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Abstract

The Turing Test evaluates a computer program’s ability to mimic human be-1

haviour. The Reverse Turing Test, reversely, evaluates a human’s ability to mimic2

machine behaviour in a forward prediction task. We propose to use the Reverse3

Turing Test to evaluate the quality of interpretability methods. The Reverse Tur-4

ing Test improves on previous experimental protocols for human evaluation of5

interpretability methods by a) including a training phase, and b) masking the task,6

which, combined, enables us to evaluate models independently of their quality,7

in a way that is unbiased by the participants’ previous exposure to the task. We8

present a human evaluation of LIME across five NLP tasks in a Latin Square de-9

sign and analyze the effect of masking the task in forward prediction experiments.10

Additionally, we demonstrate a fundamental limitation of LIME and show how11

this limitation is detrimental for human forward prediction in some NLP tasks.12

Introduction13

Machine learning models have tremendous impact on our daily lives, from information storing and14

tracking (i.e. Google Search and Facebook News Feed), as well as on other scientific disciplines.15

Modern-day NLP models, for example, are complex neural networks with millions or billions of16

parameters trained with multiple objectives and often in multiple stages (Devlin et al., 2019; Raffel17

et al., 2019); they are often seen for that reason, as black boxes whose rationales cannot easily be18

queried. In other words, we are increasingly relying on models that we do not understand or cannot19

explain, in science, as well as in our daily lives. Model interpretability, however, is desired for several20

reasons: Humans often ask for the motivation behind advice, and in the same way, users are likely21

to trust model decisions more if they can ask for the rationale behind them. Model interpretability22

enables us to inspect whether models are fair and unbiased, and it enables engineers to detect when23

models rely on mere confounds. Combatting this type of overfitting will lead to more robust (or24

less error-prone) decision making with better generalization to unseen data (and, hence, safer model25

employment).26

Recent years has seen a surge in work on post-hoc interpretability methods for neural networks27

which aim to approximate complex decision boundaries with less complex models, for example,28

locally linear models. See §5 in Murdoch et al. (2019) for a brief survey. Unfortunately, there is little29

consensus on how to compare interpretability methods. Some benchmarks have been introduced (Rei30

and Søgaard, 2018; Poerner et al., 2018; DeYoung et al., 2020), but some of these are flawed, and31

they are all only applicable to some of the proposed interpretablitity methods. See § for discussion. In32

our view, a more promising approach to evaluating interpretability methods is by human forward33

prediction experiments. Nguyen (2018) presented the first evaluations of LIME (Ribeiro et al.,34

2016) for sentiment analysis using human subjects through a series of Mechanical Turk experiments.35
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Their study had two limitations: (a) They did not allow for a training phase for the human participants36

to learn model idiosyncracies, and participants instead had to rely on the assumption that the model37

was near-perfect. (b) Since the participants thus had to rely on their own sentiment predictions, their38

evaluations are biased by their beliefs about the sentiment of the input documents. Hase and Bansal39

(2020) recently presented evaluations of LIME with human participants that involved a training40

phase, enabling them to predict poor model behavior, and thereby addressing limitation (a), but41

they still only included known tasks for which forward prediction is biased by the participants’ own42

beliefs. This paper aims to fill this gap.43

Contributions This work presents a simple-yet-insightful method for evaluating interpretability44

methods - which return feature importances or saliency maps with rationales- based on simple 15-45

minute experiments with human participants. Our experiments differ from previous work in a very46

important way: our proposed evaluation of interpretability involves conditions in which human sub-47

jects are less likely to rely on their cognitive biases. As our test case, we evaluate LIME (Ribeiro48

et al., 2016) - which has been a popular feature attribution method in the last few years- across49

five NLP tasks in a Latin Square design Shah and Sinha (1989), including three tasks which were50

kept secret to our participants. We argue that keeping the tasks secret to the participants makes the51

evaluation of interpretability methods more reliable and investigate the impact of this difference in52

experimental design. Additionally, we also point out a weakness of LIME -which is shared across53

many word attribution methods- namely, that its input/output dimensions are occasionally orthogo-54

nal to the relevant dimensions for interpretability. We include a task in which this happens and show55

how detrimental the interpretability method can be in such cases.56

Human Biases in Forward Prediction57

One thing sets our experiments in this paper apart from previous evaluations of interpretability meth-58

ods by A/B testing with human forward prediction (Nguyen, 2018; Hase and Bansal, 2020): We will59

present participants with decisions by models trained on tasks that are unknown to the participants.60

In other words, humans are simply asked to predict y from x, with no prior knowledge of the relation61

that may exist between them, beyond an initial training phase. Several different cognitive biases are62

particularly important for motivating and analyzing our experimental design:63

Belief bias An effect where someone’s evaluation of the logical strength of an argument is bi-64

ased by the plausibility of the conclusion (Klauer et al., 2000). In human forward prediction of65

model behavior, this happens when the plausibility of the conclusion, e.g., this review is positive,66

biases the subject’s evaluation of her own conclusions, e.g., the model will predict this review is67

negative, because it includes this or that term. We argue that it is particularly important to evaluate68

interpretability methods with human forward prediction on unknown tasks to avoid belief bias.69

Confirmation bias This bias occurs when individuals seek information which supports their prior70

belief while disproportionately disregarding information that challenges this belief Mynatt et al.71

(1977). In our context, such a bias could, for example, lead subjects that already classified a doc-72

ument in one way to disregard LIME mark-up. In the extreme, confirmation bias could cancel out73

any effect of interpretability methods in human forward prediction, but our results below show that74

in practice, LIME has a strong (positive or negative) effect on human forward prediction.75

Curse of knowledge This is the phenomenon when better-informed people find it extremely76

difficult to think about problems from the perspective of lesser-informed people (Ackerman77

et al., 2003). In our case, the model plays the role of a lesser-informed agent. We believe the78

curse of knowledge amplifies belief bias and makes it very hard for participants to unlearn their79

prior knowledge of the underlying task relation. This bias is very evident in our experiments80

below and additional motivation for including a training phase in the Reverse Turing test (see our81

Pre-Experiment).82

83

Our experimental design is motivated by a desire to reduce the above biases in our forward prediction84

experiments. Cognitive biases can interact with human forward prediction in a number of ways, e.g.,85

making participants less confident about predictions that do not align with their prior beliefs, or86

leading them to ignore explanations that are inconsistent with their beliefs.87

2



LIME – and its Limitations88

The Local Model-agnostic Explanations (LIME) method (Ribeiro et al., 2016) has become one of89

the most widely used post-hoc model interpretability methods in NLP. LIME aims to interpret model90

predictions by locally approximating a model’s decision boundary around an individual prediction.91

This is done by training a linear classifier on perturbations of this example.92

Several weaknesses of LIME have been identified in the literature: LIME is linear (Bramhall et al.,93

2020), unstable (Elshawi et al., 2019) and very sensitive to the width of the kernel used to assign94

weights to input example perturbations (Vlassopoulos, 2019; Kopper, 2019), an increasing number95

of features also increases weight instability (Gruber, 2019), and Vlassopoulos (2019) argues that96

with sparse data, sampling is insufficient. Laugel et al. (2018) argues the specific sampling technique97

is suboptimal.98

Train	MODEL	on	
original	training	

data

Run	MODEL	on	
held-out	human
training	data
NO	LIME

Run	MODEL	on	
held-out	human
testing	data
NO	LIMEModel
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Human
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+

Run	MODEL	on	
held-out	human
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Performance

Figure 1: Our experimental protocol. For each
task, we train our models using standard datasets
and evaluate the model on held out training data
and testing data to be used for the training and
evaluation sessions involving humans. We also
extract LIME explanations. In the human exper-
iments phase, the humans train and evaluate in
these 2 conditions (LIME explanation or no ex-
planation). Finally, we compare the results.

We point to an additional, albeit perhaps ob-99

vious, weakness of LIME’s : It can only ex-100

plain the decisions of a classifier in so far as the101

decision boundary of the classifier aligns with102

the feature dimensions of LIME. In most appli-103

cations of feature attribution interpretability to104

NLP problems, the feature dimensions are the105

input words. That is to say, such methods can106

only explain the decisions of a classifier if the107

decision boundary aligns with the dimensions108

along which the occurrences of words are en-109

coded. LIME can, for example, not explain the110

decisions of a classifier ”1 if sentence length111

odd, else 0”. In our experiments, we include a112

task in which a classifier is trained to predict113

the length of the input sentence (from a low-114

rank representation), as a way of evaluating the115

effect of LIME on human forward prediction,116

on tasks that LIME is, for this reason, not able117

to explain.118

Examples of real tasks where this limitation is a119

problem, include, for example, all tasks where120

sentence length is predictive, including read-121

ability assessment (Kincaid et al., 1975), au-122

thorship attribution (Stamatatos, 2009), or sen-123

tence alignment (Brown et al., 1991). We note124

this limitation is not unique to LIME, but shared among most post-hoc interpretability methods125

which output word or span importance, e.g., hot flip (Ebrahimi et al., 2018), attention (Rei and126

Søgaard, 2018), and back-propagation (Rei and Søgaard, 2018). Other approaches to interpretability127

such as using influence functions (Koh and Liang, 2017) may have more explanatory power for such128

problems however we choose to focus our experiments on LIME, as a vast number of interpretability129

methods return explanations which are extractive similarly to this method.130

Human Forward Prediction Experiments131

The experiments we describe below are examples of the Reverse Turing Test. The test resembles132

the Turing Test (Turing, 1950; Horn, 1995) in that it focuses on the differences between the behav-133

ior of humans and computer programs. In the Reverse Turing Test, we quantify humans’ ability to134

simulate computer programs, however; rather than computer programs’ ability to simulate humans.135

Specifically, we quantify humans’ ability to predict the output of machine learning models given136

previously unseen examples. The test is defined (for classification models) as follows: The Reverse137

Turing test is an experimental protocol according to which participants are presented with k exam-138

ples of 〈I(x), ŷ〉 pairs, with ŷ = f(x) the labeling of x by some unknown machine learning model139

f(·), and I is a possibly empty interpretation function, which, in the case of post-hoc interpretability140

methods, highlights parts of the input, e.g., input words. The training phase is timed. Subsequently,141
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participants are presented with m unseen examples x1 . . .xm and asked to predict f(x1) . . . f(xm).142

The evaluation phase is also timed. The result of the Reverse Turing test is the accuracy or F1 of the143

participants’ predictions compared to ŷ1, . . . , ŷm, as well as the training and inference times. The144

test is meant to evaluate the quality of different interpretations, I(·) and can be used for evaluation145

methods, like we do, or for evaluating models or interpretability methods during development (Lage146

et al., 2018). We believe our test is in some ways more critical than previous, as we are attempting147

to evaluate interpretability methods more reliably by reducing human belief bias.148

Tasks and Data149

Based on the efforts of 30 annotators, we collected a total of 3000 example annotations in human150

forward prediction experiments, distributed across five different tasks (two known; three unknown)151

and two experimental conditions (with and without explanations). The overall experimental protocol152

is shown in Figure 1. All code for preprocessing data, training the models, and the experimental set153

ups are publicly available at https://github.com/anonymous repo.154

Known Tasks For our known tasks, we focus on two very common text classification tasks: sen-155

timent analysis and hate/offensive speech detection. For sentiment analysis we use the Stanford156

Sentiment Treebank (SST) (Socher et al., 2013). The SST dataset consists of 6920 documents for157

training, 872 documents for development and 1820 documents for testing. For hate speech detection,158

we use the HatEval dataset from SemEval 2019 (Basile et al., 2019). The dataset consists of sev-159

eral binary tasks, however we focus on the task of detecting presence of hate speech (disregarding160

which group is being targeted as this is considered a separate task). In total, there are 9000 tweets161

for training, 1000 for development and 3000 for testing.162

Unknown Tasks As our unknown tasks, we use 3 of the 10 probing tasks introduced in Conneau163

et al. (2018). The probing tasks were originally designed to evaluate the linguistic properties of sen-164

tence embedding models. In this study we are mostly interested in the differences in performance165

between humans and machines, and are not looking to evaluate linguistic properties of representa-166

tions in depth, therefore chose only a few of theses tasks. The first task is sentence length prediction167

in which the sentences are grouped in 6 bins indicating length in terms of number of words. This168

task was chosen in order to examine the effect on LIME in a task where LIME offers poor expla-169

nations. The second probing task is tense prediction, which involves predicting whether the verb in170

the main clause is present or past tense. The third task is subject number prediction, which focuses171

on predicting whether the subject in the main clause is plural or singular. These last two are simple172

tasks where we expect LIME to offer good enough explanations. The training data for each of the173

probing tasks consists of 100k sentences, 10k sentences for validation and 10k sentences for testing.174

The sentences are taken from the Toronto Book Corpus (Zhu et al., 2015). More details on data175

extraction can be found on Conneau et al. (2018).176

Classification Model177

For training sentiment and hate speech classifiers, we pass as our input pretrained BERT represen-178

tations (Devlin et al., 2019) through an LSTM layer (Hochreiter and Schmidhuber, 1997) (d = 100)179

followed by a multi-layered perceptron with a single hidden layer (d = 100). We use a learning180

rate of 0.001 and Adam optimizer. The hyper-parameters were not tuned for optimal performance.181

We use the same architecture for all tasks, except for sentence length prediction. For the sentence182

length prediction task, we use BERT token representations and pass them through a mean pooling183

layer followed by a multi-layered perceptron with a single hidden layer (d = 100). Both models are184

trained for 20 epochs. Note also that we do not fine-tune the BERT representations. This, together185

with our hyper-parameters, gives us suboptimal performance, especially on the known tasks, but186

this was done on purpose to make our predictions different from the gold labels for the known tasks,187

in order to make it possible to quantify participants’ belief bias: If results are too close to human188

performance, it would not be possible to distinguish human forward prediction performance with189

respect to model predictions from human performance with respect to predicting the true class. Our190

performance on the unknown probing tasks is comparable to the results in Conneau et al. (2018).191
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Figure 2: Example LIME explanation stripped of model decisions and class probabilities. We turn
images into gray scale to only highlight overall importance and avoid hinting the model’s decision.

Stimulus Presentation192

Each human forward prediction experiment consists of a training session where we present the par-193

ticipant with 25 training samples with model predictions, with or without explanations, followed194

by an evaluation session with 15 testing samples (without model predictions), also with or without195

LIME explanations. The participant is asked to predict the model’s labeling of these items. We use196

a Latin Square design (Shah and Sinha, 1989)to control for idiosyncratic differences between our197

participants. For each of the tasks tt, we therefore randomly sample 120 examples, 75 of which we198

use for training our participants, and 45 of which we use for evaluation. We divide the 75 training199

samples into groups of 25: tt1 , tt2 , tt3 . We have three different presentation conditions: no explana-200

tion, LIME explanation, or random explanation (for control). For the LIME explanations, we remove201

information about model decision and present participants with the original LIME output images,202

after turning them into grayscale in order to avoid revealing the class label. We rely on 500 pertur-203

bations of each data sample in order to obtain the top 3 most informative input tokens. See Figure204

2 for an example of the visual stimuli under this condition. The training sessions are interactive,205

simulating the test interface, but providing the true answer whenever the participant has provided an206

initial guess. We shuffle the training sessions at random. The evaluation sets for each task te consist207

of 45 samples in total, split into chunks of 15: te1 , te2 , te3 . In the evaluation session, subjects are not208

provided with the true model responses, to avoid biases from additional training. We divide our par-209

ticipants in three groups, and for each task, the groups are assigned task subsamples in the following210

Latin Square design:211

x LIME(x) Control(x)

Subjects1 tt1 , te1 tt2 , te2 tt3 , te3
Subjects2 tt2 , te2 tt3 , te3 tt1 , te1
Subjects3 tt3 , te3 tt1 , te1 tt2 , te2

212

We include 3 unknown tasks, meaning that no information about the tasks was provided to the213

participants in advance of the experiment. Instead, subjects had to try to infer patterns from the214

data sample, possibly augmented with LIME explanations. For the known tasks, we follow Nguyen215

(2018) and Hase and Bansal (2020) and provide subjects with a brief explanation of the task, but216

emphasize the fact that the participants should predict model decisions, not the true labels; and hence,217

they should avoid being influenced by their own beliefs of whether a text is positive or an instance218

of hate speech. As in Hase and Bansal (2020), we make sure that true positives, false positives, true219

negatives, and false negatives are balanced across the training and test data. In total we have 30220

participants, all with at least undergraduate education and some knowledge of computer science and221

machine learning. We collect 3000 human forward predictions: 1800 from training sessions and 1200222

from the evaluation sessions. For each condition and item in the evaluation set, we have at least two223

human forward predictions. Some of the participants gave us optional feedback on strategies they224

used. This, as well as the distribution of data points across tasks and conditions and some examples225

of our interface can be found in the Appendix.226

Pre-Experiment: The Effect of Training on Forward Prediction227

In addition to our main experiment with 30 participants, we also performed a human forward pre-228

diction pre-experiment with a single participant. In the pre-experiment we compare human forward229

prediction with and without training; we do so to motivate our experimental design, in which we fol-230

low Hase and Bansal (2020), but depart from Nguyen (2018), in including a training phase in which231

humans can learn the idiosyncracies of the machine learning model. In the pre-experiment, we only232

explore the effects of the training phase for the known tasks. We first ran the experiment without233

training; then ran the experiment with training. To clearly be able to quantify the effect of our in-234

teractive training phase, we only use examples with false model predictions in the pre-experiment.235

For each of the two tasks, sentiment analysis and hate speech detection, we use: (a) 20 distinct ex-236

amples for evaluation for each of the two conditions; and (b) 25 distinct examples for training for237
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HUMAN ACC. (p̂) HUMAN TIME(p̂) MODEL ACC. (p) HUMAN ACC. (p)

Task x LIME(x) x LIME(x) x x LIME(x)

KNOWN TASKS

SST 0.557 ∗0.694 03:00 ∗01:50 0.822 0.767 0.794
HatEval2019 0.562 ∗0.715 02:18 ∗01:10 0.573 0.706 0.609

UNKNOWN TASKS

Sent Len ∗0.470 0.310 05:32 08:15 0.846 ∗0.612 0.360
Subj Number 0.500 0.430 09:43 08:50 0.901 0.397 0.491

Tense 0.542 0.581 07:02 04:51 0.942 0.449 0.500

Table 1: RESULTS FROM MAIN EXPERIMENT. Columns 1–2: accuracy of human forward predic-
tion results on plain input (x) or augmented with LIME interpretations (LIME(x)). ∗: Significance
of α < .05 computed with Mann-Whitney U test. Columns 3–4: average duration of evaluation
sessions (human inference time). Column 5 lists the model accuracies with respect to human gold
annotation; which we compare with human accuracies with respect to human gold annotation.

the second experimental condition. Note that since we only use a single human participant in the238

pre-experiment, controlling for individual differences, we cannot control for the difficulty of data239

points and use different data points across the two experimental conditions.240

The effect of training is positive. On the SST dataset, accuracy with respect to model predictions (p̂)241

increases from 0.400 to 0.550;1 on the HatEval2019 dataset, performance increases from 0.3690 to242

0.526. We see this as a very strong motivation for including a training phase. A training phase also243

makes it possible to perform human forward prediction experiments on tasks that are unknown to244

the participants, removing any belief bias that may otherwise affect results. We note that a training245

phase does not necessarily lead to faster inference times. On HatEval, average inference time was246

reduced from 08:56 to 07:21, but on STS, it increased from 06:24 to 08:53. This suggests that247

untrained annotators (after a few instances) learn superficial heuristics that enable them to draw fast,248

yet inaccurate, inferences.249

Main Experiment: The Effect of LIME on Forward Prediction250

We report the results of our main experiment in Table 1. Results show that LIME helps, both in terms251

of accuracy and time, on known and unknown target tasks, except when the decisions boundary does252

not align with LIME dimensions (Sent Len) (columns 1–4); and that while humans are biased by253

their beliefs and knowledge of the known tasks, they are not biased during unknown tasks, which254

can be seen by their decrease in accuracy with respect to human annotation. We make the following255

observations:256

The Effect of LIME on Known Tasks This is the standard set-up considered also in previous257

work (Nguyen, 2018; Hase and Bansal, 2020); see columns 1–2 and rows 1–2 in Table 1. We see258

that LIME leads to significantly better human forward prediction performance on both tasks. It also259

leads to (statistically) significantly faster inference times, approximately halving the time partici-260

pants spend on classifying the test examples. This shows that LIME, in spite of its limitations (§3),261

is a very useful tool in some cases.262

The Effect of LIME on Unknown Tasks The effect of LIME on human forward prediction accu-263

racy on 2 of the unknown tasks is not significant. On the two tasks, where LIME provides meaningful264

explanations (subject number and tense prediction), LIME does lead to smaller reductions in infer-265

ence time which are not statistically significant. The effect on the participants’ accuracy is mixed266

and insignificant. In addition, LIME is significantly detrimental on human forward prediction accu-267

racy for the task of sentence length prediction; it also leads to longer inference times, although this268

difference was not statistically significant. This shows that while LIME is useful in some cases, this269

1Note that our human participant, without training had lower-than-random accuracy in both tasks. This is
not surprising, since we have selected data points on which our model was wrong. Under the influence of belief
bias, humans are likely to also classify these wrongly.
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is not always the case. We speculate that since LIME explanations are partial, they are only effective270

when supplemented by (approximately correct) belief bias. If true, this suggests that LIME, even for271

the tasks that can be explained in terms of input words, is, nevertheless, only applicable to tasks that272

humans have experience with, and when the underlying models perform reasonably well.273

Known and Unknown Tasks In general, our participants are much slower at classifying examples274

when the task is unknown. This shows the efficiency of the belief biases our participants have in sen-275

timent analysis and hate speech classification. The effectiveness of these biases is also demonstrated276

by the performance gaps between humans and models when comparing their predictions to ground277

truth labels. To see this, consider columns 5–7 in Table 1. Participants, while instructed to predict278

model output (p̂), actually significantly outperform our classifier in predicting the true labels (0.706279

vs. 0.573)! In contrast, participants perform subject number and tense prediction at chance levels280

(0.491 and 0.500), while a simple classifier achieves accuracy greater than 0.9 on both tasks. This281

clearly demonstrates belief bias in human forward prediction experiments.282

Figure 3: COMPARING KNOWN AND UNKNOWN
TASKS. i) Left bars show mean inference time
(secs) with LIME explanations; ii) middle bars
show mean inference time without; and iii) right
bars show mean inference time across all tasks,
with and without LIME.

Human Inference Time In addition to con-283

sidering performance, we also recorded the284

time our participants spent on completing the285

forward prediction tasks. We present the aver-286

age times of each condition in Table 1 with287

shorter times bolded. We used the Mann-288

Whitney U test to determine significance for289

these, which is also shown in the same table.290

We plot the total averages in Figure 3. All the291

results shown in the plot are significant with292

α < 0.001.293

Related Works294

Interpretability methods Interpretability295

methods come in different flavors: (a) post-hoc296

analysis methods that estimate input feature297

importance for decisions, including LIME, (b)298

post-hoc analysis methods that estimate the299

influence of training instances on decisions,300

e.g., influence functions (Koh and Liang,301

2017) and (c) strategies for making complex302

models interpretable by learning to generate303

explanations (Narang et al., 2020) or uptraining304

simpler models (Agarwal et al., 2020). In this305

paper we have focused on post-hoc interpretability methods, but it is equally important, we argue,306

to evaluate other types of interpretability methods on unknown tasks, when running human forward307

prediction experiments, to avoid participants’ cognitive biases.308

Intrinsic evaluation of interpretability methods One standard approach to evaluating explana-309

tions is to remove the parts of the input detected by the interpretability method and see whether310

classifier performance degrades (Samek et al., 2017). One drawback of this method is that the cor-311

rupted examples are now out-of-distribution, and classifiers will generally perform worse on such312

examples. Hooker et al. (2019) improve on this by evaluating classifiers retrained on the corrupted313

examples. This approach, however, now suffers from another drawback: If classifiers perform well314

on the corrupted examples, that does not mean the interpretability methods were wrong.2 Jain and315

Wallace (2019) evaluate attention functions as explanations and argue that they do not provide useful316

explanations, in part because they do not correlate with gradient-based approaches to determining317

2To see this, consider a sparsity-promoting classifier relying on a single feature f in the context of feature
swamping (Sutton et al., 2006), i.e., frequent features may lead to undertraining of covariate features in discrim-
inative learning. If f is removed, but the classifier retains its original performance by now relying on covariate
features, that does not mean the classifier did not solely rely on f when trained on the original data.
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feature importance; Wiegreffe and Pinter (2019), in return, show this test is not sufficient to show318

attention functions do not provide useful explanations.319

Extrinsic benchmarks for interpretability methods Rei and Søgaard (2018) show how token-320

level annotated corpora can be converted to benchmarks for evaluating post-hoc interpretability321

methods. They train sentence classifiers to predict whether sentences contain labels or not, use in-322

terpretability methods to predict what input words were important, and use the F1 score of those323

predictions to evaluate the interpretability methods. Their method, however, only works as an evalu-324

ation of interpretability methods under the assumption that the classifier is near-perfect (since other-325

wise the token-level annotations cannot be assumed to be explanations of model decisions); further-326

more, it is only applicable to tasks for which we have token-level annotations. Poerner et al. (2018)327

adopt a slightly different approach, augmenting real documents with random text passages to see328

whether interpretability methods focus on the original text passages. This method suffers from the329

same drawback, that it assumes near-perfect performance. It is also only designed to capture false330

positives; it cannot distinguish between true or false negatives. Finally, DeYoung et al. (2020) re-331

cently introduced ERASER,3 a suite of NLP datasets augmented with rationales, including reading332

comprehension, natural language inference, and fact checking. ERASER also assumes near-perfect333

performance, and can be seen as extending the set of tasks for which the method proposed in Rei334

and Søgaard (2018), is applicable. Our method, in contrast, is independent of model quality.335

Human evaluation of explanations The idea of evaluating explanations by testing human partici-336

pants’ ability to predict model decisions with and without explanations is not novel. Nguyen (2018),337

Lage et al. (2018) and Hase and Bansal (2020), as already discussed, present such experiments.338

Schmidt and Biessmann (2019) is another example of human forward prediction experiments in a339

crowdsourcing platform. They perform experiments on the effect of LIME and COVAR on human340

forward prediction for a sentiment task that is known to be participants, in advance. Our criticism341

of Nguyen (2018) also applies to their study. Narayanan et al. (2018) also present evaluations of342

interpretability methods with humans; they design simple tasks in which humans verify whether an343

output is consistent with an input and an explanation. The human participants are provided with344

explanations of what the tasks are, and they only consider a handful of input features.345

The Reverse Turing Test that we propose here is different from previous proposals to use human346

forward prediction to evaluate interpretability methods, in that it a) includes a training phase which347

is important for subjects to learn model nuances and which in turn, allows us to b) include human348

forward prediction on unknown tasks, i.e., tasks about which they have no prior beliefs. We are, to349

the best of our knowledge, the first to propose such a protocol. In the above experiments, designed to350

motivate the design of the Reverse Turing Test, we see the limitations of a widely used interpretabil-351

ity method, LIME. On some tasks, i.e., tasks which cannot be explained by the occurrence of input352

words, the effect of LIME is detrimental; and on unknown tasks, for which LIME interpretations are353

not supported by participants’ cognitive biases, its effect on human forward prediction is insignifi-354

cant. Overall, our experiments show that our proposed design offers interesting insights into the role355

that cognitive biases play in the evaluation of interpretability, and propose that such a set up be used356

in further research to explore the effect of cognitive biases for other interpretability methods which357

provide final rationales similar to those provided by LIME.358

Conclusion359

We presented an evaluation protocol for interpretability methods, which differs from previous work360

by including a training phase and by including unknown tasks. This makes our protocol work inde-361

pendently of model quality, and controls for belief bias. Using LIME as our test case, we find that362

on known tasks, LIME leads to statistically significant improvements in human forward prediction,363

both in accuracy and inference time. However, when tasks are unknown, differences are no longer364

significant. We see this as evidence of bias in the standard protocols, and argue that making tasks365

unknown, leads to more reliable evaluations. We also identify tasks, where model decisions cannot366

be explained in terms of input word occurrences, and for which the effect of LIME is detrimental367

for human forward prediction performance.368

3http://www.eraserbenchmark.com/
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Presentation of stimuli492

We created a web application using Flask4 in order to collect participant data. Participants would493

get assigned a known or unknown task and LIME explanations or no explanations. For all tasks we494

provide the same general instructions. See top of Figure 4 for a screenshot of our general instructions.495

In addition, we had task specific instructions. For known tasks we provided short descriptions of the496

task, while emphasizing the fact that subjects should imitate the model rather than follow their own497

opinions about the true labels. For unknown tasks, we provided instructions as seen in Figure 4.498

Figure 4: Example of the instructions presented to the participants. The participants could get a
secret task or one of the known tasks, as well as LIME explanations or no explanations.

The training and evaluation sessions were almost the same, with the only difference being that during499

training, subjects could check the model’s answer after making an initial guess. See Figure 5 for an500

example of what the items looked like. The example here is for the task of sentence length prediction501

using LIME explanations.502

(a) (b)

Figure 5: (a) Example of item in the training session for sentence length prediction. Note that the
participants are able to check the model answer (b) Example of item in the evaluation session for
sentence length prediction. Here the participants are no longer able to check the model answer

Subject Feedback503

As an optional part of our tests, subjects provided some insight into the strategies they came up with504

or troubles they had when solving a task. We only had this feedback from some of the participants,505

which can be found in Table506

4https://flask.palletsprojects.com/en/1.1.x/
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2.

Explanation Task Strategy

none Binary Tried to identify what kinds of data the ML model fails
lime Binary 1. Read the sentence. 2. Paid attention to the shaded words: if the

overall sentiment of these words was clear I assumed the model
would classify them accordingly. Otherwise I tried to consider
how easy it would be for the model to understand the composi-
tional meaning of the sentence assuming it will make mistakes
at phenomena involving ironies or comparsions to proper names
etc.

none Binary logical

none Hateval Keywords, the sentimental polarity of the sentence
lime Hateval only look at highlighted words
none Hateval logical

lime Sent Len Haven’t got the faintest idea.
none Sent Len I was very lost in this task. I coud not find topics in the sentences

so I tried to focus whether sentences contained similar words
guessing that these would be mapped to the same class...

lime Tense no clue
none Tense 1st Person 1 Person vs 2nd Person Multiple participants

Table 2: Feedback on strategies found by participants. Writing a strategy was not mandatory there-
fore we do not have written feedback from every participant.
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