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ABSTRACT

We explore various methods for computing sentence representations from pre-
trained word embeddings without any training, i.e., using nothing but random
parameterizations. Our aim is to put sentence embeddings on more solid foot-
ing by 1) looking at how much modern sentence embeddings gain over random
methods—as it turns out, surprisingly little; and by 2) providing the field with
more appropriate baselines going forward—which are, as it turns out, quite strong.
We also make important observations about proper experimental protocol for sen-
tence classification evaluation, together with recommendations for future research.

1 INTRODUCTION

Sentence embeddings are learned non-linear recurrent combinations of pre-trained word embed-
dings. Well-known examples include SkipThought (Kiros et al., 2015) and InferSent (Conneau
et al., 2017). Sentence embeddings are trained with some unsupervised or supervised objective, and
subsequently evaluated using transfer tasks, where a simple logistic regression classifier is trained
on top of the learned sentence encoder (which is kept fixed). There has been a lot of recent interest
in trying to understand better what these sentence embeddings learn (Adi et al., 2016; Linzen et al.,
2016; Conneau et al., 2018; Zhu et al., 2018).

Natural language processing does not yet have a clear grasp on the relationship between word and
sentence embeddings: it is unclear how much sentence-encoding architectures improve over the raw
word embeddings, and what aspect of such architectures is responsible for any improvement. Indeed,
state-of-the-art word embeddings on their own perform quite well with simple pooling mechanisms,
as reported by Shen et al. (2018). Given the tremendous pace of research on sentence representa-
tions, it is important to establish solid baselines for others to build on.

It has been observed that bidirectional LSTMs with max-pooling perform surprisingly well even
without any training whatsoever (Conneau et al., 2017; 2018), leading to claims that such architec-
tures “encode priors that are intrinsically good for sentence representations” (Conneau et al., 2018),
similar to convolutional networks for images (Ulyanov et al., 2017). Inspired by these observations,
we propose to examine the following question: given a set of word embeddings, how can we max-
imize classification accuracy on the transfer tasks without any training, i.e. without updating any
parameters except for those in the transfer task-specific linear classifier trained on top of the rep-
resentation. SkipThought famously took around one month to train, while InferSent requires large
amounts of annotated data—we examine to what extent we can match the performance of these
systems by exploring different ways for combining nothing but the pre-trained word embeddings.

We go down a well-paved avenue of exploration in the machine learning research community, and
exploit an insight originally due to Cover (1965): “A complex pattern-classification problem, cast
in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-
dimensional space, provided that the space is not densely populated.” That is, we examine three
types of models for obtaining randomly computed sentence representations from pre-trained word
embeddings: bag of random embedding projections, randomly initialized recurrent networks and
echo state networks.

Our goal is not to obtain a new state of the art, but to put current state of the art methods on more
solid footing by 1) looking at how much they gain compared to random methods; and 2) providing
the field with more solid baselines going forward. We make several important observations about
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proper experimental protocol for sentence classification evaluation; and finish with a list of take-
away recommendations.

2 RELATED WORK

Sentence embeddings are receiving a lot of attention. Many approaches have been proposed, varying
in their use of both training data and training objectives. Methods include autoencoders (Socher
et al., 2011; Hill et al., 2016) and other learning frameworks using raw text (Le & Mikolov, 2014;
Pham et al., 2015; Jernite et al., 2017; Pagliardini et al., 2017), a collection of books (Kiros et al.,
2015), labelled entailment corpora (Conneau et al., 2017), image-caption data (Kiela et al., 2017),
raw text labelled with discourse relations (Nie et al., 2017), or parallel corpora (Wieting & Gimpel,
2017). Multi-task combinations of these approaches (Subramanian et al., 2018; Cer et al., 2018) have
also been proposed. Progress has been swift, but lately we have started to observe some troubling
trends in how research is conducted, in particular with respect to properly identifying the sources of
empirical gains (see also Lipton & Steinhardt (2018)).

There was an issue with non-standard evaluation methods, for which SentEval (Conneau & Kiela,
2018) and then GLUE (Wang et al., 2018) were created. One often overlooked aspect of sentence
representation evaluation, for example, is that logistic regression classifiers and multi-layer percep-
trons (MLP) are not the same thing. To single out an example, the recent paper by Shen et al. (2018),
which aims to “give baselines more love”, does not compare against LSTMs with the exact same
pre-processing and range of hyperparameters, in effect ignoring its own baselines, and uses a custom
designed MLP, sweeping over many hyperparameters unique to their setup. Their best performing
model (SWEM-concat) has at least twice as many parameters in their classifier as their other SWEM
models. Even when comparing InferSent and SkipThought, it is not entirely clear where differences
come from: the better pre-trained word embeddings; the different architecture; the different objec-
tive; the layer normalization—e.g. what would happen if we trained a bidirectional LSTM with
max-pooling using GloVe embeddings (i.e., InferSent’s architecture) with a SkipThought objective
or added layer normalization to InferSent? The nowadays surprisingly poor performance of the
models in Hill et al. (2016) can at least partly be explained because 1) they use poorer (older) word
embeddings; and 2) FastSent sentence representations are of the same dimensionality as the input
word embeddings, while they are compared in the same table to much higher-dimensional repre-
sentations. Obviously, a logistic regression classifier on top of a higher-dimensional input has more
parameters too, giving such models an unfair advantage. In part, doing such in-full comparisons
is simply not feasible, and often not appreciated by reviewers anyway, so we can hardly blame the
authors of these papers. That said, we wholeheartedly agree that baselines need more love: with this
work we hope to establish even stronger baselines for future work and try to estimate how much per-
formance is being added by training sentence embeddings on top of pre-trained word embeddings.

There has been a lot of recent interest in trying to understand what linguistic knowledge is encoded
in word and sentence embeddings, for instance in machine translation (Belinkov et al., 2017; Sen-
nrich, 2016; Dalvi et al., 2017), with a focus on evaluating RNNs or LSTMs (Linzen et al., 2016;
Hupkes et al., 2018) or even sequence-to-sequence models (Lake & Baroni, 2018). Various probing
tasks (Ettinger et al., 2016; Adi et al., 2016; Conneau et al., 2018) were designed to try to understand
what you can “cram into a vector” for representing sentence meaning. We show that a lot of informa-
tion may be crammed into vectors using randomly parameterized combinations of pre-trained word
embeddings: that is, most of the power in modern NLP systems is derived from having high-quality
word embeddings, rather than from having better encoders.

The idea of using random weights is almost as old as neural networks, ultimately going back to ideas
in multi-layer perceptrons with fixed randomly intialized first layers (Gamba et al., 1961; Borsellino
& Gamba, 1961; Baum, 1988), or what Minsky and Papert call Gamba perceptrons (Minsky &
Papert, 2017). The idea of fixing a subset of the network was made more explicit in (Schmidt et al.,
1992; Pao et al., 1994), which some people have started to call extreme learning machines (Huang
et al., 2006).1

Random features in machine learning are often used for low-rank approximation (Vempala, 2005), as
per the Johnson-Lindenstrauss lemma; exploiting the useful properties of random matrices (Mehta,

1See http://elmorigin.wixsite.com/originofelm for an interesting discussion of ELM.
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2004). Random “kitchen sink” features have become a seminal approach in the machine learning
literature (Rahimi & Recht, 2008; 2009). Similar ideas underlie e.g. double-stochastic gradient
methods (Dai et al., 2014). In fact, it is well-known that random weights do well, as for example
shown in computer vision with respect to convnets (Saxe et al., 2011). In our case, we use ran-
dom projections for higher-rank feature expansion of low-rank dense pre-trained word embeddings,
exploiting Cover’s theorem (Cover, 1965). An encoder like this does not require any training, un-
like other sentence encoders such as SkipThought and InferSent. Comparing those methods to our
random sentence encoders provides valuable insight into how much of a performance improvement
we have actually gained from training for a long time (in the case of SkipThought) or training on
expensive annotated data (in the case of InferSent).

The same idea of using fixed random computations underlies reservoir computing (Lukoševičius &
Jaeger, 2009) and echo-state networks (Jaeger, 2001). In reservoir computing, inputs are fed into
a fixed, random, dynamical system called a reservoir that maps the input into a high dimensional
space. Then a trainable linear transformation of this high dimensional space is learned to predict
some output signal. Echo-state networks are a specific type of reservoir computing and are further
described in Section 3.1.3.

3 APPROACH

In this paper, we explore three architectures that produce sentence embeddings from pre-trained
word embeddings, without requiring any training of the encoder itself. These sentence embeddings
are then used as features for a collection of downstream tasks. The downstream tasks are all trained
with a logistic regression classifier using the default settings of the SentEval framework (Conneau
& Kiela, 2018). The parameters of this classifier are the only ones that are updated during training
(see Section 3.2 below).

3.1 RANDOM SENTENCE ENCODERS

We are concerned with obtaining a good sentence representation h that is computed using some func-
tion f parameterized by θ over pre-trained input word embeddings e ∈ L, i.e. h = fθ(e1, . . . , en)
where ei is the embedding for the i-th word in a sentence of length n. Typically, sentence en-
coders learn θ, after which it is kept fixed for the transfer tasks. InferSent represents a sentence as
f = max(BiLSTM(e1, . . . , en)) and optimizes the parameters using a supervised cross-entropy ob-
jective for predicting one of three labels from a combination of two sentence representations: entail-
ment, neutral or contradictive. SkipThought represents a sentence as f = GRUn(e1, . . . , en), with
the objective of being able to decode the previous and next utterance using negative log-likelihood
from the final (i.e., n-th) hidden state.

InferSent requires large amounts of expensive annotation, while SkipThought takes a very long
time to train. Here, we examine different ways of parameterizing f for representing the sentence
meaning, without any training of θ. This means we do not require any labels for supervised training,
nor do we need to train the sentence encoder for a long time with an unsupervised objective. We
experiment with three methods for computing h: Bag of random embedding projections, Random
LSTMs, and Echo State Networks. In this section, we describe the methods in more detail. In the
following sections, we show that our methods lead to surprisingly good results, shedding new light
on sentence representations, and establishing strong baselines for future work.

3.1.1 BAG OF RANDOM EMBEDDING PROJECTIONS (BOREP)

The first family of architectures we explore consists of simply applying a single random projection
in a standard bag-of-words (or more accurately, bag-of-embeddings) model. We randomly initialize
a matrix W ∈ RD×d, where D is the dimension of the projection and d is the dimension of our
input word embedding. The values for the matrix are sampled uniformly from [− 1√

d
, 1√

d
], which is

a standard initialization heuristic used in neural networks (Glorot & Bengio, 2010). The sentence
representation is then obtained as follows:

h = fpool(Wei),
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where fpool is some pooling function, e.g. fpool(x) =
∑

(x), fpool(x) = max(x) (max pooling)
or fpool(x) = |x|−1

∑
(x) (mean pooling). Optionally, we impose a nonlinearity max(0,h). We

experimented with imposing positional encoding for the word embeddings, but did not find this to
help.

3.1.2 RANDOM LSTMS

Following InferSent, we employ bidirectional LSTMs, but in our case without any training. Conneau
et al. (2017) reported good performance for the random LSTM model on the transfer tasks. The
LSTM weight matrices and their corresponding biases are initialized uniformly at random from
[− 1√

d
, 1√

d
], where d is the hidden size of the LSTM. In other words, the architecture here is the

same as that of InferSent modulo the type of pooling used:

h = fpool(BiLSTM(e1, . . . , en)).

3.1.3 ECHO STATE NETWORKS

Echo State Networks (ESNs) (Jaeger, 2001) were primarily designed for sequence prediction prob-
lems, where given a sequence X , we predict a label y for each step in the sequence. The goal is to
minimize the error between the predicted ŷ and the target y at each timestep. Formally, an ESN is
described using the following update equations:

h̃i = fpool(W
iei +Whhi−1 + bi)

hi = (1− α)hi−1 + αh̃i,

where W i, W r, and bi are randomly initialized and are not updated during training. The parameter
α ∈ (0, 1] governs the extent to which the previous state representation is allowed to leak into
the current state. The only learned parameters in an ESN are the final weight matrix, W o and
corresponding bias bo, which are together used to compute a prediction ŷi for the ith label yi:

ŷi =W o[ei;hi] + bo.

We diverge from the typical per-timestep ESN setting, and instead use the ESN to produce a random
representation of a sentence. We use a bidirectional ESN, where the reservoir states, hi, are con-
catenated for both directions. We then pool over these states to obtain the sentence representation:

h = max(ESN(e1, . . . , en)).

The property of echo state networks that sets them apart from randomly initialized classical re-
current networks, and allows for better performance, is the echo state property. The echo state
property (Jaeger, 2001) claims that the state of the reservoir should be determined uniquely from the
input history, and the effects of a given state asymptotically diminish in favor of more recent states.

In practice, one can satisfy the echo state property in most cases by ensuring that the spectral radius
of Wh is less than 1 (Lukoševičius & Jaeger, 2009). The spectral radius, i.e., the maximal absolute
eigenvalue ofWh, is one of many hyperparameters to be tuned when using ESNs. Others include the
activation function, the amount of leaking between states, the sparsity ofWh, whether to concatenate
the inputs to the reservoir states, how to sample the values for W i and other factors. Lukoševičius
& Jaeger (2009) gives a good overview of what hyperparameters are most critical when designing
ESNs.

3.2 EVALUATION

In our experiments, we evaluate on a standard sentence representation benchmark using SentE-
val (Conneau & Kiela, 2018). SentEval allows for evaluation on both downstream NLP datasets
as well as probing tasks, which measure how accurately a representation can predict linguistic in-
formation about a given sentence. The set of downstream tasks we use for evaluation comprises
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Model Dim MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOE 300 77.3 78.9 87.7 91.0 79.7 83.0 80.4 78.6 72.9 70.7

BOREP 4096 77.3 79.0 88.4 92.0 81.2 88.0 85.5 81.6 73.2 68.4
RandLSTM 4096 77.2 78.8 87.9 91.9 82.0 86.9 85.5 81.9 73.7 72.5
ESN 4096 78.4 80.3 88.6 92.4 83.5 88.8 86.1 82.3 73.7 74.6

InferSent-1 = paper version, glove 4096 81.1 86.3 90.2 92.4 84.6 88.2 88.3 86.3 76.2 75.6
InferSent-2 = fixed padding, fasttext 4096 79.7 84.2 89.4 92.7 84.3 90.8 88.8 86.3 76.0 78.4
InferSent-3 = fixed padding, glove 4096 79.7 83.4 88.9 92.6 83.5 90.8 88.5 84.1 76.4 77.3
∆ InferSent-3, BestRand - 1.3 3.1 0.3 0.2 0.0 1.0 2.4 1.8 2.7 2.7

ST-LN 4800 79.4 83.1 89.3 93.7 82.9 88.4 85.8 79.5 73.2 68.9
∆ ST-LN, BestRand - 1.0 2.8 1.3 1.3 -0.6 -0.4 -0.3 2.8 -0.5 -5.7

Table 1: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r). All models have 4096 dimensions with the exception of BOE (300) and ST-LN (4800).
The last two rows show the performance difference between InferSent-3 and the best performing
random architecture for each task. The average performance difference between the best random
architecture and InferSent-3 and ST-LN is 1.6 and 0.2 respectively.

sentiment analysis (MR, SST), question-type (TREC), product reviews (CR), subjectivity (SUBJ),
opinion polarity (MPQA), paraphrasing (MRPC), entailment (SICK-E, SNLI) and semantic relat-
edness (SICK-R, STSB). The probing tasks consist of those in Conneau et al. (2018). We use the
default SentEval settings (see Appendix A).

4 RESULTS

We compare primarily to two well-studied sentence embedding models, InferSent (Conneau et al.,
2017) and SkipThought (Kiros et al., 2015) with layer normalization (Ba et al., 2016). We point out
that there are recently introduced multi-task sentence encoders that improve performance further,
but these either do not use pre-trained word embeddings (GenSen (Subramanian et al., 2018)), or
don’t use SentEval (Universal Sentence Encoders (Cer et al., 2018)). Since both architectures are
inspired by InferSent and SkipThought, and combine their respective supervised and unsupervised
objectives, we limit our comparison to the original models.

We compute the average accuracy/Pearson’s r over 5 different seeds for the random methods, and
tune on validation for each task. See Appendix A for a discussion of the used hyperparameters.

Table 1 reports the results on the selected SentEval benchmark tasks, where all models have 4096
dimensions (with the exception of SkipThought, which has 4800). We compare to three different
InferSent models: the results from the paper, which had non-standard pooling over padding symbols
(InferSent-1); the results from the InferSent GitHub,2 with fixed padding, using FastText instead of
GloVe (InferSent-2); the results from an InferSent model we trained ourselves,3 with fixed padding,
using GloVe embeddings (InferSent-3) (see Appendix C for a more detailed discussion of padding
and pooling).4 Note that the comparison to layer-normalized SkipThought is not entirely fair, be-
cause it uses different (and older) word embeddings, but a higher dimensionality. We hypothesize
that SkipThought might do a lot better if it had been trained with better pre-trained word embed-
dings.

First of all, we observe that all random sentence encoders generally improve over bag-of-
embeddings. This is not entirely surprising, but it is important to note that the proper baseline for
an n-dimensional sentence encoder is an n-dimensional BOREP representation, not an (m < n)-
dimensional BOE representation. BOREP does markedly better than BOE, constituting a much
stronger baseline (and requiring no additional computation besides a simple random projection).

When comparing the random sentence encoders, we observe that ESNs outperform BOREP and
RandLSTM on all tasks. It is unclear whether (randomly initialized) LSTMs exhibit the echo state

2https://github.com/facebookresearch/InferSent
3We trained this model using the hyperparameters described by Conneau et al. (2017). Training on both

SNLI (Bowman et al., 2015) and MultiNLI (Williams et al., 2018), we achieved a test performance on SNLI of
84.4 when max-pooling over padded words and 83.9 when max-pooling over the length of the sentences.

4We note that GenSen uses the same pooling as Infersent-1, and we show in Appendix C that this has a
significant effect on performance.
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Figure 1: Performance while varying dimensionality, for the three random sentence encoders over
the 10 downstream tasks.

Model MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOE 77.3 78.9 87.7 91.0 79.7 83.0 80.4 78.6 72.9 70.7

BOREP 78.6 80.0 88.7 92.9 82.5 89.4 86.0 84.1 73.9 68.2
RandLSTM 78.0 80.0 88.2 92.8 83.4 88.2 86.6 83.7 74.5 73.6
ESN 78.5 80.2 88.9 93.1 84.2 92.1 87.1 85.0 74.8 72.9

InferSent-3 4096×6 79.7 83.9 89.1 92.8 82.4 90.6 79.5 85.9 75.1 75.0
ST-LN 4096×6 75.2 80.8 86.8 92.7 80.6 88.4 82.9 81.3 71.5 67.0

Table 2: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r). All models have 4096×6 dimensions. ST-LN and InferSent-3 were projected to this
dimension with a random projection.

property, but the main reason for the improvement is likely that in our experiments ESNs had more
hyperparameters available for tuning.

When comparing to InferSent, in which case we should look at InferSent-3 in particular (as it has
fixed padding and also uses GloVe embeddings), we do see a clear difference on some of the tasks,
showing that training does in fact help. The performance gains over the random methods, however,
are not as big as we might have hoped, given that InferSent requires annotated data and takes time to
train, while the random sentence encoders can be applied immediately. For SkipThought, we discern
a similar pattern, where the gain over random methods (which do have better word embeddings) is
even smaller. While SkipThought took a very long time to train, in the case of SICK-E you would
actually even be better off simply using BOREP, while ESN outperforms SkipThought on five of the
10 tasks.

Note that in these experiments we do model selection over per-task validation set performance, but
Appendix B shows that the method is robust, as we could also have used the best-overall model on
validation and obtained similar results.

Keep in mind that the point of these results is not that random methods are better than these other en-
coders, but rather that we can get very close and sometimes even outperform those methods without
any training at all, from just using the pre-trained word embeddings.
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Model SentLen WC TreeDepth TopConst BShift Tense SubjNum ObjNum SOMO CoordInv

BOE (300d, class.) 60.5 87.5 32.0 62.7 50.0 83.7 78.0 76.6 50.5 53.8
BOREP (4096d, class.) 64.4 97.1 33.0 71.3 49.8 86.3 81.5 79.3 49.5 54.1
RandLSTM (4096d, class.) 72.8 94.1 35.6 76.2 55.2 86.6 84.0 79.5 49.7 63.1
ESN (4096d, class.) 78.8 92.4 36.9 76.2 62.9 86.6 82.3 79.7 49.7 60.3

Infersent-3 80.6 93.5 37.1 78.2 57.3 86.8 84.8 80.5 53.0 65.8
ST-LN 79.9 79.9 39.5 82.1 69.4 90.2 86.2 83.4 54.5 68.9

Table 3: Performance on a set of probing tasks as defined in (Conneau et al., 2018). All random
architecture models are 4096 dimensions and were selected by tuning over validation performance
on the classification tasks.

4.1 TAKING COVER TO THE MAX

If we take Cover’s theorem to the limit, we can project to an even higher-dimensional representa-
tion as long as we can still easily fit things onto a modern GPU: hence, we project to 4096 × 6
(24576) dimensions instead of the 4096 dimensions we used in Table 1. In order to make for a fair
comparison, we can also randomly project InferSent and SkipThought representations to the same
dimensionality and examine performance.

Table 2 shows the results. Interestingly, the gap seems to get smaller, and the projection in fact
appears to be detrimental to InferSent and SkipThought performance. The numbers reported in the
table are competitive with (older) much more sophisticated trained methods.

Simply maximizing the number of dimensions, however, might lead to overfitting, so we also ana-
lyze how performance changes as a function of the dimensionality of the sentence embeddings: we
sample random models for a range of dimensions, {512, 1024, 2048, 4096, 8192, 12288, 24576},
and train models for BOREP, random LSTMs, and ESNs. Performance of these models is shown in
Figure 1.

As suggested by Cover’s theorem, as well as earlier findings in the sentence embedding literature
(see e.g. Fig. 5 of Conneau et al. (2017)), we observe that higher dimensionality in most cases
leads to better performance. In some cases it looks like we would have benefited from having even
higher dimensionality (e.g. SUBJ, TREC and SST2), while in other cases we can see that the model
probably starts to overfit (STSB, SICK-E for BOREP). In general, the trend is up, meaning that a
higher-dimensional embeddings leads to better performance.

5 ANALYSIS

We analyze random sentence embeddings by examining how these embeddings perform on the prob-
ing tasks introduced by Conneau et al. (2018), in order to gauge what properties of sentences they
are able to recover. These probing tasks were introduced in order to provide a framework for as-
certaining the linguistic properties of sentence embeddings, comprising three types of information:
surface, syntactic and semantic information.

There are two surface information tasks: predicting the correct length bin from 6 equal-width bins
sorted by sentence length (Length) and predicting which word is present in the given sentence from
a set of 1000 mid-frequency words (Word Content, WC). Syntactic information comprises 3 tasks:
predicting whether a sentence has been perturbed by switching two adjacent words (BShift); the
depth of the constituent parse tree of the sentence (TreeDepth); and the topmost constituent se-
quence of the constituent parse in a 20-way classification problem (TopConst). Finally, there are
five semantic information tasks: predicting the tense of the main-clause verb (Tense); the number
of the subject of the main clause (SubjNum); the number of the direct object of the main clause
(ObjNum); whether a sentence has been modified by replacing a noun or verb with another in a way
that the newly formed bigrams have similar frequencies to those they replaced (Semantic Odd Man
Out, SOMO); and whether the order of two coordinate clauses has been switched (CoordInv).

Table 3 shows the performance of the random sentence encoders (using the best-overall model tuned
on the classification validation sets of the SentEval tasks) on these probing tasks along with bag-of-
embeddings (BOE), SkipThought-LN, and InferSent. From the table, we see that ESNs and RandL-
STMs outperform BOE and BOREP on most of the tasks, especially those that require knowledge
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of the order of the words. This indicates that these models, even though initialized randomly, are
capturing order, as one would expect. ESNs and InferSent are fairly close on many of the tasks,
with Skipthought-LN generally outperforming both. However, the largest difference between the
trained embedding models and the randomly initialized ones, is on the most difficult tasks like Co-
ordInv and SOMO. This indicates that the trained embeddings have likely learned to embed some
nontrivial linguistic information that random architectures do not encode well. Whether or not that
information is actually relevant in downstream tasks, however, is debatable.

6 DISCUSSION

In light of our findings, we list several take-away messages with regard to sentence embeddings:

• If you need a baseline for your sentence encoder, don’t just use BOE, use BOREP of the
same dimension, and/or a randomly initialized version of your encoder.

• If you are pressed for time and have a small to mid-size dataset, simply randomly project
to a very high dimensionality, and profit.

• More dimensions in the encoder is usually better (up to a point).

• If you want to show that your system is better than another system, use the same classifier
on top with the same hyperparameters; and use the same word embeddings at the bottom;
while having the same sentence embedding dimensionality.

• Be careful with padding, pooling and sorting: you may inadvertently end up favoring cer-
tain methods on some tasks, making it harder to identify sources of improvement.

• For some of the benchmark datasets, differences between random and trained encoders are
so small that it would probably be best not to use those tasks anymore.

• Our results seem to suggest that the field is in dire need of high-quality semantic bench-
marks that actually require (and substantially benefit from) training sentence encoders.

As Rahimi and Recht wrote when reflecting on their random kitchen sinks paper5:

Its such an easy thing to try. When they work and I’m feeling good about life, I
say “wow, random features are so powerful! They solved this problem!” Or if I’m
in a more somber mood, I say “that problem was trivial. Even random features
cracked it.” [...] Regardless, it’s an easy trick to try.

Indeed, random sentence encoders are easy to try: they require no training, and should be used as a
solid baseline to be compared against when learning sentence encoders that are supposed to capture
more than simply what is encoded in the pre-trained word embeddings. While sentence embeddings
constitute a very promising research direction, much of their power appears to come from pre-trained
word embeddings, which even random methods can exploit. The probing analysis revealed that the
trained systems are in fact better at some more intricate semantic probing tasks, aspects of which are
however apparently not well-reflected in the downstream evaluation tasks.

7 CONCLUSION

In this work we have sought to put sentence embeddings on more solid footing by examining how
much trained sentence encoders improve over random sentence encoders. As it turns out, differ-
ences exist, but are smaller than we would have hoped: in comparison to sentence encoders such as
SkipThought (which was trained for a very long time) and InferSent (which requires large amounts
of annotated data), performance improvements are less than 1 and less than 2 points on average over
the 10 SentEval tasks, respectively. Therefore one may wonder to what extent sentence encoders
are worth the attention they’re receiving. Hope remains, however, if we as a community start focus-
ing on more sophisticated tasks that require more sophisticated learned representations that cannot
merely rely on having good pre-trained word embeddings.

5http://www.argmin.net/2017/12/05/kitchen-sinks/
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A HYPERPARAMETERS

For all experiments, we attempt to keep the number of tunable hyperparameters to a minimum.
By being judicious with the number of tuning experiments and averaging over different seeds, we
provide strong evidence that these architectures are robust and can be competitive with trained (non-
random) sentence embedding models.

In all experiments, we tune the type of pooling to use. Different tasks benefit from different types
of pooling, and while many pooling mechanisms have been proposed in the literature, we just tune
over the most commonly used ones: mean pooling and max pooling. We use the publicly avail-
able 300-dimensional GloVe embeddings (Pennington et al., 2014) trained on Common Crawl for
all experiments. All words that are not in the vocabulary for GloVe are assigned a vector of zeros.
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For the ESNs, we only tune whether to use a ReLU or no activation function,6 the spectral radius
from {0.4, 0.6, 0.8, 1.0}, the range of the uniform distribution for initializing W i where the max
distance from zero is selected from {0.01, 0.05, 0.1, 0.2}, and finally the fraction of elements in Wh

that are set to 0, i.e., sparsity, is selected from {0, 0.25, 0.5, 0.75}. Furthermore, our model did not
include a bias term bi.

We chose not to experiment with other possibilities that ESNs provide that could further enhance
performance like leaking or concatenating the input embedding to the reservoir state in favor of a
simpler model.

We use the default SentEval settings, which are to train with a logistic regression classifier, use a
batch size of 64, a maximum number of epochs of 200 with early stopping,7 no dropout, and use
Adam (Kingma & Ba, 2014) for optimization with a learning rate of 0.001.

B TESTING ROBUSTNESS

Model MR CR MPQA SUBJ SST2 TREC SICK-R SICK-E MRPC STSB

BOREP (class.) 77.2 78.8 88.4 92.0 81.1 88.0 85.5 82.3 73.2 68.9
BOREP (corr.) 77.3 79.4 88.2 92.0 81.2 85.7 84.6 82.1 73.8 68.4
RandLSTM (class., corr.) 77.2 78.8 87.9 91.9 82.0 86.9 85.5 81.8 73.7 72.5
ESN (class.) 78.3 80.2 88.4 92.5 82.8 89.2 85.5 82.8 73.9 70.1
ESN (corr.) 76.5 78.3 88.1 91.5 81.2 85.6 86.1 82.6 73.7 74.6

Table 4: Performance (accuracy for all tasks except SICK-R and STSB, for which we report Pear-
son’s r) with BOREP, RandLSTM, and ESN. All models have 4096 dimensions and were selected
by tuning over validation performance on classification tasks or correlation tasks as noted. For
RandLSTMS, this corresponds a single model that uses max pooling.

In order to examine the stability of the random sentence encoders, we select the two best overall
models by best validation score—one that achieved the highest accuracy score, and one that achieved
the highest correlation score (as these differed significantly)—and examine the results. The perfor-
mance of these models is shown in Table 4. We observe that performance is very stable, and that
task-specific tuning yields little or no benefit over the best-overall model, which is beneficial: the
good results obtained random sentence encoders are not some fluke, and the finding is robust.

C POOLING AND PADDING

Model MR CR MPQA SUBJ SST2

Sorted RandLSTM 81.7 84.0 89.4 93.0 81.2
InferSent 81.6 86.7 90.3 92.5 84.5
GenSen 82.7 87.4 91.0 94.1 83.2

Unsorted RandLSTM 77.2 79.2 88.1 92.0 81.8
InferSent 79.9 84.3 89.5 92.4 84.4
GenSen 78.1 84.2 89.7 92.4 83.9

Table 5: Accuracy on single-sentence binary classification tasks from SentEval, where max-pooling
is done over padded values instead of over the length of the sentence. Experiments are split between
Sorted where sentences are sorted in order of length prior to batching and Unsorted where they are
not.

We further analyzed how max-pooling over padding affects downstream evaluations and noticed that
for this effect to occur, the batch size to produce the embeddings and the order in which sentenced
were embedded needed to be a specific way. The order in which sentences are embedded in SentEval
is not random, as sentences are sorted by length prior to being grouped into batches. We noticed

6A tanh activation did not work well in these experiments, even though it is often used in ESNs.
7Training is stopped when validation performance has not increased 5 times. Checks for validation perfor-

mance occur every 4 epochs.
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that upsetting this order, or changing the batch size so that sentences are grouped differently, causes
a significant change on the downstream performance.

In Table 5, we reproduce this effect for RandLSTM (averaged over 5 seeds) and also include results
for InferSent and GenSen using their released code. The first half of the table shows results when
max pooling with padding is used and the batches are sorted. The second half of the table shows
performance when the batches are unsorted. As can be seen by the table, the performance has a
significant drop-off when the batches are unsorted, especially for MR and CR.

Max pooling over padded values changes negative values in the features of longer sentences to zero.
This is because if the largest value in the hidden representations over the length of the sentence is
negative, the padded zeros will be greater. Thus, longer sentences, when grouped with shorter ones,
will have more sparse representations. We tried to reproduce this effect by using a ReLU, but it
didn’t increase performance. We also checked to see if length was strongly correlated with either
class for the problems in Table 5, but found the correlation was low for all binary tasks. In fact it is
0.0 for CR, one of the tasks most affected by this phenomenon.

13


	Introduction
	Related Work
	Approach
	Random Sentence Encoders
	Bag of random embedding projections (BOREP)
	Random LSTMs
	Echo State Networks

	Evaluation

	Results
	Taking Cover to the Max

	Analysis
	Discussion
	Conclusion
	Hyperparameters
	Testing Robustness
	Pooling and Padding

