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Abstract

When answering a question, humans utilize the information available across differ-1

ent modalities to synthesize a consistent and complete chain of thought (CoT). This2

process is normally a black box in the case of deep learning models like large-scale3

language models. Recently, science question benchmarks have been used to diag-4

nose the multi-hop reasoning ability and interpretability of an AI system. However,5

existing datasets fail to provide annotations for the answers, or are restricted to6

the textual-only modality, small scales, and limited domain diversity. To this end,7

we present Science Question Answering (SQA), a new benchmark that consists of8

⇠21k multimodal multiple choice questions with a diverse set of science topics9

and annotations of their answers with corresponding lectures and explanations. We10

further design language models to learn to generate lectures and explanations as the11

chain of thought (CoT) to mimic the multi-hop reasoning process when answering12

SQA questions. SQA demonstrates the utility of CoT in language models, as CoT13

improves the question answering performance by 1.20% in few-shot GPT-3 and14

3.99% in fine-tuned UnifiedQA. We also explore the upper bound for models to15

leverage explanations by feeding those in the input; we observe that it improves16

the few-shot performance of GPT-3 by 18.96%. Our analysis further shows that17

language models, similar to humans, benefit from explanations to learn from fewer18

data and achieve the same performance with just 40% of the data.19
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Figure 1: We construct the SQA dataset where a data example consists of multimodal question
answering information and the grounded lecture and explanation. We study if models can generate a
reasonable explanation to reveal the chain-of-thought reasoning when answering an SQA question.

1 Introduction20

A long-standing goal of AI systems is to act reliably and learn complex tasks efficiently like human21

beings. In the process of reliable decision making, humans follow an explicit chain-of-thought (CoT)22

reasoning process that is typically expressed as an explanation. However, machine learning models23

are trained mostly using a large number of input-output examples to perform a specific task. These24

black-box models only generate the final decision without reliably revealing the underlying reasoning25
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process. Not surprisingly, it is unclear if they understand the task and can generalize even though26

they perform well on the benchmark. On the other hand, humans are able to learn from instructions27

or explanations from past experience and generalize them to novel and unseen problems. This helps28

them learn more quickly with fewer data. In this work, we explore if machines can be endowed with29

such reasoning abilities in the context of science-based question answering.30

Recently, science problem solving benchmarks [17] have been used to diagnose the multi-hop31

reasoning ability and interpretability of AI systems. To answer science questions, a model needs to32

not only understand multimodal contents but also extract external knowledge to arrive at the correct33

answer. Since these tasks require domain-specific knowledge and explicit multi-hop reasoning, a34

model would be not interpretable if it fails to provide explanations to reveal the reasoning process.35

However, current science question datasets [17, 16, 46] mostly lack annotated explanations for the36

answers. To address this issue, other science datasets annotate the explanations, but they are restricted37

to the textual only modality and limited to small data scales [12, 7, 33] or a small set of topics [19, 13].38

Therefore, we collect Science Question Answering (SQA), a large-scale multi-choice dataset that39

contains multimodal science questions with explanations and features rich domain diversity.40

SQA is collected from elementary and high school science curricula, and contains 21,208 examples41

along with lectures and explanations. Different from existing datasets [16, 17, 46], SQA has richer42

domain diversity from three different subjects: natural science, social science, and language science.43

A typical SQA example consists of a question, multiple choices, visual and textual contexts, a correct44

answer, as well as a lecture and an explanation. The lecture and explanation provide general external45

knowledge and specific reasons, respectively, for arriving at the correct answer.46

Consider the thoughts one person might have when answering the question in Figure 1. One first47

recalls the knowledge regarding the definition of a force learned from textbooks: “A force is a push or48

a pull that ... The direction of a push is ... The direction of a pull is ...”, then forms a line of reasoning:49

“The baby’s hand applies a force to the cabinet door. ! This force causes the door to open. ! The50

direction of this force is toward the baby’s hand.”, and finally arrives at the correct answer: “This51

force is a pull.”. Following [36], we formulate the SQA task to output a natural explanation alongside52

the predicted answer. In this paper, we train language models to generate lectures and explanations as53

the chain of thought (CoT) to mimic the multi-hop reasoning process to answer SQA questions.54

Our experiments show that current multimodal methods [49, 1, 20, 9, 24, 31] fail to achieve satisfac-55

tory performance on SQA and do not generate correct explanations. However, we find that CoT can56

help large language models not only in the few-shot learning setting but also in the fine-tuning setting.57

When combined with CoT to generate the lecture and explanation, the fine-tuned UnifiedQA [18]58

achieves an improvement of 3.99% as opposed to not using CoT in the fine-tuning stage. The few-shot59

GPT-3 model [5] via chain-of-thought prompting can obtain 75.17% on SQA with an improvement60

of 1.20% compared to the few-shot GPT-3 without CoT. Prompted with CoT, GPT-3 can generate61

reasonable explanations as evaluated by automated metrics, and promisingly, 65.2% of explanations62

meet the gold standard of human evaluations. We also investigate the upper bound for models to63

harness explanations by including them in the input. We find that doing so improves GPT-3’s few-shot64

performance by 18.96%, suggesting that explanations do aid models and are currently underutilized65

in the CoT framework. Further analysis shows that, like humans, language models benefit from66

explanations to learn with less data: UnifiedQA with CoT obtains the same results as UnifiedQA67

without CoT with only 40% of the training data.68

To sum up, our contributions are three-fold: (a) To bridge the gap in existing datasets in the scientific69

domain, we build Science Question Answering (SQA), a new dataset containing 21,208 multimodal70

science questions with rich domain diversity. To the best of our knowledge, SQA is the first large-71

scale multimodal dataset that annotates lectures and explanations for the answers. (b) We show that72

CoT benefits large language models in both few-shot and finetuning learning by improving model73

performance and reliability via generating explanations. (c) We further explore the upper bound of74

GPT-3 and show that CoT helps language models learn from fewer data.75

2 Related Work76

Visual question answering. Since the task of visual question answering (VQA) was first proposed77

in [2], there have been plenty of VQA datasets [50, 52, 22, 10, 14, 11] conducted to facilitate the78

research work. Although our SQA dataset shares some features with VQA, there are several main79

differences between them. First, SQA is more challenging than existing VQA datasets because it80
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contains multimodal contexts and diverse topics in the scientific domain. In addition, most answers81

are annotated with lectures and explanations, which makes SQA a suitable dataset for multi-modal82

question answering and multi-hop reasoning for AI systems. Inspired by the recent remarkable83

performance achieved for VQA [9, 24, 8], in this paper, we further extensively benchmark SQA with84

a wide range of attention-based [1, 30, 20, 9] and Transformer-based [28, 24, 25, 8] methods.85

Datasets for science problems. Science problem solving is a challenging task that requires an AI86

system not only to understand the multimodal information from the science curriculum but also to87

reason about how to answer the domain-specific questions. Current science problem datasets such88

as AI2D [16], DVQA [15], VLQA [46], and FOODWEDS [23] have contributed to multimodal89

reasoning in the scientific domain. These datasets, however, lack annotated explanations for the90

answers to reveal the reasoning steps. Some other datasets annotate the answers in the forms91

of supporting facts [33, 19], entailment trees [7], explanation graphs [12], reasoning chains [13].92

However, these datasets are restricted to the single text modality with small data scales and limited93

topics. Instead, our SQA annotates the answers with grounded lectures and explanations. Besides,94

SQA features a richer domain diversity across 3 subjects, 26 topics, 127 categories, and 379 skills.95

Learning from explanations and few-shot Learning. Explanations help humans understand a task96

better, and there have been several attempts to show the same for models. For examples, the learning97

from instruction paradigm [35, 38, 47, 34] where the task level explanation is provided in the form of98

instruction improves model performance significantly. An example of learning from explanations99

in the scientific domain is proposed in [45] where the model interprets demonstrative solutions to100

solve geometry problems. Recently, there has been a surge of interest in few-shot learning, where101

language models learn a specific task from a few examples [40, 3]. For instance, [37, 48] find that102

explanations in the format of the chain of thought can improve the reasoning ability of language103

models in few-shot learning. In this paper, we show that the chain of thought boosts the performance104

of large language models like UnifiedQA [18] if the models generate explanations along with the105

answer in a fine-tuned way. Furthermore, a few-shot GPT-3 model via chain-of-thought prompting is106

able to improve the reasoning performance on SQA and generate reasonable explanations.107

3 Dataset108

We collect SQA , which is a multimodal multiple-choice science question dataset containing 21,208109

examples. An example in SQA is shown in Figure 1. Given the science question and multimodal110

contexts, the task is to select the correct answer from multiple options. Different from existing111

datasets [44, 16, 46, 29, 23], SQA covers diverse topics across three subjects: natural science, social112

science, and language science. Moreover, most questions are annotated with grounded lectures113

and detailed explanations. The lecture provides general knowledge that introduces the background114

information for solving problems of a similar class. The explanation reveals a specific reason for115

the answer. To effectively answer the questions, a model often needs to be able to understand the116

multimodal content in the input and extract external knowledge, similar to how humans do. More117

importantly, the goal of SQA is to aid development of a reliable model that is capable of generating118

a coherent chain of thought when arriving at the correct answer to reveal the multi-step reasoning119

process. For data collection details, see Appendix A.1.120

#Q #I AvgQ MaxQ Grades Science subjects Contexts Images Lecture Explanation

Geometry3K [29] 3,002 2,342 10.1 46 6-12 natural (geometry) image diagram 8 8
AI2D [16] 4,563 4,903 9.8 64 1-6 natural image diagram 8 8
FOODWEBS [23] ⇡5,000 ⇡5,00 - - 8 natural (foodweb only) image diagram 8 8
ARC [6] 7,787 0 20.4 128 3-9 natural 8 8 8 8
VLQA [46] 9,267 10,209 15.0 - - natural image, text natural, diagram 8 8
TQA [17] 26,260 3,455 9.2 57 6-8 natural image, text diagram 4 8

WorldTree [12] 1,680 0 - - 3-5 natural 8 8 8 4
OpenBookQA [33] 5,957 0 10.6 68 1-6 natural 8 8 8 4
QASC [19] 9,980 0 8.0 25 1-9 natural 8 8 8 4
SQA (ours) 21,208 10,332 12.1 141 1-12 natural, social, language image, text natural, diagram 4 4

Table 1: Statistics for SQA and comparisons with existing datasets. #Q: number of questions, #I:
number of images, AvgQ: average question length; MaxQ: maximum question length.
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Statistic Number

Total questions 21,208

Questions with text context 10,220 (48.2%)
Questions with image context 10,332 (48.7%)

* Image of natural format ⇡2,960 (14.0%)
* Image of diagram format ⇡7,372 (34.8%)

Questions with both contexts 6,532 (30.8%)
Questions without any context 7,188 (33.9%)
Questions with a lecture 17,798 (83.9%)
Questions with a explanation 19,202 (90.5%)

Different questions 9,122
Different lectures 261

Topic classes 26
Category classes 127
Skill classes 379

Average question length 12.11
Average choice length 4.40
Average lecture length 125.06
Average explanation length 47.66

Table 2: Main statistics in SQA. Figure 2: Question distribution in SQA.

3.1 Comparisons with Existing Datasets121

Table 1 shows a comparison of SQA and other science problem datasets. As shown in the table,122

SQA is much larger than most other datasets. SQA also has the largest set of images, spans across123

all 12 grades, contains the longest questions, and has the most diverse input sources. As opposed to124

limiting the subject to only natural science, SQA also includes social science and language science,125

largely adding to the domain diversity of the dataset. Furthermore, most of the questions in SQA are126

annotated with textual lectures (83.9%) and explanations (90.5%), which reveal the reasoning path to127

the correct answer. To the best of our knowledge, SQA is the first large-scale multimodal science128

question dataset that annotates the answers with detailed lectures and explanations.129

3.2 Data Analysis130

Key statistics. We randomly split the dataset into training, validation, and test splits with a ratio of131

60:20:20. Each split has 12,726, 4,241, and 4,241 examples, respectively. Table 2 shows the main132

statistics of SQA. SQA has a large set of different questions, totaling up to 9,122. Out of the 21,208133

questions in SQA, 10,332 (48.7%) have an image context, 10,220 (48.2%) have a text context, and134

6,532 (30.8%) have both. 83.9% of the questions are annotated with a lecture, while 91.3% of the135

questions feature an explanation. The cross-combination of these information sources diversifies the136

problem scenario: sometimes the model is given a lot of information from multiple sources, while at137

other times, the only source of information is the question itself. This level of complexity is very138

common in grade-level science exams.139

(a) Question length distribution of VQA and science
datasets. SQA is distributed more evenly in terms of the
number of question words than other datasets.

3,800
(17.92%)

3,688
(17.39%)

6,532
(30.80%)

7,188
(33.89%) No context

Image Text

Image and text!

(b) Question distribution with different con-
text formats. 66.11% of the questions in
SQA have either an image or text context,
while 30.80% of the questions have both.

Figure 3: Question length distribution of different datasets (a) and context distribution in SQA (b).
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Question analysis. SQA has a diverse set of science questions. Figure 2 shows a distribution of140

the first four words in the question text. A large number of question lengths and formats highlight141

the diversity of SQA. The question lengths range from 3 words to 141 words, and the questions in142

SQA have an average length of 12.11 words. The question length distribution is visualized against143

other VQA datasets in Figure 3 (a). As shown in the diagram, SQA’s distribution is flatter than other144

datasets, spanning more evenly across different question lengths.145

Context analysis. Figure 3 (b) shows the number and percentage of questions with either an image146

context, a text context, or both. There are a total of 7,803 unique image contexts and 4,651 unique text147

contexts. 66.11% of the questions have at least one type of context information. The image context148

is in the format of diagrams or natural images, which visualize the critical scenario necessary for149

question answering or simply illustrate the question for better understanding. Similarly, the textual150

context can provide either semantically rich information or a simple hint to the question. Therefore,151

models need to be flexible and general to understand these diverse types of contexts.152

Domain analysis. Each SQA question belongs to one of the three subjects: natural science, language153

science, and social science. With each subject, they are categorized first by the topic (Biology, Physics,154

Chemistry, etc.), then by the category (Plants, Cells, Animals, etc.), and finally by the specific skill155

(Classify fruits and vegetables as plant parts, Identify countries of Africa, etc.). SQA has a total of 26156

topics, 127 categories, and 379 skills. The treemap in Figure 9 visualizes the different subjects, topics,157

and categories and shows that SQA questions are very diverse, spanning a wide range of domains.158

4 Baselines and Chain-of-Thought Models159

In this section, we establish various baselines and develop two chain-of-thought models on SQA.160

4.1 Baselines161

Heuristic baselines. The first heuristic baseline is random chance: we randomly select one from the162

multiple options. Each trial is completed on the whole test set, and we take three different trials for163

an average result. The second heuristic baseline is human performance. We post the task to Amazon164

Mechanical Turk and ask workers to answer SQA questions. Only workers who obtain a high school165

or higher degree and pass the qualification examples are qualified for the study. Each worker needs to166

answer a set of 10 test questions, and each question is answered by three different workers. For more167

details of the human performance study, see Appendix B.2.168

Zero-shot and few-shot baselines. We establish the zero-shot baselines on top of UnifiedQA169

[18] and GPT-3 [5]. The zero-shot setup follows the format of QCM!A where the input is the170

concatenation of tokens of the question text (Q), the context text (C), and multiple options (M), while171

the output is to predict the answer (A) from the option set. We extract the caption from the captioning172

model based on ViT [8] and GPT-2 [41] for the image as the visual context. In the few-shot setting, we173

follow the standard prompting [4] where in-context examples from the training set are concatenated174

before the test instance. These in-context examples serve as an instruction for the language model to175

adjust to the specific task in SQA.176

Fine-tuning baselines. We first consider the fine-tuning baselines from VQA models [1, 20, 49, 9,177

21, 31, 24] proposed in recent years. These VQA baselines take the question, the context, and choices178

as the textual input, take the image as the visual input, and predict the score distribution over choice179

candidates via a linear classifier. In addition, we build the fine-tuning baseline on top of the large180

language model UnifiedQA [18]. UnifiedQA takes the textual information as the input and outputs181

the answer option. Similarly, the image is converted into a caption that provides the visual semantics182

for the language model.183

4.2 Language Models with the Chain of Thought184

A chain of thought refers to a coherent flow of sentences that reveals the premises and conclusion of185

a reasoning problem [48]. A chain of thought clearly decomposes a multi-hop reasoning task into186

intermediate steps instead of solving the task in a black-box way. The chain of thought can be the187

step-by-step thought process [48] before arriving at the final answer or explanations [36] that come188

after the answer. The annotated lectures and explanations in SQA serve as demonstrations of the189
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chain of thought that mimics the multi-step reasoning steps of human beings. In this paper, we study190

if large language models can generate reasonable explanations as the chain of thought to reveal the191

thought process when answering SQA questions. Further, we explore how the chain of thought can192

improve the reasoning ability of language models on SQA in both few-shot and fine-tuning learning.193

UnifiedQA with the chain of thought. UnifiedQA [18] is a state of the art model for multi-option194

question answering. The original architecture of UnifiedQA takes the question and options as the195

input and outputs a short phrase as the final answer. We make a format modification to develop196

UnifiedQA with the chain of thought (CoT) i.e. UnifiedQA is fine-tuned to generate a long sequence197

of text which consists of the answer followed by the lecture and explanation.198

GPT-3 via chain-of-thought prompting. Recent research work [5] has shown that GPT-3 [5] can199

perform various tasks when provided in-context examples in a standard prompt. Take multi-option200

question answering as an example, the standard prompt [32, 51, 27] builds instructions using in-201

context examples with components of the question text, options, and the correct answer text. This style202

of few-shot learning enables the GPT-3 model to answer specific questions without parameter updates.203

Different from standard prompting, we build GPT-3 via chain-of-thought (CoT) prompting, as shown204

in Figure 4. To be specific, for each test problem t, we map the prompt instruction I : {Ii}n, It into205

a textual format where {Ii}n refers to the instruction set of n-shot in-context examples from the206

training set, while It denotes the test instruction. Instead of the way where the explanation comes207

before the answer [48], we feed the instruction I into the encoder-decoder model GPT-3 to generate208

the answer a followed by the lecture lect and explanation exp: M : {Ii}n, It ! a, lect, exp.209

Question: question : Iquesi

Options: (A) option : Iopti1 (B) option : Iopti2 (C) option : Iopti3
Context: context : Icont

i
Answer: The answer is answer : Iai . BECAUSE: lecture : Ilecti explanation : Iexpi

Question: question : Iquest
Options: (A) option : Ioptt1 (B) option : Ioptt2 (C) option : Ioptt3 (D) option : Ioptt4
Context: context : Icont

t
Answer:

Figure 4: Prompt instruction encoding for the text example t for GPT-3 (CoT). The prompt above
consists of a 1-shot training example Ii and a test example It.

5 Experiments210

5.1 Experimental Setup211

Evaluation metrics. The heuristics and VQA baselines treat our SQA task as a multi-class classifi-212

cation problem with multiple options and are evaluated with the accuracy metrics. UnifiedQA and213

GPT-3 treat SQA as a text generation problem. So the most similar option is selected as the final214

prediction to evaluate the question answering accuracy. The generated lectures and explanations are215

evaluated by automatic metrics [39, 26, 43] and human scores by annotators.216

Implementation details. The VQA baselines are trained for a maximum number of 50 epochs with a217

learning rate of 5e�5. We fine-tune the UnifiedQA for 50k iterations and evaluate every 1k iteration.218

The training process is stopped following the early stopping strategy with a patience period of three219

evaluations. For GPT-3, we use the text-davinci-002 engine, which is the most capable model220

version suggested in the official documentation. More details can be found in Appendix B.1.221

5.2 Results for Question Answering222

Table 3 demonstrates the empirical results for Science Question Answering.223

VQA baselines. We feed the VQA baseline models with the input of QCM format to predict answers224

A. Out of all the VQA models we benchmarked, VisualBERT [24, 25] performs the best on average225

(61.87%). Interestingly, Patch-TRM [31] beats VisualBERT in natural science (NAT) and language226

science (LAN), and it also performs better in higher-grade questions (67.50% v.s. 59.92%). However,227

in the subject of social science (SOC), VisualBERT outperforms Patch-TRM by a large margin228
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Model Learning Format NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Random chance - M!A 40.28 46.13 29.25 47.45 40.08 33.66 39.35 40.67 39.83

Q only [1] train set Q!A 41.34 27.22 47.00 41.79 35.15 44.60 39.28 40.87 39.85
CI only [1] train set CI!A 41.34 29.25 45.45 42.33 36.09 42.93 39.21 41.07 39.87

Q+M only [1] train set QM!A 52.66 51.86 60.18 55.57 50.37 57.42 52.53 57.88 54.44
Q+CT +M only [1] train set QCT M!A 57.28 49.04 61.36 60.46 52.80 58.82 54.44 60.51 56.61
Q+CI+M only [1] train set QCIM!A 58.97 53.77 60.45 62.85 54.49 57.63 56.72 61.04 58.26

MCAN [49] train set QCM!A 56.08 46.23 58.09 59.43 51.17 55.40 51.65 59.72 54.54
Top-Down [1] train set QCM!A 59.50 54.33 61.82 62.90 54.88 59.79 57.27 62.16 59.02

BAN [20] train set QCM!A 60.88 46.57 66.64 62.61 52.60 65.51 56.83 63.94 59.37
DFAF [9] train set QCM!A 64.03 48.82 63.55 65.88 54.49 64.11 57.12 67.17 60.72
ViLT [21] train set QCM!A 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14

Patch-TRM [31] train set QCM!A 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT [24, 25] train set QCM!A 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQASMALL [42] zero-shot QCM!A 47.78 40.49 46.00 50.24 44.12 44.39 45.56 46.21 45.79
UnifiedQABASE [42] zero-shot QCM!A 50.13 44.54 48.18 53.08 48.09 46.69 47.58 50.03 48.46

UnifiedQASMALL [42] train set QCM!A 53.77 58.04 61.09 52.10 51.51 61.46 58.22 53.59 56.57
UnifiedQABASE [42] train set QCM!A 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00 70.12

UnifiedQABASE (CoT) train set QCM!AE 70.60 74.02 78.36 65.69 64.80 81.53 75.48 69.48 73.333.21"
UnifiedQABASE (CoT) train set QCM!ALE 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.113.99"

GPT-3 [5] zero-shot QCM!A 75.04 66.59 78.00 74.24 65.74 79.58 76.36 69.87 74.04
GPT-3 [5] 2-shot QCM!A 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97

GPT-3 (CoT) 2-shot QCM!AE 76.60 65.92 77.55 75.51 66.09 79.58 78.49 67.63 74.610.64"
GPT-3 (CoT) 2-shot QCM!ALE 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.171.20"

Human - QCM!A 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

Table 3: Evaluation of baselines over different classes in accuracy (%). Model names: Q = question,
M = multiple options, C = context, CT = text context, CI = image context, CoT = chain of thought.
Format names: A = answer, AE = answer with explanation, ALE = answer with lecture and expla-
nation. Question classes: NAT = natural science, SOC = social science, LAN = language science,
TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6, G7-12 = grades 7-12.
Segments 1: Random chance; Segment 2: Ablation studies on top of Top-Down; Segment 3: VQA
baselines; Segment 4: UnifiedQA baselines and UnifiedQA with CoT; Segment 5: GPT-3 baselines
and GPT-3 with CoT; Segment 6: Average human performance.

(+22.39%). Such drastic changes in performance might imply that current VQA models are not229

generalized to process the challenging questions in SQA.230

Language models. We evaluate whether large-scale pretraining on text can help language models231

learn scientific knowledge and thus perform better on the SQA task. For this purpose, we have tried232

two of the state-of-the-art pre-trained language models: UnifiedQA and GPT-3.233

(i) UnifiedQA. The results show that without any supervised fine-tuning (zero-shot), UnifiedQA234

cannot beat any VQA baseline model, while the pretraining does help the model obtain some scientific235

knowledge to outperform the random baseline. By training the T5 model (UnifiedQA backbone) with236

the answer labels in SQA, UnifiedQABASE reports an accuracy of 70.12% on average. By further237

teaching the model to generate the answer along with lecture and explanation, the developed language238

model with chain-of-thought (UnifiedQABASE (CoT)) brings additional improvements of +3.21%239

(QCM!AE) and +3.99% (QCM!ALE). These results show that generating the chain of thought240

along with the answer benefits the reasoning ability of language models.241

(ii) GPT-3. The positive effect of pretraining is also proved by the surprisingly good results from242

GPT-3 in the same zero-shot setting as UnifiedQA. Without any fine-tuning, GPT-3 already reaches243

almost the best performance we can get. Interestingly, prompting the GPT-3 with two training244

examples with just answers results in a negligible difference. However, if we prompt GPT-3 with245

chain-of-thought prompting (QCM!ALE), we obtain the state-of-the-art results so far (75.17%).246

Human performance. Humans outperform all benchmarks consistently across question classes,247

context types, and grades, e.g., a 20.07% gap for questions with the image context (IMG) between248

humans and our best performing model. The gap is to be filled by future research on multimodal249

reasoning for scientific question answering.250
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Question: What do these two changes have in common?\n
bleaching clothes\n
a piece of apple turning brown\n
Options: (A) Both are only physical changes. (B) Both are caused by cooling. (C) Both are chemical changes. (D) Both are 
caused by heating.\n
Answer: The answer is C. BECAUSE: A physical change is a change to a substance that does not change what the substance 
is. A physical change only changes the substance’s physical properties, such as its size, shape, or color.\n
A chemical change is a change to a substance that changes what the substance is. A chemical change changes the substance’s 
chemical properties, such as its chemical structure.\n
The changes that you listed are both chemical changes.\n
When you bleach clothes, the chemical structure of the fabric changes. This change makes the fabric less likely to hold color.\n 
When a piece of fruit turns brown, the chemical structure of the fruit changes. This change makes the fruit taste different.

Figure 5: One example of the predicted answer along with the chain of thought from GPT-3 (CoT).

5.3 Results for Generated Explanations251

One prediction example of GPT-3 (CoT) is visualized in Figure 5. We can see that GPT-3 (CoT)252

predicts the correct answer and generates a reasonable lecture and explanation to mimic the human253

thought process. We further report automatic metrics (BLEU-1/4 [39], ROUGE-L [39], and (sentence)254

Similarity [43]) to evaluate the generated lectures and explanations, as shown in Table 4. The255

Similarity metric computes the cosine-similarity of semantic embeddings between two sentences256

based on the Sentence-BERT network [43]. The results show that UnifiedQABASE (CoT) generates the257

most similar explanations to the given ones. However, it’s commonly agreed that automatic evaluation258

of generated texts only provides a partial view and has to be complemented by a human study. By259

asking annotators to rate the relevance, correctness, and completeness of generated explanations, we260

find that the explanations generated by GPT-3 (CoT) conform best to human judgment.261

SimilarityModel Format BLEU-1 BLEU-4 ROUGE-L Similarity Relevant Correct Complete Gold
UnifiedQABASE (CoT) QCM!ALE 0.397 0.370 0.714 0.811 80.4% 76.6% 76.1% 56.9%
GPT-3 (CoT) QCM!AE 0.234 0.048 0.351 0.561 76.9% 73.0% 70.5% 52.5%
GPT-3 (CoT) QCM!ALE 0.192 0.052 0.323 0.595 88.5% 78.8% 84.5% 65.2%

Table 4: Automatic metrics (BLEU-1/4, ROUGE-L, Similarity) and human evaluation of generated
explanations. Note that a gold explanation refers to one that is relevant, correct, and complete.

5.4 Analysis262

Blind studies. Blind studies are conducted on top of the modification of the full model, Top-Down263

[1]. The results achieved in blind studies of Q only and CI only are close to random chance, showing264

that the SQA dataset is robust and reliable in distribution. The performance drops in Q+M only,265

Q+CT +M only, and Q+CI+M only indicate that all input components provide critical information for266

answering SQA questions.267

Prompt types. We study the effect of prompt types and visualize the comparison in Figure 6 (a).268

It shows that prompting the GPT-3 model with both lecture and explanation (QCM!ALE) results269

in the highest accuracy on average and the smallest variance. In contrast, prompting with only the270

explanation (QCM!AE) gives the largest variance, resulting in a less stable model.271

(a) Acc. v.s. different prompts with 4-shot examples. (b) Acc. v.s. different # of training examples.
Figure 6: Accuracy of GPT-3 (CoT) cross different prompt types (a) and # of training examples (b).

Number of in-context examples. In Figure 6 (b), we further investigate how different numbers of272

training examples encoded in prompts can affect the prediction accuracy. The QCM!ALE prompt273
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type outperforms or performs comparably the QCM!A type with all numbers of examples. And we274

observe the peak performance of QCM!ALE with 2 training examples being prompted. After that,275

the accuracy goes down as more training examples are added to the model.276

Prompt type Sampling Acc. (%)

QCM!ALE Dynamic (same topic) 75.15
QCM!ALE Dynamic (same category) 74.58
QCM!ALE Dynamic (same skill) 75.10

Table 5: Dynamic sampling for GPT-3 (CoT).

Dynamic sampling. In Table 5, instead of ran-277

dom sampling, we try to dynamically select the278

in-context examples to prompt with the same279

class as the test sample. However, slight differ-280

ences in prediction accuracy are observed when281

comparing them to simple random sampling.282

Upper bound. We search the upper bound of the GPT-3 accuracy by feeding the gold lecture and283

explanation in the test prompt. As reported in Table 6, QCME*!A outperforms the QCM!ALE284

baseline by 18.86% and QCMLE*!A outperforms QCM!ALE by 18.96%, indicating a potential285

improvement direction by generating correct explanations before answering science questions.286

Prompt type Sampling Acc. (%)

QCML*!A Random 73.59
QCML*!AE Random 74.32
QCME*!A Random 94.0318.86"
QCMLE*!A Random 94.1318.96"
QCM!ALE Random 75.17

Table 6: Upper bound of GPT-3 (CoT).

Prompt type Sampling Acc. (%)

QCM!LA Random 60.6
QCM!EA Random 56.0
QCM!LEA Random 55.4
QCM!ELA Random 51.5
QCM!ALE Random 73.6

Table 7: Different positions of L/E for GPT-3 (CoT).

Positions of lectures and explanations. We study the performance of GPT-3 (CoT) in terms of287

different positions of lectures and explanations on 1,000 test examples. Results in Table 7 there could288

be huge accuracy decreases if GPT-3 (CoT) predicts the lectures and explanations before answers. It289

is mainly because if GPT-3 (CoT) is formalized to generate the long lecture and explanation first,290

there is a larger chance that it stops generating the prediction early or use up the maximum token291

limits before obtaining the required answer.292

Figure 7: UnifiedQA (CoT) learns ef-
ficiently with fewer training examples.

CoT learns with fewer data. To study if the chain of293

thought helps language models learn more efficiently, we294

report the accuracies of UnifiedQA and UnifiedQA (CoT)295

fine-tuned on different sizes of the training set in Figure 7.296

UnifiedQA (CoT) benefits the language models by learning297

the coherent reasoning path when answering SQA questions,298

resulting in similar accuracy with fewer training examples.299

Error analysis. GPT-3 via chain-of-chain prompting ob-300

tains promising results but still fails to answer a wide range301

of challenging questions in SQA. See examples of failure302

cases in Appendix B.4. The failure cases can be classified303

into two types: (a) the model fails to understand the multi-304

modal inputs and lacks domain-specific knowledge to arrive at the correct answer; (b) the model305

generates the wrong chain of thought with irrelevant, incorrect, or incomplete information.306

6 Discussion and Conclusion307

In this paper, we propose Science Question Answering SQA, a dataset that features 21,208 multi-308

option questions with multimodal contexts from the science curriculum. To the best of our knowledge,309

SQA is the first large-scale multimodal science dataset where most questions are annotated with310

corresponding lectures and explanations. We establish various baselines, including recent VQA311

models and large language models on SQA. We further study if language models can generate312

reasonable explanations and then benefit the reasoning ability. Experiments show that the UnifiedQA313

with the chain of thought can achieve an improvement of 3.99% and few-shot GPT-3 via chain-314

of-thought (CoT) prompting can obtain a satisfactory accuracy of 75.17% on SQA. 65.2% of the315

generated explanations from GPT-3 (CoT) meet the gold standard by the human evaluations.316
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