introduction

Machine learning models have tremendous impact on our daily lives, from information storing and
tracking (i.e. Google Search and Facebook News Feed), as well as on other scientific disciplines.
Modern-day NLP models, for example, are complex neural networks with millions or billions of
parameters trained with multiple objectives and often in multiple stages (Devlin et al., 2019; Raffel
et al., 2019); they are often seen for that reason, as black boxes whose rationales cannot easily be
queried. In other words, we are increasingly relying on models that we do not understand or cannot
explain, in science, as well as in our daily lives. Model interpretability, however, is desired for several
reasons: Humans often ask for the motivation behind advice, and in the same way, users are likely
to trust model decisions more if they can ask for the rationale behind them. Model interpretability
enables us to inspect whether models are fair and unbiased, and it enables engineers to detect when
models rely on mere confounds. Combatting this type of overfitting will lead to more robust (or
less error-prone) decision making with better generalization to unseen data (and, hence, safer model
employment).

Recent years has seen a surge in work on post-hoc interpretability methods for neural networks
which aim to approximate complex decision boundaries with less complex models, for example,
locally linear models. See §5 in Murdoch et al. (2019) for a brief survey. Unfortunately, there is little
consensus on how to compare interpretability methods. Some benchmarks have been introduced (Rei
and Sggaard, 2018; Poerner et al., 2018; DeYoung et al., 2020), but some of these are flawed, and
they are all only applicable to some of the proposed interpretablitity methods. See § for discussion. In
our view, a more promising approach to evaluating interpretability methods is by human forward
prediction experiments. Nguyen (2018) presented the first evaluations of LIME (Ribeiro et al.,
2016) for sentiment analysis using human subjects through a series of Mechanical Turk experiments.
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Their study had two limitations: (a) They did not allow for a training phase for the human participants
to learn model idiosyncracies, and participants instead had to rely on the assumption that the model
was near-perfect. (b) Since the participants thus had to rely on their own sentiment predictions, their
evaluations are biased by their beliefs about the sentiment of the input documents. Hase and Bansal
(2020) recently presented evaluations of LIME with human participants that involved a training
phase, enabling them to predict poor model behavior, and thereby addressing limitation (a), but
they still only included known tasks for which forward prediction is biased by the participants’ own
beliefs. This paper aims to fill this gap.

Contributions This work presents a simple-yet-insightful method for evaluating interpretability
methods - which return feature importances or saliency maps with rationales- based on simple 15-
minute experiments with human participants. Our experiments differ from previous work in a very
important way: our proposed evaluation of interpretability involves conditions in which human sub-
jects are less likely to rely on their cognitive biases. As our test case, we evaluate LIME (Ribeiro
et al., 2016) - which has been a popular feature attribution method in the last few years- across
five NLP tasks in a Latin Square design Shah and Sinha (1989), including three tasks which were
kept secret to our participants. We argue that keeping the tasks secret to the participants makes the
evaluation of interpretability methods more reliable and investigate the impact of this difference in
experimental design. Additionally, we also point out a weakness of LIME -which is shared across
many word attribution methods- namely, that its input/output dimensions are occasionally orthogo-
nal to the relevant dimensions for interpretability. We include a task in which this happens and show
how detrimental the interpretability method can be in such cases.

Human Biases in Forward Prediction

One thing sets our experiments in this paper apart from previous evaluations of interpretability meth-
ods by A/B testing with human forward prediction (Nguyen, 2018; Hase and Bansal, 2020): We will
present participants with decisions by models trained on tasks that are unknown to the participants.
In other words, humans are simply asked to predict y from x, with no prior knowledge of the relation
that may exist between them, beyond an initial training phase. Several different cognitive biases are
particularly important for motivating and analyzing our experimental design:

Belief bias An effect where someone’s evaluation of the logical strength of an argument is bi-
ased by the plausibility of the conclusion (Klauer et al., 2000). In human forward prediction of
model behavior, this happens when the plausibility of the conclusion, e.g., this review is positive,
biases the subject’s evaluation of her own conclusions, e.g., the model will predict this review is
negative, because it includes this or that term. We argue that it is particularly important to evaluate
interpretability methods with human forward prediction on unknown tasks to avoid belief bias.

Confirmation bias This bias occurs when individuals seek information which supports their prior
belief while disproportionately disregarding information that challenges this belief Mynatt et al.
(1977). In our context, such a bias could, for example, lead subjects that already classified a doc-
ument in one way to disregard LIME mark-up. In the extreme, confirmation bias could cancel out
any effect of interpretability methods in human forward prediction, but our results below show that
in practice, LIME has a strong (positive or negative) effect on human forward prediction.

Curse of knowledge This is the phenomenon when better-informed people find it extremely
difficult to think about problems from the perspective of lesser-informed people (Ackerman
et al., 2003). In our case, the model plays the role of a lesser-informed agent. We believe the
curse of knowledge amplifies belief bias and makes it very hard for participants to unlearn their
prior knowledge of the underlying task relation. This bias is very evident in our experiments
below and additional motivation for including a training phase in the Reverse Turing test (see our
Pre-Experiment).

Our experimental design is motivated by a desire to reduce the above biases in our forward prediction
experiments. Cognitive biases can interact with human forward prediction in a number of ways, e.g.,
making participants less confident about predictions that do not align with their prior beliefs, or
leading them to ignore explanations that are inconsistent with their beliefs.



ss LIME — and its Limitations

gos  The Local Model-agnostic Explanations (LIME) method (Ribeiro et al., 2016) has become one of
90 the most widely used post-hoc model interpretability methods in NLP. LIME aims to interpret model
91 predictions by locally approximating a model’s decision boundary around an individual prediction.
92 This is done by training a linear classifier on perturbations of this example.

93 Several weaknesses of LIME have been identified in the literature: LIME is linear (Bramhall et al.,
94 2020), unstable (Elshawi et al., 2019) and very sensitive to the width of the kernel used to assign
95 weights to input example perturbations (Vlassopoulos, 2019; Kopper, 2019), an increasing number
96 of features also increases weight instability (Gruber, 2019), and Vlassopoulos (2019) argues that
97 with sparse data, sampling is insufficient. Laugel et al. (2018) argues the specific sampling technique
98 is suboptimal.

99 We point to an additional, albeit perhaps ob-
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explanations

113 task in which a classifier is trained to predict

114 the length of the input sentence (from a low-  Figure 1: Our experimental protocol. For each
115 rank representation), as a way of evaluating the  task, we train our models using standard datasets
116 effect of LIME on human forward prediction, and evaluate the model on held out training data
117 on tasks that LIME iS, for this reason, not able and testing data to be used for the training and
118 to explain. evaluation sessions involving humans. We also
extract LIME explanations. In the human exper-
iments phase, the humans train and evaluate in
these 2 conditions (LIME explanation or no ex-
planation). Finally, we compare the results.

119 Examples of real tasks where this limitation is a
120 problem, include, for example, all tasks where
121 sentence length is predictive, including read-
122 ability assessment (Kincaid et al., 1975), au-
123 thorship attribution (Stamatatos, 2009), or sen-
124 tence alignment (Brown et al., 1991). We note
125 this limitation is not unique to LIME, but shared among most post-hoc interpretability methods
126 which output word or span importance, e.g., hot flip (Ebrahimi et al., 2018), attention (Rei and
127 Sggaard, 2018), and back-propagation (Rei and Sggaard, 2018). Other approaches to interpretability
128 such as using influence functions (Koh and Liang, 2017) may have more explanatory power for such
129 problems however we choose to focus our experiments on LIME, as a vast number of interpretability
130 methods return explanations which are extractive similarly to this method.

131 Human Forward Prediction Experiments

132 The experiments we describe below are examples of the Reverse Turing Test. The test resembles
133 the Turing Test (Turing, 1950; Horn, 1995) in that it focuses on the differences between the behav-
134 ior of humans and computer programs. In the Reverse Turing Test, we quantify humans’ ability to
135 simulate computer programs, however; rather than computer programs’ ability to simulate humans.
136 Specifically, we quantify humans’ ability to predict the output of machine learning models given
137 previously unseen examples. The test is defined (for classification models) as follows: The Reverse
138 Turing test is an experimental protocol according to which participants are presented with k exam-
139 ples of (Z(x), 7)) pairs, with § = f(x) the labeling of x by some unknown machine learning model
140 f(-),and Z is a possibly empty interpretation function, which, in the case of post-hoc interpretability
141 methods, highlights parts of the input, e.g., input words. The training phase is timed. Subsequently,
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participants are presented with m unseen examples X . . . X,, and asked to predict f(x1) ... f(xm).
The evaluation phase is also timed. The result of the Reverse Turing test is the accuracy or F} of the
participants’ predictions compared to 91, .. ., Ym, as well as the training and inference times. The
test is meant to evaluate the quality of different interpretations, Z(-) and can be used for evaluation
methods, like we do, or for evaluating models or interpretability methods during development (Lage
et al., 2018). We believe our test is in some ways more critical than previous, as we are attempting
to evaluate interpretability methods more reliably by reducing human belief bias.

Tasks and Data

Based on the efforts of 30 annotators, we collected a total of 3000 example annotations in human
forward prediction experiments, distributed across five different tasks (two known; three unknown)
and two experimental conditions (with and without explanations). The overall experimental protocol
is shown in Figure 1. All code for preprocessing data, training the models, and the experimental set
ups are publicly available at https://github.com/anonymous_repo.

Known Tasks For our known tasks, we focus on two very common text classification tasks: sen-
timent analysis and hate/offensive speech detection. For sentiment analysis we use the Stanford
Sentiment Treebank (SST) (Socher et al., 2013). The SST dataset consists of 6920 documents for
training, 872 documents for development and 1820 documents for testing. For hate speech detection,
we use the HatEval dataset from SemEval 2019 (Basile et al., 2019). The dataset consists of sev-
eral binary tasks, however we focus on the task of detecting presence of hate speech (disregarding
which group is being targeted as this is considered a separate task). In total, there are 9000 tweets
for training, 1000 for development and 3000 for testing.

Unknown Tasks As our unknown tasks, we use 3 of the 10 probing tasks introduced in Conneau
et al. (2018). The probing tasks were originally designed to evaluate the linguistic properties of sen-
tence embedding models. In this study we are mostly interested in the differences in performance
between humans and machines, and are not looking to evaluate linguistic properties of representa-
tions in depth, therefore chose only a few of theses tasks. The first task is sentence length prediction
in which the sentences are grouped in 6 bins indicating length in terms of number of words. This
task was chosen in order to examine the effect on LIME in a task where LIME offers poor expla-
nations. The second probing task is tense prediction, which involves predicting whether the verb in
the main clause is present or past tense. The third task is subject number prediction, which focuses
on predicting whether the subject in the main clause is plural or singular. These last two are simple
tasks where we expect LIME to offer good enough explanations. The training data for each of the
probing tasks consists of 100k sentences, 10k sentences for validation and 10k sentences for testing.
The sentences are taken from the Toronto Book Corpus (Zhu et al., 2015). More details on data
extraction can be found on Conneau et al. (2018).

Classification Model

For training sentiment and hate speech classifiers, we pass as our input pretrained BERT represen-
tations (Devlin et al., 2019) through an LSTM layer (Hochreiter and Schmidhuber, 1997) (d = 100)
followed by a multi-layered perceptron with a single hidden layer (d = 100). We use a learning
rate of 0.001 and Adam optimizer. The hyper-parameters were not tuned for optimal performance.
We use the same architecture for all tasks, except for sentence length prediction. For the sentence
length prediction task, we use BERT token representations and pass them through a mean pooling
layer followed by a multi-layered perceptron with a single hidden layer (d = 100). Both models are
trained for 20 epochs. Note also that we do not fine-tune the BERT representations. This, together
with our hyper-parameters, gives us suboptimal performance, especially on the known tasks, but
this was done on purpose to make our predictions different from the gold labels for the known tasks,
in order to make it possible to quantify participants’ belief bias: If results are too close to human
performance, it would not be possible to distinguish human forward prediction performance with
respect to model predictions from human performance with respect to predicting the true class. Our
performance on the unknown probing tasks is comparable to the results in Conneau et al. (2018).
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Figure 2: Example LIME explanation stripped of model decisions and class probabilities. We turn
images into gray scale to only highlight overall importance and avoid hinting the model’s decision.

Stimulus Presentation

Each human forward prediction experiment consists of a training session where we present the par-
ticipant with 25 training samples with model predictions, with or without explanations, followed
by an evaluation session with 15 testing samples (without model predictions), also with or without
LIME explanations. The participant is asked to predict the model’s labeling of these items. We use
a Latin Square design (Shah and Sinha, 1989)to control for idiosyncratic differences between our
participants. For each of the tasks t;, we therefore randomly sample 120 examples, 75 of which we
use for training our participants, and 45 of which we use for evaluation. We divide the 75 training
samples into groups of 25: t;,, t+,, t+,. We have three different presentation conditions: no explana-
tion, LIME explanation, or random explanation (for control). For the LIME explanations, we remove
information about model decision and present participants with the original LIME output images,
after turning them into grayscale in order to avoid revealing the class label. We rely on 500 pertur-
bations of each data sample in order to obtain the top 3 most informative input tokens. See Figure
2 for an example of the visual stimuli under this condition. The training sessions are interactive,
simulating the test interface, but providing the true answer whenever the participant has provided an
initial guess. We shuffle the training sessions at random. The evaluation sets for each task ¢, consist
of 45 samples in total, split into chunks of 15: ¢, , te,, te,. In the evaluation session, subjects are not
provided with the true model responses, to avoid biases from additional training. We divide our par-
ticipants in three groups, and for each task, the groups are assigned task subsamples in the following
Latin Square design:

‘ T LIME(xz)  Control(x)
Subjectsy | ti,,te; tigstes tig, teg
Subjectsa tig,tey tig,teg tig,teq
Subjectsz | tiy,tey tiy,teq tiy, tey

We include 3 unknown tasks, meaning that no information about the tasks was provided to the
participants in advance of the experiment. Instead, subjects had to try to infer patterns from the
data sample, possibly augmented with LIME explanations. For the known tasks, we follow Nguyen
(2018) and Hase and Bansal (2020) and provide subjects with a brief explanation of the task, but
emphasize the fact that the participants should predict model decisions, not the true labels; and hence,
they should avoid being influenced by their own beliefs of whether a text is positive or an instance
of hate speech. As in Hase and Bansal (2020), we make sure that true positives, false positives, true
negatives, and false negatives are balanced across the training and test data. In total we have 30
participants, all with at least undergraduate education and some knowledge of computer science and
machine learning. We collect 3000 human forward predictions: 1800 from training sessions and 1200
from the evaluation sessions. For each condition and item in the evaluation set, we have at least two
human forward predictions. Some of the participants gave us optional feedback on strategies they
used. This, as well as the distribution of data points across tasks and conditions and some examples
of our interface can be found in the Appendix.

Pre-Experiment: The Effect of Training on Forward Prediction

In addition to our main experiment with 30 participants, we also performed a human forward pre-
diction pre-experiment with a single participant. In the pre-experiment we compare human forward
prediction with and without training; we do so to motivate our experimental design, in which we fol-
low Hase and Bansal (2020), but depart from Nguyen (2018), in including a training phase in which
humans can learn the idiosyncracies of the machine learning model. In the pre-experiment, we only
explore the effects of the training phase for the known tasks. We first ran the experiment without
training; then ran the experiment with training. To clearly be able to quantify the effect of our in-
teractive training phase, we only use examples with false model predictions in the pre-experiment.
For each of the two tasks, sentiment analysis and hate speech detection, we use: (a) 20 distinct ex-
amples for evaluation for each of the two conditions; and (b) 25 distinct examples for training for
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HUMAN Acc. (p) HUMAN TIME(p) MODEL AcC. (p) HUMAN AccC. (p)

Task T LIME(z) T LIME(x) x T LIME(x)
KNOWN TASKS
SST 0.557 *0.694 03:00 *01:50 0.822 0.767 0.794
HatEval2019  0.562 *0.715 02:18 *01:10 0.573 0.706 0.609
UNKNOWN TASKS

Sent Len *0.470 0.310 05:32 08:15 0.846 *0.612 0.360
Subj Number  0.500 0.430 09:43 08:50 0.901 0.397 0.491
Tense 0.542 0.581 07:02 04:51 0.942 0.449 0.500

Table 1: RESULTS FROM MAIN EXPERIMENT. Columns 1-2: accuracy of human forward predic-
tion results on plain input (z) or augmented with LIME interpretations (LIME(x)). *: Significance
of @ < .05 computed with Mann-Whitney U test. Columns 3—4: average duration of evaluation
sessions (human inference time). Column 5 lists the model accuracies with respect to human gold
annotation; which we compare with human accuracies with respect to human gold annotation.

the second experimental condition. Note that since we only use a single human participant in the
pre-experiment, controlling for individual differences, we cannot control for the difficulty of data
points and use different data points across the two experimental conditions.

The effect of training is positive. On the SST dataset, accuracy with respect to model predictions (p)
increases from 0.400 to 0.550;' on the HatEval2019 dataset, performance increases from 0.3690 to
0.526. We see this as a very strong motivation for including a training phase. A training phase also
makes it possible to perform human forward prediction experiments on tasks that are unknown to
the participants, removing any belief bias that may otherwise affect results. We note that a training
phase does not necessarily lead to faster inference times. On HatEval, average inference time was
reduced from 08:56 to 07:21, but on STS, it increased from 06:24 to 08:53. This suggests that
untrained annotators (after a few instances) learn superficial heuristics that enable them to draw fast,
yet inaccurate, inferences.

Main Experiment: The Effect of LIME on Forward Prediction

We report the results of our main experiment in Table 1. Results show that LIME helps, both in terms
of accuracy and time, on known and unknown target tasks, except when the decisions boundary does
not align with LIME dimensions (Sent Len) (columns 1-4); and that while humans are biased by
their beliefs and knowledge of the known tasks, they are nor biased during unknown tasks, which
can be seen by their decrease in accuracy with respect to human annotation. We make the following
observations:

The Effect of LIME on Known Tasks This is the standard set-up considered also in previous
work (Nguyen, 2018; Hase and Bansal, 2020); see columns 1-2 and rows 1-2 in Table 1. We see
that LIME leads to significantly better human forward prediction performance on both tasks. It also
leads to (statistically) significantly faster inference times, approximately halving the time partici-
pants spend on classifying the test examples. This shows that LIME, in spite of its limitations (§3),
is a very useful tool in some cases.

The Effect of LIME on Unknown Tasks The effect of LIME on human forward prediction accu-
racy on 2 of the unknown tasks is not significant. On the two tasks, where LIME provides meaningful
explanations (subject number and tense prediction), LIME does lead to smaller reductions in infer-
ence time which are not statistically significant. The effect on the participants’ accuracy is mixed
and insignificant. In addition, LIME is significantly detrimental on human forward prediction accu-
racy for the task of sentence length prediction; it also leads to longer inference times, although this
difference was not statistically significant. This shows that while LIME is useful in some cases, this

'Note that our human participant, without training had lower-than-random accuracy in both tasks. This is
not surprising, since we have selected data points on which our model was wrong. Under the influence of belief
bias, humans are likely to also classify these wrongly.



270
271
272
273

274
275
276
277
278
279
280
281
282

283
284
285
286
287
288
289
290
291
292
293

294

296
297
298
299
300
301
302
303
304
305
306
307
308

309
310
311
312
313
314
315
316
317

is not always the case. We speculate that since LIME explanations are partial, they are only effective
when supplemented by (approximately correct) belief bias. If true, this suggests that LIME, even for
the tasks that can be explained in terms of input words, is, nevertheless, only applicable to tasks that
humans have experience with, and when the underlying models perform reasonably well.

Known and Unknown Tasks In general, our participants are much slower at classifying examples
when the task is unknown. This shows the efficiency of the belief biases our participants have in sen-
timent analysis and hate speech classification. The effectiveness of these biases is also demonstrated
by the performance gaps between humans and models when comparing their predictions to ground
truth labels. To see this, consider columns 5-7 in Table 1. Participants, while instructed to predict
model output (p), actually significantly outperform our classifier in predicting the true labels (0.706
vs. 0.573)! In contrast, participants perform subject number and tense prediction at chance levels
(0.491 and 0.500), while a simple classifier achieves accuracy greater than 0.9 on both tasks. This
clearly demonstrates belief bias in human forward prediction experiments.

Human Inference Time In addition to con-
sidering performance, we also recorded the
time our participants spent on Completing the o Statistically significant differences in time
forward prediction tasks. We present the aver- m= nown vs unknown (LIME)
. . . . known vs unknown (No exp)
age times of each condition in Table 1 with = Overall; LIME vs no exp
shorter times bolded. We used the Mann-
Whitney U test to determine significance for
these, which is also shown in the same table.
We plot the total averages in Figure 3. All the
results shown in the plot are significant with
a < 0.001.

IN)
o

N
)

[
o

Avg. Seconds per question
=
=

Related Works

Known Unknown Known Unknown LIME  No exp

Interpretability = methods Interpretability
methods come in different flavors: (a) post-hoc
analysis methods that estimate input feature
importance for decisions, including LIME, (b)
post-hoc analysis methods that estimate the
influence of training instances on decisions,
e.g., influence functions (Koh and Liang,
2017) and (c) strategies for making complex
models interpretable by learning to generate
explanations (Narang et al., 2020) or uptraining
simpler models (Agarwal et al., 2020). In this
paper we have focused on post-hoc interpretability methods, but it is equally important, we argue,
to evaluate other types of interpretability methods on unknown tasks, when running human forward
prediction experiments, to avoid participants’ cognitive biases.

Figure 3: COMPARING KNOWN AND UNKNOWN
TASKS. i) Left bars show mean inference time
(secs) with LIME explanations; ii) middle bars
show mean inference time without; and iii) right
bars show mean inference time across all tasks,
with and without LIME.

Intrinsic evaluation of interpretability methods One standard approach to evaluating explana-
tions is to remove the parts of the input detected by the interpretability method and see whether
classifier performance degrades (Samek et al., 2017). One drawback of this method is that the cor-
rupted examples are now out-of-distribution, and classifiers will generally perform worse on such
examples. Hooker et al. (2019) improve on this by evaluating classifiers retrained on the corrupted
examples. This approach, however, now suffers from another drawback: If classifiers perform well
on the corrupted examples, that does not mean the interpretability methods were wrong.? Jain and
Wallace (2019) evaluate attention functions as explanations and argue that they do not provide useful
explanations, in part because they do not correlate with gradient-based approaches to determining

2To see this, consider a sparsity-promoting classifier relying on a single feature f in the context of feature
swamping (Sutton et al., 20006), i.e., frequent features may lead to undertraining of covariate features in discrim-
inative learning. If f is removed, but the classifier retains its original performance by now relying on covariate
features, that does not mean the classifier did not solely rely on f when trained on the original data.
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feature importance; Wiegreffe and Pinter (2019), in return, show this test is not sufficient to show
attention functions do not provide useful explanations.

Extrinsic benchmarks for interpretability methods Rei and Sggaard (2018) show how token-
level annotated corpora can be converted to benchmarks for evaluating post-hoc interpretability
methods. They train sentence classifiers to predict whether sentences contain labels or not, use in-
terpretability methods to predict what input words were important, and use the F score of those
predictions to evaluate the interpretability methods. Their method, however, only works as an evalu-
ation of interpretability methods under the assumption that the classifier is near-perfect (since other-
wise the token-level annotations cannot be assumed to be explanations of model decisions); further-
more, it is only applicable to tasks for which we have token-level annotations. Poerner et al. (2018)
adopt a slightly different approach, augmenting real documents with random text passages to see
whether interpretability methods focus on the original text passages. This method suffers from the
same drawback, that it assumes near-perfect performance. It is also only designed to capture false
positives; it cannot distinguish between true or false negatives. Finally, DeYoung et al. (2020) re-
cently introduced ERASER,? a suite of NLP datasets augmented with rationales, including reading
comprehension, natural language inference, and fact checking. ERASER also assumes near-perfect
performance, and can be seen as extending the set of tasks for which the method proposed in Rei
and Sggaard (2018), is applicable. Our method, in contrast, is independent of model quality.

Human evaluation of explanations The idea of evaluating explanations by testing human partici-
pants’ ability to predict model decisions with and without explanations is not novel. Nguyen (2018),
Lage et al. (2018) and Hase and Bansal (2020), as already discussed, present such experiments.
Schmidt and Biessmann (2019) is another example of human forward prediction experiments in a
crowdsourcing platform. They perform experiments on the effect of LIME and COVAR on human
forward prediction for a sentiment task that is known to be participants, in advance. Our criticism
of Nguyen (2018) also applies to their study. Narayanan et al. (2018) also present evaluations of
interpretability methods with humans; they design simple tasks in which humans verify whether an
output is consistent with an input and an explanation. The human participants are provided with
explanations of what the tasks are, and they only consider a handful of input features.

The Reverse Turing Test that we propose here is different from previous proposals to use human
forward prediction to evaluate interpretability methods, in that it a) includes a training phase which
is important for subjects to learn model nuances and which in turn, allows us to b) include human
forward prediction on unknown tasks, i.e., tasks about which they have no prior beliefs. We are, to
the best of our knowledge, the first to propose such a protocol. In the above experiments, designed to
motivate the design of the Reverse Turing Test, we see the limitations of a widely used interpretabil-
ity method, LIME. On some tasks, i.e., tasks which cannot be explained by the occurrence of input
words, the effect of LIME is detrimental; and on unknown tasks, for which LIME interpretations are
not supported by participants’ cognitive biases, its effect on human forward prediction is insignifi-
cant. Overall, our experiments show that our proposed design offers interesting insights into the role
that cognitive biases play in the evaluation of interpretability, and propose that such a set up be used
in further research to explore the effect of cognitive biases for other interpretability methods which
provide final rationales similar to those provided by LIME.

Conclusion

We presented an evaluation protocol for interpretability methods, which differs from previous work
by including a training phase and by including unknown tasks. This makes our protocol work inde-
pendently of model quality, and controls for belief bias. Using LIME as our test case, we find that
on known tasks, LIME leads to statistically significant improvements in human forward prediction,
both in accuracy and inference time. However, when tasks are unknown, differences are no longer
significant. We see this as evidence of bias in the standard protocols, and argue that making tasks
unknown, leads to more reliable evaluations. We also identify tasks, where model decisions cannot
be explained in terms of input word occurrences, and for which the effect of LIME is detrimental
for human forward prediction performance.

3http://www.eraserbenchmark.com/
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Presentation of stimuli

We created a web application using Flask* in order to collect participant data. Participants would
get assigned a known or unknown task and LIME explanations or no explanations. For all tasks we
provide the same general instructions. See top of Figure 4 for a screenshot of our general instructions.
In addition, we had task specific instructions. For known tasks we provided short descriptions of the
task, while emphasizing the fact that subjects should imitate the model rather than follow their own
opinions about the true labels. For unknown tasks, we provided instructions as seen in Figure 4.

Training and Evaluation Session

Figure 4: Example of the instructions presented to the participants. The participants could get a
secret task or one of the known tasks, as well as LIME explanations or no explanations.

The training and evaluation sessions were almost the same, with the only difference being that during
training, subjects could check the model’s answer after making an initial guess. See Figure 5 for an
example of what the items looked like. The example here is for the task of sentence length prediction

using LIME explanations.

3. Data sample: " You fell into a fresh stack of branches and tree bark they had left there a few days earlier

Text with highlighted words
" You fell nto a 6 stack of branches and il bark they had left there a few days carlier

What is the model's classification of this text

(a)

3. Data sample: That | am sure of , and | promise you until this very minute | had no idea she was alive ."
Text with highlighted words

Mt § am sure of , and | promise you unti this very minute | had no idea she was Hli¥§ . "

What is the model's classification of this text

00
o

02

©4

05

Confirm Choice

L]
(b)

Figure 5: (a) Example of item in the training session for sentence length prediction. Note that the
participants are able to check the model answer (b) Example of item in the evaluation session for
sentence length prediction. Here the participants are no longer able to check the model answer

Subject Feedback

As an optional part of our tests, subjects provided some insight into the strategies they came up with
or troubles they had when solving a task. We only had this feedback from some of the participants,

which can be found in Table

*https://flask.palletsprojects.com/en/1.1.x/
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Explanation| Task | Strategy
none Binary Tried to identify what kinds of data the ML model fails
lime Binary 1. Read the sentence. 2. Paid attention to the shaded words: if the

overall sentiment of these words was clear I assumed the model
would classify them accordingly. Otherwise I tried to consider
how easy it would be for the model to understand the composi-
tional meaning of the sentence assuming it will make mistakes
at phenomena involving ironies or comparsions to proper names

etc.
none Binary logical
none Hateval Keywords, the sentimental polarity of the sentence
lime Hateval only look at highlighted words
none Hateval logical
lime Sent Len Haven’t got the faintest idea.
none Sent Len I was very lost in this task. I coud not find topics in the sentences

so I tried to focus whether sentences contained similar words
guessing that these would be mapped to the same class...

lime Tense no clue
none Tense 1st Person 1 Person vs 2nd Person Multiple participants

Table 2: Feedback on strategies found by participants. Writing a strategy was not mandatory there-
fore we do not have written feedback from every participant.
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