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ABSTRACT

Inferring structural properties of a protein given only its amino acid sequence is
a challenging problem. Existing approaches based solely on sequence are unable
to recognize and exploit structural patterns when sequences have diverged too
far. We introduce a novel framework for infusing structural information into
position-specific representations of protein sequences. We train bidirectional
long short-term memory (LSTM) models on protein sequences with a two-part
feedback mechanism to incorporate (i) pairwise residue contact maps for individual
proteins and (ii) co-membership in structural categories based on a curated database
(SCOPe). For co-membership, we introduce soft symmetric alignment (SSA)
between sequences of vector embeddings. We show empirically that our approach
outperforms existing direct sequence alignment methods and also a structure-based
alignment method when predicting structural similarity. SSA also enables learning
informative position-specific embeddings even when no residue level supervision is
available. Finally, we demonstrate that the learned embeddings can be transferred
to other protein sequence problems, improving state-of-the-art in transmembrane
domain prediction. 1

1 INTRODUCTION

Proteins are linear chains of amino acids that fold into specific 3d conformations as a result of the
physical properties of the amino acid sequence. These structures, in turn, determine the wide array of
functions carried out by proteins, from binding specificity to catalytic activity to localization within
the cell. Information about structure is vital for studying the mechanisms of these molecular machines
in health and disease, and for development of new therapeutics. However, structures have only been
experimentally measured for a tiny fraction of known proteins. Thus, we seek to transfer information
from proteins with known structure to those with similar but unknown structure. However, this is a
challenging problem, because primary sequence similarity only loosely relates to structural similarity
[1, 2, 3, 4].

In natural language processing, representation learning has proven effective for knowledge transfer
between tasks. Word embeddings [5, 6, 7], and more recently, sentence embeddings [8, 9, 10, 11],
have been shown to be invaluable as features for problems ranging from machine translation to
natural language inference. In the same way that sentences consist of a sequence of words that encode
semantic meaning, proteins consist of a linear sequence of amino acids that fold into a 3D structure
and determine function. Despite this similarity, methods for learning protein sequence embedding
models remain largely unexplored. Existing works focus on unsupervised approaches based on k-mer
co-occurrence and hence do not capture information from known protein structures [12, 13].

In this work, we address the problem of learning protein sequence embeddings using weak supervision
from global structural similarity. Given only observations of the structural similarity between pairs
of sequences, the task is to learn a contextual embedding model such that residues occurring in
similar local structures will be close in embedding space without access to direct observations of
position-level correspondences between sequences. We solve this problem by explicitly decomposing
sequence comparison into an alignment of the sequences and a pairwise comparison of the aligned
residues in embedding space. We introduce a soft symmetric alignment (SSA) mechanism — a

1source code and datasets are available at redacted
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symmetrization of the directional alignment commonly used in attention mechanisms — and use
this alignment mechanism to train bidirectional recurrent neural network encoders to give residue
embeddings. Furthermore, in order to take advantage of information about local structural context
within proteins, we extend this framework to include supervision from residue-residue contacts in the
individual protein structures (Figure 1). This multitask framework allows us to newly leverage both
global structural similarity between proteins and residue-residue contacts within proteins for training
embedding models.

We apply this framework to the SCOPe ASTRAL dataset (version 2.06) [14], containing structures
for 28,010 proteins with maximum sequence identity of 95%. SCOPe manually classifies protein
structures into a hierarchy of class, fold, superfamily, and family (Appendix Figure 3), where co-
membership corresponds to increasing structural similarity. On this dataset, a bidirectional LSTM
encoder trained with our multitask framework dramatically outperforms sequence homology-based
protein comparison methods and even outperforms the widely used TMalign structural alignment
tool [15] despite using no structural information at test time. Furthermore, we demonstrate that our
SSA mechanism outperforms alternative alignment methods for predicting structural similarity from
sequence embeddings and that inclusion of the contact prediction training task further improves
structural similarity prediction and positional embedding quality. Finally, we demonstrate that the
embeddings learned by our model are generally applicable to other protein machine learning problems
by leveraging our embeddings to improve the state-of-the-art in transmembrane prediction. This work
presents the first attempt in learning protein sequence embeddings from structure and takes a step
towards bridging the sequence-structure divide with representation learning.

2 RELATED WORK

Current work in protein sequence embeddings has seen little adoption and been restricted largely to
adaptations of unsupervised methods from NLP such as ProtVec [12] and Yang et al. [13]. Other
methods have focused on manual feature engineering based on biophysical and sequence attributes
[16]. Pretrained word embeddings, derived from large unlabeled text corpora, [6, 7] are widely used
in most NLP architectures but only contain context-independent information. Sentence and document
embedding methods focus on learning single vector representations of whole sequences using mostly
unsupervised approaches [17, 18, 8, 9]. Recently, supervised sentence encoders trained on natural
language inference have also shown promising results [19, 20, 11]. An alternative line of work seeks
to learn context-dependent representations using bidirectional recurrent neural network language
models [21, 22] or encoders trained for machine translation [23]. We show that a bidirectional RNN
language model similar to [21, 22] is useful for improving performance of our structural similarity
models, the first application of this approach to biological sequences. Our primary contribution,
however, focuses instead on learning context embedding models in a supervised sequence comparative
framework relevant to protein structural embedding.

This work is also related to approaches for learning cross lingual word embeddings from unaligned
parallel text. Kočiský et al. [24] learn bilingual word embeddings jointly with a FastAlign [25]
word alignment model using expectation maximization. BilBOWA [26] learns cross lingual word
embeddings using parallel sentences without word level alignments by assuming a uniform alignment
between words. In contrast to these approaches, we are interested in learning an RNN context
embedding model and alignment model jointly in order to capture higher order sequence semantics.
Word Mover’s Distance [27], in which documents are compared based on an alignment between their
words using pretrained word vectors, and it’s supervised variant [28], in which word vector’s are
linearly transformed given document class supervision, are also related. However, the former focuses
only on measuring document similarity and does not learn embeddings whereas the latter learns a
linear transformation of the word embeddings in a nearest-neighbor framework. Furthermore, the
WMD alignments are expensive to compute scaling as O(p3logp) where p is the number of unique
words. This is prohibitive when alignments must be computed at every optimization step. In contrast,
our soft symmetric alignment method only scales as O(nm) where n and m are the lengths of the
sequences being aligned.

Our SSA method is partly inspired by previous work using soft alignments and attention mecha-
nisms for sequence modeling. Bahdanau et al. [29] and Hermann et al. [30] use dynamic attention
mechanisms to form directional soft alignments for encoder-decoder models. Our approach is both
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memoryless and symmetric. Several additional works use query-to-document and document-to-query
attention mechanisms for reading comprehension [31, 32, 33] but do not combine these into a single
symmetric alignment. Furthermore, the pairwise word interaction model [34] uses a "hard" alignment
upweighting with 19-layer CNN aggregation scheme and the decomposable attention model [35] and
enhanced sequential inference model [35] explore some additional asymmetric alignment ideas with
elaborate aggregation schemes for natural language inference. However, none of the above methods
are focused on learning useful per element embeddings.

Protein fold recognition is the problem of classifying proteins into folds (for example, as defined
by the SCOP database) based on their sequences. Approaches to this problem have largely been
based on sequence homology using sequence similarity to classify structures based on close sequence
matches [14, 36]. These methods are either direct sequence alignment tools [37, 38] or based on
profile HMMs in which multiple sequence alignments are first built by iterative search against a
large sequence database, the multiple sequence alignments are converted into profile HMMs, and
then sequences are compared using HMM-sequence or HMM-HMM alignments [39, 40]. However,
these methods are only appropriate for matching proteins with high sequence similarity [2, 3, 36]. In
contrast, we focus on learning protein sequence representations that capture structure information in
an easily transferable manner directly from structural comparison supervision. We hypothesize that
this method will improve structural prediction for proteins with low sequence homology.

3 METHODS

Our model is composed of three main components: (1) a 3-layer bidirectional LSTM encoder that
transforms amino acid sequences into sequences of vector embeddings with additional inputs from a
pretrained LSTM language model, (2) structurally similarity prediction using the SSA mechanism to
align sequences based on the vector embeddings, and (3) contact prediction using a convolutional
layer on top of vectors given by the pairwise comparison of positions within the protein sequences.

3.1 SEQUENCE ENCODER WITH PRETRAINED LANGUAGE MODEL

The encoder takes a sequence of amino acids representing a protein and encodes it into a sequence
of vector representations of the same length. We structure the encoder as a stack of bidirectional
LSTMs followed by a linear layer projecting the outputs of the final LSTM layer into the output
embedding space (Appendix Figure 2). In order to transfer knowledge from all of known protein
space, we include the hidden layer outputs of a bidirectional language model pretrained on the raw
protein sequences in the protein families database (Pfam) [41] as inputs to the encoder with a learned
linear transformation as

hinputi = ReLU(WLMhLM
i +W xxi + b)

where hLM
i is the concatenation of the LM hidden states at position i, xi is a one-hot encoding of the

amino acid at position i, and WLM , W x, and b are learned parameters. Throughout this work, the
parameters of the language model are frozen. Only WLM , W x, and b are updated when learning the
encoder. Training details for the language model can be found in the Appendix section A.1.

3.2 PROTEIN STRUCTURE COMPARISON

We define the structural similarity between two proteins based on their SCOP class as the number of
levels shared by those proteins in the SCOP hierarchy (Appendix Figure 3). For example, proteins
sharing the same class but not the same fold would have y = 1, while two proteins sharing the same
superfamily but not the same family would have y = 3. Proteins not sharing the same class are
assigned y = 0.

3.2.1 SOFT SYMMETRIC ALIGNMENT

In order to calculate the similarity of two amino acid sequences given that each has been encoded into
a sequence of vector representations, z1...zn and z′1...z

′
m, we develop a soft symmetric alignment

mechanism in which the similarity between two sequences is calculated based on their vector
embeddings as
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Figure 1: Diagram of the various components of the loss function. Vector embeddings from the
encoder are used to predict contacts between residues within a single sequence and to predict similarity
between sequences using SSA. Observed contact maps and structural similarities from SCOP are
used to train the model. The full loss is given by a weighted sum of the similarity and contact losses.

ŝ = − 1

A

n∑
i=1

m∑
j=1

aij ||zi − z′j ||1

where aij are entries of the alignment matrix given by

αij =
exp(−||zi − z′j ||1)∑n
k=1 exp(−||zi − z′k||1)

and βij =
exp(−||zi − z′j ||1)∑m

k=1 exp(−||zk − z′j ||1)
aij = αij + βij − αijβij

and A =
∑n

i=1

∑m
j=1 aij is the length of the alignment.

3.2.2 ORDINAL REGRESSION

Next, to relate this scalar similarity to the ordinal structural similarities, we adopt an ordinal
regression framework in which we jointly learn a set of binary linear classifiers with parame-
ters θ1...θ4 and b1...b4 to predict whether the structural similarity is greater than or equal to t,
p̂(y ≥ t) = sigmoid(θtŝ+ bt), with the constraint that θt ≥ 0 to enforce that p̂ increases monotoni-
cally with ŝ. The structural similarity loss is then given by

E
x,x′

[ 4∑
t=1

(y ≥ t)log(p̂(y ≥ t)) + (y < t)log(1− p̂(y ≥ t))
]

Given these classifiers, the predicted probability that two sequences share structural similarity at level
t is p̂(y = t) = p̂(y ≥ t)(1− p(y ≥ t+ 1)) with p̂(y ≥ 0) = 1 by definition.
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3.3 RESIDUE-RESIDUE CONTACT PREDICTION

In addition to the structural similarity supervision, we also leverage within sequence information in
the form of residue-residue contacts for learning embedding models. Contact prediction is a binary
classification problem in which we seek to predict whether residues at positions i and j within a
protein make contact in the 3d structure. In this work, we define contacts as being residues with
Cα atoms within 8Åof each other. In order to predict contacts from the sequence of embedding
vectors given by the encoder, we define a tensor of size (NxNx2D) where D is the dimension
of the embedding vector containing pairwise features given by the concatenation of the absolute
element-wise differences and the element-wise products of the embedding vectors for each pair of
positions, vij = [|zi − zj |; zi � zj ]. These vectors are then transformed through a single hidden
layer with 50 units (implemented as a width 1 convolutional layer) and ReLU activation as in
hij = ReLU(Wvij + b). Contact predictions are then given by the sigmoid of a 7x7 convolutional
filter with a single output channel applied to the NxNx50 tensor given by the previous operation.
The parameters of the hidden layer and convolutional filter are learned jointly with the encoder
to minimize the cross entropy between the predicted and true contacts, Lcontact, over all pairs of
residues within all proteins in the training set. The combined loss function is then given by

λLsimilarity + (1− λ)Lcontact

where λ is a parameter that interpolates between the structural similarity and contact prediction losses.
Throughout this work, we refer to models this full framework as "SSA with contact prediction" and
the framework without contact prediction (λ = 1) as "SSA" or "SSA without contact prediction."

3.4 TRAINING DETAILS

In all experiments, models were trained for 100 epochs using ADAM with a learning rate of 0.001.
Each epoch consisted of 100,000 examples sampled from the SCOP structural similarity training
set with smoothing of the similarity level distribution of 0.5. In other words, the probability of
sampling a pair of sequences with similarity level t is proportional to N0.5

t where Nt is the number
of sequence pairs with t similarity in the training set. The structural similarity component of the
loss is estimated with minibatches of 64 pairs. When using the full multitask objective, the contact
prediction component uses minibatches of 10 sequences and λ = 0.1. Furthermore, during training
we apply a small perturbation to the sequences by resampling the amino acid at each position from the
uniform distribution with probability 0.05. All models were implemented in pytorch and experiments
were run on a single NVIDIA Tesla V100 GPU.

4 RESULTS

4.1 SCOP STRUCTURAL RELATEDNESS

We first consider the structure similarity prediction problem using the SCOPe ASTRAL 2.06 dataset
filtered to 95% sequence identity. We split this dataset into 22,408 train and 5,602 heldout sequences.
From the heldout sequences, we randomly sample 100,000 pairs as the structural similarity test set.
Furthermore, we define a second test set using the newest release of SCOPe (2.07) by collecting all
protein sequences added between the 2.06 and 2.07 ASTRAL releases. This gives a set of 688 protein
sequences all pairs of which define the ASTRAL 2.07 new test set. We compare the performance
of our full model against a number of widely-used protein sequence comparison methods and a
structural-alignment based method (see Appendix section A.2). We find that our embedding model
with SSA comparison outperforms all sequence alignment based methods by a large margin. We
improve overall prediction accuracy from 0.79 to 0.95, Pearson’s correlation from 0.37 to 0.91, and
Spearman’s rank correlation from 0.23 to 0.69 over the next best sequence comparison method,
HHalign [40]. We also consider the average-precision score for predicting pairs of proteins at each
level of similarity (i.e. positives are considered all pairs with class or higher similarity, fold or higher
similarity, superfamily or higher similarity, or family level similarity) and find that our embedding
model improves over HHalign by 0.51, 0.28, 0.09, and 0.12 at each level on the 2.06 test. Our
embedding model also improves on all metrics on the new 2.07 proteins test set. We note that
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Correlation Average-precision score

Model Accuracy r ρ Class Fold Superfamily Family

ASTRAL 2.06 test set

NW-align 0.78462 0.18854 0.14046 0.30898 0.40875 0.58435 0.52703
phmmer [HMMER 3.2.1] 0.78454 0.21657 0.06857 0.26022 0.34655 0.53576 0.50316
HHalign [HHsuite 3.0.0] 0.78851 0.36759 0.23240 0.40347 0.62065 0.86444 0.52220
TMalign 0.80831 0.61687 0.37405 0.54866 0.85072 0.83340 0.57059
SSA w/ contact prediction 0.95149 0.90954 0.69018 0.91458 0.90229 0.95262 0.64781

ASTRAL 2.07 new test set

NW-align 0.80842 0.37671 0.23101 0.43953 0.77081 0.86631 0.82442
phmmer [HMMER 3.2.1] 0.80907 0.65326 0.25063 0.38253 0.72475 0.82879 0.81116
HHalign [HHsuite 3.0.0] 0.80883 0.68831 0.27032 0.47761 0.83886 0.94122 0.82284
TMalign 0.81275 0.81354 0.39702 0.59277 0.91588 0.93936 0.82301
SSA w/ contact prediction 0.93151 0.92900 0.66860 0.89444 0.93966 0.96266 0.86602

Table 1: Comparison of the full SSA w/ contact prediction embedding model with three protein
sequence alignment methods (NW-align, phmmer, and HHalign) and the structure alignment method
TMalign. We measure accuracy, Pearson’s correlation (r), Spearman’s rank correlation (ρ), and
average-precision scores for retrieving protein pairs with structural similarity of at least class, fold,
superfamily, and family levels.

average-precision scores are higher for fold, superfamily, and family levels of this dataset due to
sequences being more concentrated in a small number of families than in the 2.06 test set.

For reference, we also compare with TMalign, a method for computing structural similarity based on
alignment of actual 3d protein structures [15]. Given the 3d structures of query and target proteins,
TMalign reports scores for query to target and target to query structural alignments. We use the
average of the scores for each direction to calculate the TMalign predictions. Remarkably, despite
using only amino acid sequences as input, our embedding model even outperforms the TMalign
structure alignment method on all metrics for both datasets. The largest improvement comes at the
class level where TMalign achieves much lower average-precision score for the retrieving the weak
structural matches than do our embeddings.

4.2 EVALUATION OF MODEL COMPONENTS

We next evaluate the individual model components on two tasks: structure similarity prediction on the
ASTRAL 2.06 test set and 8-class secondary structure prediction on a 40% sequence identity filtered
dataset containing 22,086 protein sequences from the protein data bank (PDB) [42], a repository of
experimentally determined protein structures. Secondary structure prediction is a sequence labeling
problem in which we attempt to classify every position of a protein sequence into one of eight
classes describing the local 3d structure at that residue. We use this task to measure the utility of
our embeddings for position specific prediction problems. For this problem, we split the secondary
structure dataset into 15,461 training and 6,625 testing sequences. We then treat each position of
each sequence as an independent datapoint with features either given by the 100-d embedding vector
or 1-hot encoding of the k-mer at that position and train a fully connected neural network (2 hidden
layers, 1024 units each, ReLU activations) to predict the secondary structure class from the feature
vector. These models are trained with cross entropy loss for 10 epochs using ADAM with learning
rate 0.001 and a minibatch size of 256.

Alignment from vector embeddings. We first demonstrate the importance of our SSA mechanism
when training the contextual embedding model by comparing the performance of models trained with
SSA versus models trained with uniform alignment and a mean embedding comparison approaches
[26]. In uniform alignment (UA), we consider a uniform prior over possible alignments giving the
similarity score. For the mean embedding method (ME), we instead calculate the similarity score
based on the difference between the average embedding of each sequence.
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Structural similarity Secondary structure

Embedding Model/Features Accuracy r ρ Perplexity Accuracy

1-mer - - - 4.804 0.374
3-mer - - - 4.222 0.444
5-mer - - - 5.154 0.408
SSA w/o language model 0.89847 0.81459 0.64693 3.818 0.511
ME 0.92821 0.85977 0.67122 4.058 0.480
UA 0.93524 0.87536 0.67017 4.470 0.427
SSA 0.93794 0.88048 0.67645 4.027 0.487
SSA w/ contact prediction 0.95149 0.90954 0.69018 2.861 0.630

Table 2: Study of individual model components. Results of structural similarity prediction on the
ASTRAL 2.06 test set and secondary structure prediction are provided for embedding models trained
with various alignment methods, the SSA embedding model trained with language model inputs, and
for the full SSA embedding model trained with contact prediction.

ŝUA = − 1

nm

n∑
i=1

m∑
j=1

||zi − z′j ||1 and ŝME = −
∣∣∣∣∣∣∣∣ 1n

n∑
i=1

zi −
1

m

m∑
i=1

z′j

∣∣∣∣∣∣∣∣
1

We find that not only are the SSA embeddings better predictors of secondary structure than k-mer
features (accuracy 0.487 vs. 0.444 for 3-mers), but that the SSA mechanism is necessary for achieving
best performance on both the structure similarity and local structure prediction tasks. As seen in
table 2, the ME model achieves close to SSA performance on secondary structure prediction, but is
significantly worse for SCOP similarity prediction. The UA model, on the other hand, is close to
SSA on SCOP similarity but much worse when predicting secondary structure. This suggests that our
SSA mechanism captures the best of both methods, allowing embeddings to be position specific as in
the ME model but also being better predictors of SCOP similarity as in the UA model.

Within sequence contact prediction. Although the SSA mechanism allows our embedding model
to capture position specific information, we wanted to explore whether positional information within
sequences in the form of contact prediction could be used to improve the embeddings. We train models
with and without the contact prediction task and find that including contact prediction improves
both the structural similarity prediction and secondary structure prediction results. The accuracy
of secondary structure prediction improves from 0.487 without to 0.630 with contact prediction
(Table 2). This suggests that the contact prediction task dramatically improves the quality of the local
embeddings on top of the weak supervision provided by whole structure comparison.

Pretrained language model. Finally, we show, for the first time with biological sequences, that a
language model pretrained on a large unsupervised protein sequence database can be used to transfer
information to supervised sequence modeling problems. SCOP similarity classification results for
SSA embedding models trained with and without LM hidden layer inputs shows that including the
LM substantially improves performance, increasing accuracy from 0.898 to 0.938 simply by including
representations learned on the Pfam database. Furthermore, we examine the extent to which LM
hidden states capture all useful structural information by training SSA embedding models with less
expressive power than our 3-layer LSTM architecture (Appendix Table 4). We find that the LM
hidden states are not sufficient for high performance on the structural similarity task with linear and
fully connected (width 1 convolution) embedding models only achieving 0.853 and 0.910 accuracy
on the ASTRAL 2.06 test set respectively.

4.3 TRANSMEMBRANE PREDICTION

We demonstrate the potential utility of our protein sequence embedding model for transfering
structural information to other sequence prediction problems by leveraging our embedding model
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Prediction category

Method TM SP+TM Globular Globular+SP Overall

TOPCONS 0.80 0.80 0.97 0.91 0.87
MEMSAT-SVM 0.67 0.52 0.88 0.00 0.52
Philius 0.70 0.75 0.94 0.94 0.83
Phobius 0.55 0.83 0.95 0.94 0.82
PolyPhobius 0.55 0.83 0.95 0.94 0.82
SPOCTOPUS 0.71 0.78 0.78 0.79 0.76
CRF (SSA w/ contact prediction) 0.77 0.85 1.00 0.94 0.89

Table 3: Accuracy of transmembrane prediction using structural embeddings in 10-fold cross valida-
tion and comparison with other transmembrane prediction methods. Our CRF with potentials given
by a function of the SSA with contact prediction embeddings results are displayed below the dotted
line. We compare with results for a variety of transmembrane prediction methods previously reported
on the TOPCONS dataset.

for transmembrane prediction. In transmembrane prediction, we wish to detect which, if any,
segments of the amino acid sequence cross the lipid bilayer for proteins integrated into the cell
membrane. This is a well studied problem in protein biology with methods generally consisting
of HMMs with sophisticated, manually designed hidden state transition distributions and emission
distributions including information about residue identity, amino acid frequencies from multiple
sequence alignments, local structure, and chemical properties. Newer methods are also interested
in detection of signal peptides, which are short amino acid stretches at the beginning of a protein
sequence signaling for this protein to be inserted into the cell membrane.

To benchmark our embedding vectors for this problem, we develop a conditional random field model
in which propensity of each hidden state given the sequence of embedding vector inputs is defined
by a single layer bidirectional LSTM with 100 units. For the transition probabilities between states,
we adopt the same structure as used in TOPCONS [43] and perform 10-fold cross validation on the
TOPCONS transmembrane benchmark dataset. We report results for correctly predicting regions
in proteins with only transmembrane domains (TM), transmembrane domains and a signal peptide
(SP+TM), neither transmembrane nor signal peptide domains (Globular), or a signal peptide but
no transmembrane regions (Globular+SP). Transmembrane state labels are predicted with Viterbi
decoding. Again following TOPCONS, predictions are counted as correct if, for TM proteins, our
model predicts no signal peptide, the same number of transmembrane regions, and those regions
overlap with real regions by at least five positions. Correct SP+TM predictions are defined in the same
way except that proteins must be predicted to start with a signal peptide. Globular protein predictions
are correct if no transmembrane or signal peptides are predicted and Globular+SP predictions are
correct if only a leading signal peptide is predicted.

We find that our transmembrane predictions rank first or tied for first in 3 out of the 4 categories
(SP+TM, Globular, and Globular+SP) and ranks second for the TM category. Overall, our transmem-
brane predictions are best with prediction accuracy of 0.89 vs 0.87 for TOPCONS. Remarkably, this
is by simply replacing the potential function in the CRF with a function of our embedding vectors,
the hidden state grammar is the same as that of TOPCONS. This is particularly noteworthy, because
TOPCONS is a meta-predictor. It uses outputs from a wide variety of other transmembrane prediction
methods to define the transmembrane state potentials.

5 CONCLUSION

In this work, we proposed a novel alignment approach to learning contextual sequence embeddings
with weak supervision from a global similarity measure. Our SSA model is fully differentiable,
fast to compute, and can be augmented with within sequence structural information, outperforming
competition in predicting protein structural similarity. The resulting embeddings are widely useful,
allowing us to improve over the state-of-the-art in transmembrane region prediction. The broader
framework extends to other related (non-biological) tasks.
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A APPENDIX

A.1 LANGUAGE MODEL TRAINING

The bidirectional LSTM language model was trained on the full set of protein domain sequences
in the Pfam database, 21,827,419 total sequences. The language model was trained to predict the
amino acid at position i given observations of all amino acids before i and all amino acids after i
by minimizing the cross entropy loss with log predicted log probabilities given by the sum of the
forward and reverse LM direction predictions

logp(xi|x−i) = logpF (xi) + logpR(xi)

where pF (xi) is the probability given by the forward direction LSTM and pR(xi) is the probability
given by the reverse direction LSTM.

The language model architecture consisted of a 2-layer LSTM with 1024 units in each layer followed
by a linear transformation into the 20-d amino acid prediction. All parameters were shared between
the forward and reverse direction components. The model was trained for a single epoch using the
Adam with a learning rate of 0.001 and minibatch size of 32.

A.2 STRUCTURAL SIMILARITY PREDICTION BENCHMARKS

For the NW-align method, similarity between protein sequences was computed using the BLOSUM62
substitution matrix with gap open and extend penalties of -11 and -1 respectively. For phmmer, each
pair of sequences was compared in both directions (i.e. query->target and target->query) using the
’–max’ option. The similarity score for each pair was treated as the average off the query->target and
target->query scores. For HHalign, multiple sequence alignments were first built for each sequence by
using HHblits to search for similar sequences in the uniclust30 database with a maximum of 2 rounds
of iteration (-n 2). Sequences pairs were then scored by using HHalign to score the target->query
and query->target HMM-HMM alignments. Again, the average of the two scores was treated as the
overall HHalign score. Finally, for TMalign, the structures for each pair of proteins were aligned
and the scores for the query->target and target->query alignments were averaged to give the overall
TMalign score for each pair of proteins.

To calculate the classification accuracy from the above scores, thresholds were found to maximize
prediction accuracy when binning scores into similarity levels using 100,000 pairs of sequences
sampled from the ASTRAL 2.06 training set.
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Figure 2: Illustration of the embedding model. The amino acid sequence is first past through the
pretrained language model in both forward and reverse directions. The hidden states at each position
of both directions of the language model are concatenated together with a one hot representation of
the amino acids and past as input to the encoder. The final vector representations of each position of
the amino acid sequence are given by a linear transformation of the outputs of the final bidirectional
LSTM layer.

SCOP

α β α/β

Rossman fold Flavodoxin-like α/β-Barrel

TIM Trp biosynthesis Glycosyltransferase

β-Galactosidase β-Glucanas α-Amylase (N)

Acid α-amylase Cyclodextrin
glycosyltransferase

Oligo-1,6
glucosidase

β-Amylase

RuBisCo (C)

α + β Class

Fold

Superfamily

Family

Protein

Figure 3: Illustration of the SCOP hierarchy modified from Hubbard et al. [44].

Embedding Model Accuracy r ρ

Linear 0.85277 0.74419 0.60333
Fully connected (1-layer, 512 units) 0.91013 0.84193 0.67024
BiLSTM (1-layer) 0.92964 0.87239 0.67485
BiLSTM (3-layer) 0.93794 0.88048 0.67645

Table 4: Comparison of encoder architectures for the SSA model with LM inputs on the ASTRAL
2.06 test set.
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