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Abstract

What sorts of structure might enable a learner to discover classes from unla-1

beled data? Traditional approaches rely on feature-space similarity and heroic as-2

sumptions on the data. In this paper, we introduce unsupervised learning under3

Latent Label Shift (LLS), where we have access to unlabeled data from multiple4

domains such that the label marginals pdpyq can shift across domains but the class5

conditionals ppx|yq do not. This work instantiates a new principle for identifying6

classes: elements that shift together group together. For finite input spaces, we es-7

tablish an isomorphism between LLS and topic modeling: inputs correspond to8

words, domains to documents, and labels to topics. Addressing continuous data,9

we prove that when each label’s support contains a separable region, analogous to10

an anchor word, oracle access to ppd|xq suffices to identify pdpyq and pdpy|xq up11

to permutation. Thus motivated, we introduce a practical algorithm that leverages12

domain-discriminative models as follows: (i) push examples through domain dis-13

criminator ppd|xq; (ii) discretize the data by clustering examples in ppd|xq space;14

(iii) perform non-negative matrix factorization on the discrete data; (iv) combine15

the recovered ppy|dq with the discriminator outputs ppd|xq to compute pdpy|xq @d.16

With semi-synthetic experiments, we show that our algorithm can leverage domain17

information to improve state of the art unsupervised classification methods. We18

reveal a failure mode of standard unsupervised classification methods when data-19

space similarity does not indicate true groupings, and show empirically that our20

method better handles this case. Our results establish a deep connection between21

distribution shift and topic modeling, opening promising lines for future work.22

1 Introduction23

Discovering systems of categories from unlabeled data is a fundamental but ill-posed challenge in24

machine learning. Typical unsupervised learning methods group instances together based on feature-25

space similarity. Accordingly, given a collection of photographs of animals, a practitioner might hope26

that, in some appropriate feature space, images of animals of the same species should be somehow27

similar to each other. But why should we expect a clustering algorithm to recognize that dogs viewed28

in sunlight and dogs viewed at night belong to the same category? Why should we expect that29

butterflies and caterpillars should lie close together in feature space?30

In this paper, we offer an alternative principle according to which we might identify a set of classes:31

we exploit distribution shift across times and locations to reveal otherwise unrecognizable groupings32

among examples. For example, if we noticed that whenever we found ourselves in a location where33

butterflies are abundant, caterpillars were similarly abundant, and that whenever butterflies were34

scarce, caterpillars had a similar drop in prevalence, we might conclude that the two were tied to the35

same underlying concept, no matter how different they appear in feature space. In short, our principle36

suggests that latent classes might be uncovered whenever instances that shift together group together.37
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Figure 1: Schematic of our DDFA algorithm. After training a domain discriminator, we (i) push
all data through the discriminator; (ii) cluster the data based on discriminator outputs; (iii) solve the
resulting discrete topic modeling problem and then combine pqpd|xq and pqpy, dq to estimate ppdpy|xq.

Formalizing this intuition, we introduce the problem of unsupervised learning under Latent Label38

Shift (LLS). Here, we assume access to a collection of domains d P t1, . . . , ru, where the mixture39

proportions pdpyq vary across domains but the class conditional distribution ppx|yq is domain-40

invariant. Our goals are to recover the underlying classes up to permutation, and thus to identify41

both the per-domain mixture proportions pdpyq and optimally adapted per-domain classifiers pdpy|xq.42

The essential feature of our setup is that only the true y’s, as characterized by their class-conditional43

distributions ppx|yq, could account for the observed shifts in pdpxq. We prove that under mild44

assumptions, knowledge of this underlying structure is sufficient for inducing the full set of categories.45

First, we focus on the tabular setting, demonstrating that when the input space is discrete and46

finite, LLS is isomorphic to topic modeling [8]. Here, each distinct input x maps to a word each47

latent label y maps to a topic and each domain d maps to a document. In this case, we can apply48

standard identification results for topic modeling [20, 4, 27, 33, 12] that rely only on the existence49

of anchor words within each topic (i.e., for each label y there is at least one x in the support of y,50

that is not in the support of any y1 ‰ y). Here, standard methods based on Non-negative Matrix51

Factorization (NMF) can recover each domain’s underlying mixture proportion pdpyq and optimal52

predictor pdpy|xq [20, 33, 27]. However, the restriction to discrete inputs, while appropriate for topic53

modeling, proves restrictive when our interests extend to high-dimensional continuous input spaces.54

Then, to handle high-dimensional inputs, we propose Discriminate-Discretize-Factorize-Adjust55

(DDFA), a general framework that proceeds in the following steps: (i) pool data from all domains to56

produce a mixture distribution qpx, dq; (ii) train a domain discriminative model f to predict qpd|xq;57

(iii) push all data through f , cluster examples in the pushforward distribution, and tabularize the58

data based on cluster membership; (iv) solve the resulting discrete topic modeling problem (e.g., via59

NMF), estimating qpy, dq up to permutation of the latent labels; (v) combine the predicted qpd|xq and60

qpy, dq to estimate pdpyq and pdpy|xq. In developing this approach, we draw inspiration from recent61

works on distribution shift and learning from positive and unlabeled data that (i) leverage black box62

predictors to perform dimensionality reduction [40, 23, 24]; and (ii) work with anchor sets, separable63

subsets of continuous input spaces that belong to only one class’s support [52, 41, 21, 6, 24].64

Our key theoretical result shows that domain discrimination (qpd|xq) provides a sufficient represen-65

tation for identifying all parameters of interest. Given oracle access to qpd|xq (which is identified66

without labels), our procedure is consistent. Our analysis reveals that the true qpd|xq maps all points67

in the same anchor set to a single point mass in the push-forward distribution. This motivates our68

practical approach of discretizing data by hunting for tight clusters in qpd|xq space.69

In semi-synthetic experiments, we adapt existing image classification benchmarks to the LLS setting,70

sampling without replacement to construct collections of label-shifted domains. We note that training71

a domain discriminative classifier is a difficult task, and find that warm starting the initial layers of our72

model with pretrained weights from unsupervised approaches can significantly boost performance. We73

show that warm-started DDFA outperforms state-of-the-art (SOTA) unsupervised approaches when74

domain marginals pdpyq are sufficiently sparse. In particular, we observe improvements of as much75

as 30% accuracy over unsupervised SOTA on CIFAR-20. Further, on subsets of FieldGuide dataset,76

where similarity between species and diversity within a species leads to failure of unsupervised77

learning, we show that DDFA recovers the true distinctions. To be clear, these are not apples-to-78
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apples comparisons: our methods are specifically tailored to the LLS setting. The takeaway is that the79

structure of the LLS setting can be exploited to outperform the best unsupervised learning heuristics.80

2 Related Work81

Unsupervised Learning Standard unsupervised learning approaches for discovering labels often rely82

on similarity in the original data space [42, 50]. While distances in feature space become meaningless83

for high-dimensional data, deep learning researchers have turned to similarity in a representations84

space learned via self-supervised contrastive tasks [44, 19, 26, 11], or similarity in a feature space85

learned end-to-end for a clustering task [9, 10, 47, 57]. Our problem setup closely resembles86

independent component analysis (ICA), where one seeks to identify statistically independent signal87

components from mixtures [34]. However, ICA’s assumption of statistical independence among88

the components does not obtain in our setup. In topic modeling [8, 4, 33, 12, 46], documents are89

modeled as mixtures of topics, and topics as categorical distributions over a finite vocabulary. Early90

topic models include the well-known Latent Dirichlet Allocation (LDA) [8], which assumes that91

topic mixing coefficients are drawn from a Dirichlet distribution, along with papers with more92

relaxed assumptions on the distribution of topic mixing coefficients (e.g., pLSI) [32, 46]. The topic93

modeling literature often draws on non-negative Matrix Factorization (NMF) methods [45, 53], which94

decompose a given matrix into a product of two matrices with non-negative elements [18, 16, 25, 28].95

In both Topic Modeling and NMF, a fundamental problem has been to characterize the precise96

conditions under which the system is uniquely identifiable [20, 4, 33, 12]. The anchor condition (also97

referred to as separability) is known to be instrumental for identifying topic models [4, 12, 33, 20].98

In this work, we extend these ideas, leveraging separable subsets of each label’s support (the anchor99

sets) to produce anchor words in the discretized problem. Existing methods have attempted to extend100

latent variable modeling to continuous input domains by making assumptions about the functional101

forms of the class-conditional densities, e.g., restricting to Gaussian mixtures [50, 49]. A second line102

of approach involves finding an appropriate discretization of the continuous space [56].103

Distribution Shift under the Label Shift Assumption The label shift assumption, where pdpyq can104

vary but ppx|yq cannot, has been extensively studied in the domain adaptation literature [51, 54, 60,105

40, 29, 23] and also features in the problem of learning from positive and unlabeled data [22, 7, 24].106

For both problems, many classical approaches suffer from the curse of dimensionality, failing in107

the settings where deep learning prevails. Our solution strategy draws inspiration from recent work108

on label shift [40, 1, 5, 23] and PU learning [7, 41, 52, 24] that leverage black-box predictors to109

produce sufficient low-dimensional representations for identifying target distributions of interest110

(other works leverage black box predictors heuristically [36]). Key differences: While PU learning111

requires identifying one new class for which we lack labeled examples provided that the positive112

class contains an anchor set [24], LLS can identify an arbitrary number of classes (up to permutation)113

from completely unlabeled data, provided a sufficient number of domains.114

Domain Generalization The related problem of Domain Generalization (DG) also addresses115

learning with data drawn from multiple distributions and where the domain identifiers play a key116

role [43, 2]. However in DG, we are given labeled data from multiple domains, and our goal is to117

learn a classifier that can generalize to new domains. By contrast, in LLS, we work with unlabeled118

data only, leveraging the problem structure to identify the underlying labels.119

3 Unsupervised Learning under Latent Label Shift120

Notation For a vector v P Rp, we use vj to denote its jth entry, and for an event E, we let I rEs121

denote the binary indicator of the event. By |A|, we denote the cardinality of set A. With rns, we122

denote the set t1, 2, . . . , nu. We use rAsi,j to access the element at pi, jq in A. Let X be the input123

space and Y “ t1, 2, . . . , ku be the output space for multiclass classification. We assume throughout124

this work that the number of true classes k is known. Throughout this paper, we use capital letters125

to denote random variables and small case letters to denote the corresponding values they take. For126

example, by X we denote the input random variable and by x, we denote a value that X may take.127

We now formally introduce the problem of unsupervised learning under LLS. In LLS, we assume128

that we observe unlabeled data from r domains. Let R “ t1, 2, . . . , ru be the set of domains. By pd,129

we denote the probability density (or mass) function for each domain d P R.130
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Figure 2: Relationship under Q between observed D, observed X , and latent Y .

Definition 1 (Latent label shift). We observe data from r domains. While the label distribution can131

differ across the domains, for all d, d1 P R and for all px, yq P X ˆ Y , we have pdpx|yq “ pd1 px|yq.132

Simply put, Definition 1 states that the conditional distribution pdpx|yq remains invariant across133

domains, i.e., they satisfy the label shift assumption. Thus, we can drop the subscript on this factor,134

denoting all pdpx|yq by ppx|yq. Crucially, under LLS, pdpyq can vary across different domains.135

Under LLS, we observe unlabeled data with domain label tpx1, d1q, px2, d2q, . . . , pxn, dnqu. Our136

goal breaks down into two tasks. Up to permutation of labels, we aim to (i) estimate the label marginal137

in each domain pdpyq; and (ii) estimate the optimal per-domain predictor pdpy|xq.138

Mixing distribution Q A key step in our algorithm will be to train a domain discriminative model.139

Towards this end we defineQ, a distribution over X ˆYˆR, constructed by taking a uniform mixture140

over all domains. By q, we denote the probability density (or mass) function of Q. Define Q such141

that qpx, y|D “ dq “ pdpx, yq, i.e., when we condition on D “ d we recover the joint distribution142

over X ˆY specific to that domain d. For all d P R, we define γd “ qpdq, i.e., the prevalence of each143

domain in our distribution Q. Notice that qpx, yq is a mixture over the distributions tpdpx, yqudPR,144

with tγdudPR as the corresponding mixture coefficients. Under LLS (Definition 1), X does not145

depend on D when conditioned on Y (Fig. 2).146

Additional notation for the discrete case To begin, we setup notation for discrete input spaces with147

|X | “ m. Without loss of generality, we assume that X “ t1, 2, . . . ,mu. The label shift assumption148

allows us to formulate the label marginal estimation problem in matrix form. Let QX|D be an mˆ r149

matrix such that rQX|Dsi,d “ pdpX “ iq, i.e., the d-th column of QX|D is pdpxq. Let QX|Y be an150

mˆk matrix such that rQX|Y si,j “ ppX “ i|Y “ jq, the j-th column is a distribution over X given151

Y “ j. Similarly, define QY |D as a k ˆ r matrix whose d-th column is the domain marginal pdpyq.152

Now with Definition 1, we have pdpxq “
ř

y pdpx, yq “
ř

y pdpx|yqpdpyq “
ř

y ppx|yqpdpyq.153

Since this is true @d P R, we can express this in a matrix form as QX|D “ QX|Y QY |D.154

Additional assumptions Before we present identifiability results for the LLS problem, we introduce155

four additional assumptions required throughout the paper:156

A.1 There are at least as many domains as classes, i.e., |R| ě |Y|.157

A.2 The matrix formed by label marginals (as columns) across different domains is full-rank,158

i.e., rankpQY |Dq “ k.159

A.3 Equal representation of domains, i.e., for all d P R, γd “ 1{r.160

A.4 Fix ϵ ą 0. For all y P Y , there exists a unique subdomain Ay Ď X , such that qpAyq ě ϵ161

and x P Ay if and only if the following conditions are satisfied: qpx|yq ą 0 and qpx|y1q “ 0162

for all y1 P Yztyu. We refer to this assumption as the ϵ-anchor sub-domain condition.163

We now comment on the assumptions. A.1–A.2 are benign, these assumptions just imply that the164

matrix QY |D is full row rank. Without loss of generality, A.3 can be assumed when dealing with165

data from a collection of domains. When this condition is not satisfied, one could just re-sample data166

points uniformly at random from each domain d. Intuitively, A.4 states that for each label y P Y , we167

have some subset of inputs that only belong to that class y. To avoid vanishing probability of this168

subset, we ensure at least ϵ probability mass in our mixing distribution Q. The anchor word condition169

is related to the positive sub-domain in PU learning, which requires that there exists a subset of X in170

which all examples only belong to the positive class [52, 41, 21, 6].171

4 Theoretical Analysis172

In this section, we establish identifiability of LLS problem. We begin by considering the case where173

the input space is discrete and formalize the isomorphism to topic modeling. Then we establish174

the identifiability of the system in this discrete setting by appealing to existing results in topic175
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modeling [33]. Finally, extending results from discrete case, we provide novel analysis to establish176

our identifiability result for the continuous setting.177

Isomorphism to topic modeling Recall that for the discrete input setting, we have the matrix178

formulation: QX|D “ QX|Y QY |D. Consider a corpus of r documents, consisting of terms from a179

vocabulary of size m. Let D be an Rmˆr matrix representing the underlying corpus. Each column of180

D represents a document, and each row represents a term in the vocabulary. Each element rDsi,j181

represents the frequency of term i in document j. Topic modeling [8, 32, 33, 4] considers each182

document to be composed as a mixture of k topics. Each topic prescribes a frequency with which the183

terms in the vocabulary occur given that topic. Further, the proportion of each topic varies across184

documents with the frequency of terms given topic remaining invariant.185

We can state the topic modeling problem as: D “ CW, where C is an Rmˆk matrix, rCsi,j186

represents the frequency of term i given topic j, and W is an Rkˆr matrix, where rWsi,j represents187

the proportion of topic i in document j. Note that all three matrices are column normalized. The188

isomorphism is then between document and domain, topic and label, term and input sample, i.e.,189

D “ CW ” QX|D “ QX|Y QY |D. In both the cases, we are interested in decomposing a190

known matrix into two unknown matrices. This formulation is examined as a non-negative matrix191

factorization problem with an added simplicial constraint on the columns (columns sum to 1) [3, 27].192

Identifiability of the topic modeling problem is well-established [20, 4, 27, 33, 12]. We leverage193

the isomorphism to topic modeling to extend this identifiability condition to our LLS setting. We194

formalize the adaptation here:195

Theorem 1. (adapted from Proposition 1 in Huang et al. [33]) Assume A.1, A.2 and A.4 hold196

(A.4 in the discrete setting is referred to as the anchor word condition). Then the solution to197

QX|D “ QX|Y QY |D is uniquely identified up to permutation of class labels.198

We refer readers to Huang et al. [33] for a proof of this theorem. Intuitively, Theorem 1 states that if199

each label y has at least one token in the input space that has support only in y, and A.1, A.2 hold,200

then the solution to QX|Y , QY |D is unique. Furthermore, under this condition, there exist algorithms201

that can recover QX|Y , QY |D within some permutation of class labels [33, 27, 3, 4].202

Extensions to the continuous case We will prove identifiability in the continuous setting, when203

X “ Rp for some p ě 1. In addition to A.1–A.4, we make an additional assumption that we have204

oracle access to qpd|xq, i.e., the true domain discriminator for mixture distribution Q. This is implied205

by assuming access to the marginal qpx, dq from which we observe our samples. Formally, we define206

a push forward function f such that rfpxqsd “ qpd|xq, then push the data forward through f to obtain207

outputs in ∆r´1. In the proof of Theorem 2, we will show that these outputs can be discretized in a208

fashion that maps anchor subdomains to anchor words in a tabular, discrete setting. We separately209

remark that the anchor word outputs are in fact extreme corners of the convex polytope in ∆r´1 which210

encloses all fpxq mass; we discuss this geometry further in App. G. After constructing the anchor211

word discretization, we appeal to Theorem 1 to recover QY |D. Given QY |D, we show that we can212

use Bayes’ rule and the LLS condition (Definition 1) to identify the distribution qpy|x, dq “ pdpy|xq213

over latent variable y. We formalize this in the following theorem:214

Theorem 2. Let the distribution Q over random variables X,Y,D satisfy Assumptions A.1–A.4.215

Assuming access to the joint distribution qpx, dq, and knowledge of the number of true classes k, we216

show that the following quantities are identifiable: (i) QY |D, (ii) qpy|X “ xq , for all x P X that217

lies in the support (i.e. qpxq ą 0); and (iii) qpy|X “ x,D “ dq , for all x P X and d P R such that218

qpx, dq ą 0.219

Before presenting a proof sketch for Theorem 2, we first present key lemmas (we include their proofs220

in App. C).221

Lemma 1. Under the same assumptions as Theorem 2, the matrix QY |D and fpxq “ qpd|xq uniquely222

determine qpy|xq for all y P Y and x P X such that qpxq ą 0.223

Lemma 1 states that given matrix QY |D and oracle domain discriminator, we can uniquely identify224

qpy|xq. In particular, we show that for any x P X , qpd|xq can be expressed as a convex combination225

of the k columns of QD|Y (which is computed from QY |D and is column rank k) and the coefficients226

of the combination are qpy|xq. Combining this with the linear independence of the columns of QD|Y ,227

we show that these coefficients are unique. In the following lemma, we show how the identified228

qpy|xq can then be used to identify qpy|x, dq:229
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Lemma 2. Under the same assumptions as Theorem 2, for all y P Y , and x P X such that qpx, dq ą 0.230

the matrix QY |D and qpy|xq uniquely determine qpy|x, dq.231

To prove Lemma 2, we show that we can combine the conditional distribution over the labels given232

a sample x P X with the prior distribution of the labels in each domain to determine the posterior233

distribution over labels given the sample x and the domain of interest. Next, we introduce a key234

property of the domain discriminator classifier f :235

Lemma 3. Under the same assumptions as Theorem 2, for all x, x1 in anchor sub-domain, i.e.,236

x, x1 P Ay for a given label y P Y , we have fpxq “ fpx1q. Further, for any y P Y , if x P Ay, x
1 R Ay ,237

then fpxq ‰ fpx1q.238

Lemma 3 implies that the oracle domain discriminator f maps all points in an anchor subdomain,239

and only those points in that anchor subdomain to the same point in fpxq “ qpd|xq space. We can240

now present a proof sketch for Theorem 2 (full proof in App. C):241

Proof sketch of Theorem 2. The key idea of the proof lies in proposing a discretization such that some242

subset of anchor subdomains for each label y in the continuous space map to distinct anchor words in243

discrete space. In particular, if there exists a discretization of the continuous space X that for any244

y P Y , maps all x P Ay to the same point in the discrete space, but no x R Ay maps to this point, then245

this point serves as an anchor word. From Lemma 3, we know that all the x P Ay and only the x P Ay246

get mapped to specific points in the fpxq space. Pushing all the x P X through f , we know from A.4247

that there exists k point masses of size ϵ, one for each fpAyq in the fpxq “ qpd|xq space. We can now248

inspect this space for point masses of size at least ϵ to find at most Op1{ϵq such point masses among249

which are contained the k point masses corresponding to the anchor subdomains. Discretizing this250

space by assigning each point mass to a group (and non-point masses to a single additional group),251

we have k groups that have support only in one y each. Thus, we have achieved a discretization252

with anchor words. Further, since the discrete space arises from a pushforward of the continuous253

space through f , the discrete space also satisfies the latent label shift assumption A.1. We now use254

Theorem 1 to claim identifiability of QY |D. We then use Lemmas 1 and 2 to prove parts (ii) and (iii).255

5 DDFA Framework256

Motivated by our identifiability analysis, in this section, we present an algorithm to estimate257

QY |D, qpy|xq, and qpy|x, dq when X is continuous by exploiting domain structure and approximat-258

ing the true domain discriminator f . Intuitively, qpy|x, dq is the domain specific classifier pdpy|xq and259

qpy|xq is the classifier for data from aggregated domains. QY |D captures label marginal for individ-260

ual domains. A naive approach would be to aggregate data from different domains and exploit recent261

advancements in unsupervised learning [57, 47, 9, 10]. However, aggregating data from multiple do-262

mains loses the domain structure that we hope to leverage. We highlight this failure mode of the tradi-263

tional unsupervised clustering method in Sec. 6. We remark that DDFA draws heavy inspiration from264

the proof of Theorem 2, but we do not present a guarantee that the DDFA solution will converge to265

the identifiable solution. This is primarily due to the K-means clustering heuristic we rely on, which266

empirically offers effective noise tolerance, but theoretically has no guarantee of correct convergence.267

Discriminate We begin Algorithm 1 by creating a split of the unlabeled samples into the training268

and validation sets. Using the unlabeled data samples and the domain that each sample originated269

from, we first train a domain discriminative classifier pf . The domain discriminative classifier outputs270

a distribution over domains for a given input. This classifier is trained with cross-entropy loss to271

predict the domain label of each sample on the training set. With unlimited data, the minimizer of272

this loss is the true f , as we prove in App. D. To avoid overfitting, we stop training pf when the cross-273

entropy loss on the validation set stops decreasing. Note that here the validation set also only contains274

domain indices (and no information about true class labels).275

Discretize We now push forward all the samples from the training and validation sets through the276

domain discriminator to get vector pfpxiq for each sample xi. In the proof of Theorem 2, we argue that277

when working with true f , and the entire marginal qpx, dq, we can choose a discretization satisfying278

the anchor word assumption by identifying point masses in the distribution of fpxq and filtering to279

include those of at least ϵ mass. In the practical setting, because we have only a finite set of data280

points and a noisy pf , we use clustering to approximately find point masses. We choose m ě k and281
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Algorithm 1 DDFA Training

input k ě 1, r ě k, tpxi, diquiPrns „ qpx, dq, A class of functions F from Rp Ñ Rr

1: Split into train set T and validation set V
2: Train pf P F to minimize cross entropy loss for predicting d|x on T with early stopping on V
3: Push all txiuiPrns through pf

4: Train clustering algorithm on the n points t pfpxiquiPrns, obtain m clusters.
5: cpxiq Ð Cluster id of pfpxiq

6: pqpcpXq “ a|D “ bq Ð

ř

iPrns Ircpxiq“a, di“bs
ř

jPrns Irdj“bs

7: Populate pQcpXq|D as r pQcpXq|Dsa,b Ð pqpcpXq “ a|D “ bq

8: pQcpXq|Y , pQY |D Ð NMF p pQcpXq|Dq

output pQY |D, pf

recover m clusters with any standard clustering procedure (e.g. K-means). This clustering procedure282

is effectively a useful, but imperfect heuristic: if the noise in pf is sufficiently small and the clustering283

sufficiently granular, we hope that our m discovered clusters will include k pure clusters, each of284

which only contains data points from a different anchor subdomain which are tightly packed around285

the true fpAyq for the corresponding label y. Clustering in this space is superior to a naive clustering286

on the input space because close proximity in this space indicates similarity in qpd|xq.287

Let us denote the learned clustering function as c, where cpxq is the cluster assigned to a datapoint288

x. We now leverage the cluster id cpxiq of each sample xi to discretize sample into a finite discrete289

space rms. Combining cluster id with the domain source di for each sample, we estimate pQcpXq|D290

by simply computing, for each domain, the fraction of its samples assigned to each cluster.291

Factorize We apply an NMF algorithm to pQcpXq|D to obtain estimates of pQcpXq|Y and pQY |D.292

Adjust We begin Algorithm 2 by considering a test point px1, d1q. To make a prediction, if we had293

access to oracle f and true QY |D, we could precisely compute qpy|x1q (Lemma 1). However, in place294

of these true quantities, we plug in the estimates pf and pQY |D. Since our estimates contain noise, the295

estimate pqpy|x1q is found by left-multiplying pfpx1q with the pseudo-inverse of pQD|Y , as opposed296

to solving a sufficient system of equations. As our estimates pf and pQD|Y approach the true values,297

the projection of pfpx1q into the column space of pQD|Y tends to pfpx1q itself, so the pseudo-inverse298

approaches the true solution. Now we can use the constructive procedure introduced in the proof of299

Lemma 2 to compute the plug-in estimate pqpy|x1, d1q “ ppd1 py|x1q.300

Algorithm 2 DDFA Prediction

input pQY |D, pf, px1, d1q „ qpx, dq

1: Populate pQD|Y as r pQD|Y sd,y Ð
r pQY |Dsy,d

řd2“r
d2“1

r pQY |Dsy,d2

2: Assign pqpy|X “ x1q Ð

„

´

pQD|Y

¯:
pfpx1q

ȷ

y

3: Assign pqpy|X “ x1, D “ d1q Ð
r pQD|Y sd1,ypqpy|X “ x1q

ř

y2Prks

r pQD|Y sd1,y2
pqpy2|X “ x1q

4: ypred Ð argmaxyPrks pqpy|X “ x1, D “ d1q

output : pqpy|X “ x1, D “ d1q “ ppd1 py|x1q, pqpy|X “ x1q, ypred

6 Experiments301

Baselines We select the unsupervised classification method SCAN as a state-of-the-art baseline [57].302

SCAN pretrains a ResNet [30] backbone using SimCLR [11] and MoCo [31] setups (pretext tasks).303
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SCAN then trains a clustering head to minimize the SCAN loss (refer [57] for more details) 1. We304

make sure to evaluate SCAN on the same potentially class-imbalanced test subset we create for each305

experiment. Since SCAN is fit on a superset of the data DDFA sees, we believe this gives a slight306

data advantage to the SCAN baseline (although we acknowledge that the class balance for SCAN307

training is also potentially different from its evaluation class balance). To evaluate SCAN, we use308

the public pretrained weights available for CIFAR-10, CIFAR-20, and ImageNet-50. We also train309

SCAN ourselves on the train and validation portions of the FieldGuide2 and FieldGuide28 datasets310

with a ResNet18 backbone and SimCLR pretext task. We replicate the hyperparameters used for311

CIFAR training.312

Datasets First we examine standard multiclass image datasets CIFAR-10, CIFAR-20 [38], and313

ImageNet-50 [17] containing images from 10, 20, and 50 classes respectively. Images in these datasets314

typically focus on a single large object which dominates the center of the frame, so unsupervised315

classification methods which respond strongly to similarity in visual space are well-suited to recover316

true classes up to permutation. These datasets are often believed to be separable (i.e., single true label317

applies to each image), so every example falls in an anchor subdomain (satisfying A.4).318

Motivated by the application of LLS problem, we consider the FieldGuide dataset 2, which contains319

images of moths and butterflies. The true classes in this dataset are species, but each class contains320

images taken in immature (caterpillar) and adult stages of life. Based on the intuition that butterflies321

from a given species look more like butterflies from other species than caterpillars from their own322

species, we hypothesize that unsupervised classification will learn incorrect class boundaries which323

distinguish caterpillars from butterflies, as opposed to recovering the true class boundaries. Due324

to high visual similarity between members of different classes, this dataset may indeed have slight325

overlap between classes. However, we hypothesize that anchor subdomain still holds, i.e., there326

exist some images from each class that could only come from that class. Additionally, if we have327

access to data from multiple domains, it is natural to assume that within each domain the relative328

distribution of caterpillar to adult stages of each species stay relatively constant as compared to329

prevalence of different species. We create two subsets of this dataset: FieldGuide2, with two species,330

and FieldGuide28, with 28 species.331

LLS Setup The full sampling procedure for semisynthetic experiments is described in App. E.332

Roughly, we sample pdpyq from a symmetric Dirichlet distribution with concentration α{k, where k333

is the number of classes and α is a generation parameter that adjusts the difficulty of the synthetic334

problem, and enforce maximum condition number κ on QY|D. Small α and small κ encourages335

sparsity in QY|D, so each label tends to only appear in a few domains. Larger parameters encourages336

pdpyq to tend toward uniform. We draw from test, train, and valid datasets without replacement to337

match these distributions, but discard some examples due to class imbalance.338

Training and Evaluation The algorithm uses train and validation data consisting of pairs of images339

and domain indices. We train ResNet50 [30] (with added dropout) on images xi with domain indices340

di as the label, choose best iteration by valid loss, pass all training and validation data through pf , and341

cluster pushforward predictions pfpxiq into m ě k clusters with Faiss K-Means [37]. We compute the342

pQcpXq|D matrix and run NMF to obtain pQcpXq|Y , pQY |D. To make columns sum to 1, we normalize343

columns of pQcpXq|Y , multiply each column’s normalization coefficient over the corresponding row of344

pQY |D (to preserve correctness of the decomposition), and then normalize columns of pQY |D. Some345

NMF algorithms only output solutions satisfying the anchor word property [3, 39, 27]. We found the346

strict requirement of an exact anchor word solution to lead to low noise tolerance. We therefore use347

the Sklearn implementation of standard NMF [13, 55, 48].348

We instantiate the domain discriminator as ResNet18, and preseed its backbone with SCAN [57]349

pre-trained weights or [57] contrastive pre-text weights. We denote these models DDFA (SI) and350

DDFA (SPI) respectively. We predict class labels with Algorithm 2. With the Hungarian algorithm,351

implemented in [14, 58], we compute the highest true accuracy among any permutation of these labels352

(denoted “Test acc”). With the same permutation, we reorder rows of pPY |D, then compute the average353

absolute difference between corresponding entries of pQY |D and QY |D (denoted “QY |D err”).354

1SCAN code: https://github.com/wvangansbeke/Unsupervised-Classification
2FieldGuide: https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
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Table 1: Results on CIFAR-20. Each entry is produced with the averaged result of 3 different random
seeds. With DDFA (RI) we refer to DDFA with randomly initialized backbone. With DDFA (SI) we
refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI), we do not leverage SCAN
for clustering. α is the Dirichlet parameter used for generating label marginals in each domain, κ is
the maximum allowed condition number of the generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20 SCAN 0.439 0.092 0.446 0.079 0.434 0.060
DDFA (RI) 0.517 0.042 0.336 0.045 0.163 0.057
DDFA (SI) 0.784 0.023 0.593 0.027 0.390 0.034

25 SCAN 0.438 0.090 0.441 0.078 0.438 0.060
DDFA (RI) 0.489 0.049 0.292 0.049 0.075 0.081
DDFA (SI) 0.837 0.020 0.669 0.025 0.487 0.030

30 SCAN 0.432 0.094 0.457 0.077 0.431 0.059
DDFA (RI) 0.512 0.046 0.299 0.048 0.087 0.077
DDFA (SI) 0.820 0.022 0.743 0.021 0.543 0.028

Results On CIFAR-10, we observe that DDFA alone is incapable of matching highly competitive355

state-of-the-art baseline SCAN performance—however, in suitably sparse problem settings (small356

α), it comes substantially close, indicating good recovery of true classes. Due to space constraints,357

we include CIFAR-10 results in App. F. DDFA (SI) combines SCAN’s strong pretrain with domain358

discrimination fine-tuning to outperform SCAN in the easiest, sparsest setting and certain denser359

settings. On CIFAR-20, baseline SCAN is much less competitive, so our DDFA(SI) dominates360

baseline SCAN in all settings except the densest (Table 1). These results demonstrate how adding361

domain information can dramatically boost unsupervised baselines.362

On FieldGuide-2, DDFA (SPI) outperforms SCAN baselines across all problem settings and domain363

counts (Table 4); in sparser settings, the accuracy gap is 20-30%. In this dataset, SCAN performs only364

slightly above chance, reflecting perhaps a total misalignment of learned class distinctions with true365

species boundaries. We do not believe that SCAN is too weak to effectively detect image groupings366

on this data; instead we acknowledge that the domain information available to DDFA (SPI) (and367

not to SCAN) is informative for ensuring recovery of the true class distinction between species as368

opposed to the visually striking distinction between adult and immature life stages. Results from369

more domains are available in App. F. On FieldGuide-28 (Table 5), DDFA outperforms SCAN when370

QY |D is sufficiently sparse (sampled with α : 0.5 or α : 3), with the highest observed accuracy371

difference ranging above 30-40%.372

7 Conclusion373

Our theoretical results demonstrate that under LLS, we can leverage shifts among previously seen374

domains to recover labels in a purely unsupervised manner, and our practical instantiation of the375

DDFA framework demonstrates both (i) the practical efficacy of our approach; and (ii) that generic376

unsupervised methods can play a key role both in clustering discriminator outputs, and providing377

weights for initializing the discriminator. We believe that this work is just the first step in a new378

direction for leveraging structural assumptions together with distribution shift to perform unsupervised379

learning.380

Within the LLS setup, several components of the DDFA framework warrant further investigation:381

(i) the deep domain discriminator can be enhanced in myriad ways; (ii) for clustering discriminator382

outputs, we might develop methods specially tailored to our setting to replace the current generic383

clustering heuristic; (iii) clustering might be replaced altogether with geometrically informed methods384

that directly identify the corners of the polytope; (iv) the theory of LLS can be extended beyond385

identification to provide statistical results that might hold when qpd|xq can only be noisily estimated,386

and when only finite samples are available for the induced topic modeling problem; (v) when the387

number of true classes k is unknown, we may develop approaches to estimate this k.388
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(d) Did you include the total amount of compute and the type of resources used (e.g., type of582

GPUs, internal cluster, or cloud provider)? [Yes] Refer to experimental setup in App. E.583

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...584

(a) If your work uses existing assets, did you cite the creators? [Yes] Refer to experimental585

setup in App. E.586

(b) Did you mention the license of the assets? [Yes] Refer to experimental setup in App. E.587

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]588

Refer to experimental setup in App. E.589

(d) Did you discuss whether and how consent was obtained from people whose data you’re590

using/curating? [N/A]591

(e) Did you discuss whether the data you are using/curating contains personally identifiable592

information or offensive content? [N/A]593

5. If you used crowdsourcing or conducted research with human subjects...594

(a) Did you include the full text of instructions given to participants and screenshots, if595

applicable? [N/A]596

(b) Did you describe any potential participant risks, with links to Institutional Review597

Board (IRB) approvals, if applicable? [N/A]598

(c) Did you include the estimated hourly wage paid to participants and the total amount599

spent on participant compensation? [N/A]600
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A Limitations601

Assumptions Our approach is limited by the set of assumptions needed (label shift, as many data602

domains as true latent classes, known true number of classes k, and other assumptions established in603

A.1-A.4). Future work should aim to relax some or all of these assumptions.604

Theory The work does not include finite sample bounds for the DDFA algorithm. In addition,605

we cannot include a formal guarantee that the clustering heuristic in the Discretize step of DDFA606

will retrieve pure anchor sub-domain clusters under potentially noisy black-box prediction of qpd|xq.607

In particular, this problem is complicated by the difficulty of reasoning about the noise that may608

be produced by a neural network or other complex non-linear model (acting as the black-box609

domain discriminator), and by the lack of concrete guarantees that K-means will recover the anchor610

subdomains among its recovered clusters. In particular, in the case in which the anchor subdomains611

do not contain all of the mass (equivalently, there are some x which could belong to more than one612

y), the arbitrary distribution of mass outside of the anchor subdomains makes it difficult to reason613

about the behavior of K-means.614

Semi-synthetic Experiments Semi-synthetic experiments present an ideal environment for evaluat-615

ing under the precise label shift assumption. However, we do not evaluate on datasets in which the616

separation into domains is organic, and the label shift is inherent.617

B Proofs of Lemmas618

In this section, we present several new lemmas which are required to prove Theorem 2, and provide619

proofs. We also provide proofs for Lemmas 1, 2, and 3.620

Lemma 4. Let distribution Q over random variables X,Y,D satisfy A.1–A.4. Then for all y P Y ,621

qpyq ą 0. That is, all labels have nonzero probability under Q.622

Proof of Lemma 4. Proof by contradiction. Let y P Y with qpyq “ 0.623

qpyq “
ÿ

dPR
qpdqqpy|D “ dq

“
ÿ

dPR
γyqpy|D “ dq

“
ÿ

dPR

1

r
qpy|D “ dq

“
1

r

ÿ

dPR
qpy|D “ dq .

Since qpy|D “ dq ě 0 for all d P R, we see that if qpyq “ 0, then qpy|D “ dq “ 0 for all d P R.624

Then rQY |Dsy,d “ 0 for all d P R. Then there is a row (row d) in the matrix QY |D in which every625

entry is 0, so QY |D cannot be full row rank k. This violates assumption A.2. Then by contradiction626

we have shown qpyq ą 0.627

Lemma 5. Let distributionQ over random variablesX,Y,D satisfy Assumptions A.1–A.4. Let x P X628

such that qpxq ą 0. Then if x P Ay for some y P Y , we have that qpy|X “ xq “ 1, and for all y1 P629

Yztyu, qpy1|X “ xq “ 0. The converse is also true: if qpy|X “ xq “ 1 for some y P Y and630

qpy1|X “ xq “ 0 @y1 P Yztyu, then we know that x P Ay .631

Proof of Lemma 5. We prove directions one at a time.632
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Forward direction. Assume x P Ay .633

qpxq “
ÿ

y2PY
qpy2qqpx|Y “ y2q

qpxq “ qpyqqpx|Y “ yq `
ÿ

y1PYztyu

qpy1qqpx|Y “ y1q

qpxq “ qpyqqpx|Y “ yq `
ÿ

y1PYztyu

qpy1q p0q

qpxq “ qpyqqpx|Y “ yq

Recalling qpx|yq ą 0 (by A.4) and qpyq ą 0 (by Lemma 4), we know that qpxq “ qpyqqpx|Y “634

yq ą 0. Then qpy|X “ xq “
qpyqqpx|Y “ yq

qpxq
“
qpxq

qpxq
“ 1 (Bayes’ rule). Because probabilities635

sum to 1, qpy|X “ xq `
ř

y1PYztyu

qpy1|X “ xq “ 1. Then because qpy|X “ xq “ 1, we have :636

ř

y1PYztyu

qpy1|X “ xq “ 0. Then for all y1 P Yztyu, it must be that qpy1|X “ xq “ 0. Then we have637

shown qpy|X “ xq “ 1, and for all y1 P Yztyu, qpy1|X “ xq “ 0.638

Converse. Assume qpy|X “ xq “ 1 and for all y1 P Yztyu, qpy1|X “ xq “ 0. We recall that639

qpxq ą 0. Also, qpyq ą 0 by Lemma 4. Then qpx|Y “ yq “
qpy|X “ xqqpxq

qpyq
“

p1qqpxq

qpyq
ą 0. Let640

y1 P Yztyu. Then qpx|Y “ y1q “
qpy1|X “ xqqpxq

qpy1q
“

p0qqpxq

qpy1q
“ 0. Then because qpx|Y “ yq ą 0641

and @y1 P Yztyu, qpx|Y “ y1q “ 0, we see that x P Ay .642

Lemma 6. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4. Then,643

the matrix QD|Y , defined as an r ˆ k matrix whose elements are rQD|Y si,j “ QpD “ i|Y “ jq,644

and in which each column is a conditional distribution over the domains given a label, has linearly645

independent columns. Furthermore, QD|Y can be computed directly from only QY |D.646

Proof of Lemma 6. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4.647

Each rQD|Y sd,y “ qpd|Y “ yq “
qpy|D “ dqqpdq

qpyq
“
qpy|D “ dqγd

qpyq
“
qpy|D “ dq

rqpyq
.648

Since each yth column of QD|Y is a probability distribution that sums to 1, and rqpyq is constant649

down each yth column, we can obtain QD|Y by simply taking QJ
Y |D, in which each rQJ

Y |Dsd,y “650

rQY |Dsy,d “ qpy|D “ dq, and normalizing the columns so they sum to 1.651

The matrix QY |D has linearly independent rows by Assumption A.2. Then QJ
Y |D has linearly652

independent columns. Scaling these columns by a nonzero value does not change their linear653

independence, so the columns of QD|Y are also linearly independent.654

Then matrix QD|Y has linearly independent columns, and can be computed by taking QJ
Y |D and655

normalizing its columns.656

657

Lemma 7. Let random variables X,Y,D and distribution Q satisfy Assumptions A.1–A.4. Let658

d P R, x P X , y P Y . Then qpd|X “ x, Y “ yq “ qpd|Y “ yq.659
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Proof of Lemma 7.

qpd|X “ x, Y “ yq “
qpx|D “ d, Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
pdpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
ppx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“
qpx|Y “ yqqpd|Y “ yq

qpx|Y “ yq

“ qpd|Y “ yq .

660

Proof of Lemma 1. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.661

Let x P X with qpxq ą 0, and y P Y .662

Assume we know QY |D and rfpxqsd “ qpd|X “ xq. With QY |D, we know qpy|D “ dq for all y, d.663

Also, with the oracle domain discriminator f , we are able to obtain qpd|X “ xq for all x, d.664

For all x P X , d P R, qpd|X “ xq “
ÿ

y1PY
qpd|X “ x, Y “ y1qqpy1|X “ xq

“
ÿ

y1PY
qpd|Y “ y1qqpy1|X “ xq, using Lemma 7.

Define the vector-valued function g : X Ñ Rk such that rgpxqsy “ qpy|X “ xq for all x P665

suppQpXq. QD|Y is a matrix of shape r ˆ k, with rQD|Y si,j “ QpD “ i|Y “ jq. It can be666

computed from QY |D and has linearly independent columns—both facts shown in Lemma 6.667

Then rfpxqsd “ qpd|X “ xq “ QD|Y rd, :sgpxq, a product between the dth row vector of QD|Y and668

the column vector gpxq. Then fpxq “ QD|Y gpxq.669

This system is a linear system with r ě k equations. Recalling that QD|Y has k linearly independent670

columns, we can select any k linearly independent rows of QD|Y to solve the equation for the true,671

unique solution for the unknown vector gpxq. Another way to describe this is with the pseudo-inverse:672

gpxq “ pQD|Y q:fpxq. Then we have rgpxqsy “ qpy|X “ xq for all y P Y .673

674

Proof of Lemma 2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.675

Let x P X , d P R with qpx, dq ą 0, and y P Y .676

Assume we know matrix QY |D and qpy1|X “ xq, @y1 P Y . We can compute QD|Y from QY |D via677

Lemma 6.678

qpy|X “ x,D “ dq “
qpy, x, dq

qpx, dq

“
qpd|X “ x, Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq
.

Using Lemma 7, qpd|X “ x, Y “ yq “ qpd|Y “ yq. We apply this property.679

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xqqpxq

qpd|X “ xqqpxq

“
qpd|Y “ yqqpy|X “ xq

qpd|X “ xq
.
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The denominator qpd|X “ xq is constant across all values of y, so we can write that qpy|X “ x,D “680

dq 9 qpd|Y “ yqqpy|X “ xq and normalize to find the probability:681

qpy|X “ x,D “ dq “
qpd|Y “ yqqpy|X “ xq

ř

y1PY
qpd|Y “ y1qqpy1|X “ xq

.

We know qpd|Y “ yq as rQD|Y sd,y, and every qpd|Y “ y1q, where y1 P Yztyu, as rQD|Y sd,y1 . We682

also know qpy|X “ xq and every qpy1|X “ xq where y1 P Yztyu, by the precondition assumptions.683

Then we can compute qpy|X “ x,D “ dq.684

Proof of Lemma 3. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.685

Recall f : Rp Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all x P686

suppQpXq. Also let us recall that QD|Y is defined as an r ˆ k matrix whose elements rQD|Y si,j “687

QpD “ i|Y “ jq, and each column is a conditional distribution over the domains given a label. It688

has linearly independent columns by Lemma 6.689

First recognize that for all d P R, x P X such that qpxq ą 0,690

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd, y2|X “ xq.

“
ÿ

y2PY
qpd|Y “ y2, X “ xqqpy2|X “ xq

“
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ xq, using the equality from Lemma 7.

Then we can write fpxq “
ř

y2PY
qpy2|X “ xqQD|Y r:, y2s, where QD|Y r:, y2s is the y2th column of691

QD|Y . Now we could also rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J.692

We now prove two key components of the lemma. Let y P Y . Let x P Ay such that qpxq ą 0.693

Points in same anchor sub-domain map together. Let x1 P Ay such that qpx1q ą 0. We now seek694

to show that fpxq “ fpx1q. Recall that x, x1 P Ay. By Lemma 5, qpy|X “ xq “ qpy|X “ x1q “ 1.695

Also by lemma 5, @y2 P Yztyu, qpy2|X “ xq “ qpy2|X “ x1q “ 0. Then for all y2 P Y ,696

qpy2|X “ xq “ qpy2|X “ x1q.697

Therefore, @d P R,698

rfpxqsd “ qpd|X “ xq “
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ xq

“
ÿ

y2PY
qpd|Y “ y2qqpy2|X “ x1q

“ qpd|X “ x1q “ rfpx1qsd.

Then fpxq “ fpx1q.699

Point outside of the anchor sub-domain does not map with points in the anchor sub-domain .700

Let x0 R Ay such that qpx0q ą 0. We now seek to show that fpxq ‰ fpx0q. Because x0 R Ay with701

qpx0q ą 0, and becauseAy contains all x such that qpxq ą 0, qpy|X “ xq “ 1, and qpy1|X “ xq “ 0702

for all y1 P Yztyu, then by Lemma 5, it must be that one of the following cases is true:703

• Case 1: qpy|X “ x0q ‰ 1704

• Case 2: qpy1|X “ x0q ą 0 for some y1 P Yztyu.705
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In all circumstances, there exists some y2 P Y : qpy2|x0q ‰ qpy2|xq. Then,706

rQpY “ 1|X “ xq...QpY “ k|X “ xqs
J

‰ rQpY “ 1|X “ x0q...QpY “ k|X “ x0qs
J
.

Because QD|Y has linearly independent columns (shown in Lemma 6), we now know that707

fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

‰ QD|Y rQpY “ 1|X “ x0q ... QpY “ k|X “ x0qs
J

“ fpx0q .

So fpxq ‰ fpx0q.708

709

C Proof of Theorem 2710

Proof of Theorem 2. Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4.711

Recall f : X Ñ Rr is a vector-valued oracle function such that rfpxqsd “ qpd|X “ xq for all712

x P suppQpXq. It is known because we know the marginal qpx, dq. Let y P Y . Then by Lemma 3, f713

sends every x P Ay (and no other x R Ay) to the same value. We overload notation to denote this714

as fpAyq. Then QpfpXq “ fpAyqq “ QpX P Ayq ě ϵ. Then in the marginal distribution of fpXq715

with respect to distribution Q, there is a distinct point mass on each fpAyq, with mass at least ϵ.716

Because we know the marginal qpx, dq, we know the marginal qpxq, so we can obtain the distribution717

of fpXq with respect to distribution Q. If we analyze the marginal distribution of fpXq with respect718

to distribution Q, and recover all point masses with mass at least ϵ, we can recover no more than719

O p1{ϵq such points. We set m P Z` so that the number of points we recovered is m´ 1.720

We denote a mapping ψ : Rr Ñ rms. This mapping sends each value of fpxq corresponding to a721

point mass with mass at least ϵ to a unique index in t1, ...,m´ 1u. It sends any other value in Rp to722

m. We note that the ordering of the point masses might have pm´ 1q! permutations.723

Notice that the point mass on each fpAyq must be recovered among these m´ 1 masses. Recall that724

for all y P Y , fpxq “ fpAyq if and only if x P Ay . Then for all y P Y , ψpfpxqq “ ψpfpAyqq if and725

only if x P Ay , because ψ does not send any other value in Rr besides fpAyq to ψpfpAyqq.726

For convenience, we now define a mapping c : X Ñ rms such that c “ ψ ˝ f . We will also abuse727

notation here to denote cpAyq “ ψpfpAyqq. Then cpXq is a discrete, finite random variable that728

takes values in rms. As c is a pushforward function on X , cpXq satisfies the label shift assumption729

because X does (i.e., when conditioning on Y , the distribution of cpXq is domain-invariant).730

We might now define a matrix QcpXq|D in which each entry rQcpXq|Dsi,d “ QpcpXq “ i|D “ dq.731

We recall that we know the number of true classes k. Then we know that there is a (possibly unique)732

unknown decomposition of the following form:733

qpcpXq|dq “
ÿ

yPY
qpcpXq|Y “ y,D “ dqqpy|D “ dq

“
ÿ

yPY
qpcpXq|Y “ yqqpy|D “ dq, using the label shift property.

To express this decomposition in matrix form, we write QcpXq|D “ QcpXq|Y QY |D. Now we make734

observations about the unknown QcpXq|Y .735

For all y P Y, Qpcpxq “ cpAyq|Y “ yq “ QpX P Ay|Y “ yq ą 0 .

Qpcpxq “ cpAyq|Y ‰ yq “ QpX P Ay|Y ‰ yq “ 0 .

Then for each y P Y , the row of QcpXq|Y with row index cpAyq is positive in the yth column, and zero736

everywhere else. Restated, for each y P Y , there is some row with positive entry exactly in yth column.737

This is precisely the anchor word assumption for a discrete, finite random variable. We already738
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know that QY |D is full row-rank, so because QcpXq|Y satisfies the anchor word assumption, we can739

identify QY |D up to permutation of rows by Theorem 1. In other words, when we set the constraint740

that the recovered QcpXq|Y must have k columns and satisfy anchor word and the recovered QY |D741

must have k rows and be full row-rank, any solution to the decomposition QcpXq|D “ QcpXq|Y QY |D742

must identify the ground truth QY |D, up to permutation of its rows.743

744

D Minimizing Cross-Entropy Loss yields Domain Discriminator745

Let distribution Q over random variables X,Y,D satisfy Assumptions A.1-A.4. We here examine746

the behavior of the cross-entropy loss, in the infinite data case (when we can work with expectations747

over the entire distribution instead of empirical expectations over a finite set of datapoints). Define748

the vector-valued function z : R Ñ Rr such that zpdq is a one-hot vector of length r, such that749

rzpdqsi “ 1, iff d “ i. Then we write the cross-entropy loss with targets as true domains as750

LCE “ EpX,Dq„Q

«

´

i“r
ÿ

i“1

rzpDqsi logprfpXqsiq

ff

LCE “ EXED|X

«

´

i“r
ÿ

i“1

rzpDqsi logprfpXqsiq

ff

LCE “ EX r´

i“r
ÿ

i“1

ED|X rrzpDqsi logprfpXqsiqss

LCE “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqED|X rrzpDqsis

ff

LCE “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqp1 ˆQpD “ i|Xq ` 0 ˆ p1 ´QpD “ i|Xqqq

ff

LCE “ EX

«

´

i“r
ÿ

i“1

logprfpXqsiqQpD “ i|Xq

ff

In order to find the minimizer of the cross entropy loss over the class of all functions from Rp Ñ751

r0, 1sr, we formulate the following objective with the Lagrange constraint:752

J “ min
rfpXqs1...rfpXqsr

EX

«

´

i“r
ÿ

i“1

logprfpXqsiqQpD “ i|Xq

ff

` λ

˜

i“r
ÿ

i“1

rfpXqsi ´ 1

¸

Setting partial derivative with respect to rfpXqsr to 0, we get ´
QpD “ i|Xq

rf‹pXqsi
`λ “ 0 and rf‹pXqsi “753

1
λQpD “ i|Xq.754
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From KKT condition, the optimal solution lies on constraint surface, giving:755

i“r
ÿ

i“1

rf‹pXqsi “ 1

i“r
ÿ

i“1

1

λ
QpD “ i|Xq “ 1

1

λ

i“r
ÿ

i“1

QpD “ i|Xq “ 1

1

λ
“ 1

λ “ 1

Finally, we get rf‹pXqsi “ QpD “ i|Xq, so the optimal f˚ by the cross entropy loss as defined will756

in fact recover the oracle domain discriminator.757

E Additional Experimental Details758

Our code is available at https://github.com/latentlabelshift-anonymous/759

latentlabelshift. Here we present the full generation procedure for semisynthetic example760

problems, and discuss the parameters.761

1. Choose a Dirichlet concentration parameter α ą 0, maximum condition number κ ě 1762

(with respect to 2-norm), and domain count r ě k.763

2. For each y P rks, sample pdpyq „ Dirpα
k 1kq.764

3. Populate the matrix QY |D with the computed pdpyqs. If condpQY |Dq ě k, return to step 2765

and re-sample.766

4. Distribute examples across domains according to QY |D, for each of train, test, and valid767

sets. This procedure entails creating a quota number of examples for each (class, domain)768

pair, and drawing datapoints without replacement to fill each quota. We must discard excess769

examples from some classes in the dataset due to class imbalance in the QY |D matrix. Due770

to integral rounding, domains may be slightly imbalanced.771

5. Conceal true class information and return pxi, diq pairs.772

It is important to note the role of κ and α in the above formulation. Although they are unknown773

parameters to the classification algorithm, they affect the sparsity of the QY |D and difficulty of the774

problem. Small α encourages high sparsity in pdpyq, and large α causes pdpyq to tend towards a775

uniform distribution. We observe an example of the effects of α in Fig. 3. κ has a strong effect on776

the difficulty of the problem. Consider the case when k “ 2. When κ “ 1, the only potential QY |D777

matrices are I2 up to row permutation (which means that domains and classes are exactly correlated,778

so the domain indicates the class and the problem is supervised). In the other limit, if κ Ñ `8, we779

may generate QY |D matrices that are singular, breaking needed assumptions for domain discriminator780

output to uniquely identify true class of anchor subdomains. κ also helps control the class imbalance781

(if a row of QY |D is small, indicating that the class is heavily under-represented across all domains,782

the condition number will increase).783

E.1 FieldGuide-2 and FieldGuide-28 Datasets784

The dataset and description is available at https://sites.google.com/view/fgvc6/785

competitions/butterflies-moths-2019. From this data we create two datasets FieldGuide-2786

and FieldGuide-28. For FieldGuide-28 we select the 28 classes which have 1000 datapoints in the787

training file. Since the test set provided in the website does not have annotations, we manually cre-788

ate a test set by sampling 200 datapoints from training file of each of the 28 classes. Therefore, we789

finally have 22400 training points and 5600 testing points. The FieldGuide-2 dataset is created by790

considering two classes from the created FieldGuide-28 dataset.791

21

https://github.com/latentlabelshift-anonymous/latentlabelshift
https://github.com/latentlabelshift-anonymous/latentlabelshift
https://github.com/latentlabelshift-anonymous/latentlabelshift
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019
https://sites.google.com/view/fgvc6/competitions/butterflies-moths-2019


„

0.17 0.65
0.83 0.35

ȷ

(a) α : 0.5, κ : 3

„

0.37 0.06
0.63 0.94

ȷ

(b) α : 3, κ : 5

„

0.42 0.25
0.58 0.75

ȷ

(c) α : 10, κ : 7

Figure 3: Example QY |D matrices sampled for FieldGuide-2 with 2 classes and 2 domains. Each
column represents the distribution across classes pdpyq for a given domain. At small α, each pdpyq is
likelier to be “sparse” (our definition is an informal one meaning not that there are many zero entries,
but instead that the distribution is heavily concentrated in a few classes). At large α, pdpyq tends
toward a uniform distribution in which classes are represented evenly.

E.2 Hyperparameters and Implementation Details: SCAN baseline792

In all cases, we initialize the SCAN [57] network with the clustering head attached, sample data793

according to the QD|Y matrix, and predict classes.794

With the Hungarian algorithm, implemented in [14, 58], we compute the highest true accuracy among795

any permutation of these labels (denoted “Test acc”).796

• CIFAR-10 and CIFAR-20 Datasets [38]797

We use ResNet-18 [30] backbone with weights trained by SCAN-loss and obtained from the798

SCAN repo https://github.com/wvangansbeke/Unsupervised-Classification.799

We use the same transforms present in the repo for test data.800

• ImageNet-50 Dataset [17]801

We use ResNet-50 backbone with weights trained by SCAN-loss and obtained from the802

SCAN repo.803

We use the same transforms present in the repo for test data.804

• FieldGuide-2 and FieldGuide-28 Datasets805

For each of the two datasets, we pretrain a different SCAN baseline network (including806

pretext and SCAN-loss steps) on all available data from the dataset. The backbone for each807

is ResNet-18.808

For training the pretext task, we use the same transform strategy used in the repo for CIFAR-809

10 data (with mean and std values as computed on the Fieldguide-28 dataset, and crop size810

224). For training SCAN, we resize the smallest image dimension to 256, perform a random811

horizontal flip and random crop to size 224. We also normalize. For validation we resize812

smallest image dimension to 256, center crop to 224, and normalize.813

E.3 Hyperparameters and Implementation Details: DDFA (RI)814

This is the DDFA procedure with random initialization.815

The bulk of this procedure is described in Section 6, but for completeness we reiterate here.816

We train ResNet-50 [30] (with random initialization and added dropout) based on the implementation817

from https://github.com/kuangliu/pytorch-cifar on images xi with domain indices di as818

the label, choose best iteration by valid loss, pass all training and validation data through pf , and819

cluster pushforward predictions pfpxiq into m ě k clusters with Faiss K-Means [37]. We compute the820

pQcpXq|D matrix and run NMF to obtain pQcpXq|Y , pQY |D. To make columns sum to 1, we normalize821

columns of pQcpXq|Y , multiply each column’s normalization coefficient over the corresponding row822

of pQY |D (to preserve correctness of the decomposition), and then normalize columns of pQY |D.823

Some NMF algorithms only output solutions satisfying the anchor word property [3, 39, 27]. We824

found the strict requirement of an exact anchor word solution to lead to low noise tolerance. We825

therefore use the Sklearn implementation of standard NMF [13, 55, 48].826
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We predict class labels with Algorithm 2. With the Hungarian algorithm, implemented in [14, 58],827

we compute the highest true accuracy among any permutation of these labels (denoted “Test acc”).828

With the same permutation, we reorder rows of pQY |D, then compute the average absolute difference829

between corresponding entries of pQY |D and QY |D (denoted “QY |D err”).830

In order to make hyperparameter choices for final experiments, such as the choice of the NMF solver,831

clustering algorithm, and learning rate, we consulted CIFAR-10 and CINIC-10 (similar to an extension832

of CIFAR-10) [15] final test task accuracy. We were also able to confirm our intuition that minimum833

validation loss on domain discriminator training corresponds to good final task performance. Final834

evaluation runs on CIFAR-10 were made with the best hyperparameters found here. We acknowledge835

that this may lead to test-set overfitting on CIFAR-10, but point out that on all other datasets, we836

consulted only validation loss on domain discriminator training when adjusting the hyperparameters.837

Final evaluation runs used the following fixed hyperparameters:838

Common Hyperparameters839

Architecture: ResNet-50 with added dropout840

Faiss KMeans number of iterations (niter): 100841

Faiss Kmeans number of clustering redos (nredo): 5842

Learning Rate: 0.001843

Learning Rate Decay: Exponential, parameter 0.97844

SKlearn NMF initialization: random845

Dataset-Specific Hyperparameters846

• CIFAR-10 Dataset847

Training Epochs: 100848

Number of Clusters (m): 30849

• CIFAR-20 Dataset850

Training Epochs: 100851

Number of Clusters (m): 60852

• ImageNet-50 Dataset853

Not evaluated.854

• FieldGuide-2 Dataset855

Training Epochs: 100856

Number of Clusters (m): 10857

• FieldGuide-28 Dataset858

Not evaluated.859

E.4 Hyperparameters and Implementation Details: DDFA (SI) and DDFA (SPI)860

This is the DDFA procedure with SCAN initialization. DDFA (SI) uses the SCAN pretext + SCAN861

loss pretraining steps, while DDFA (SPI) uses only the SCAN pretext step.862

The procedure is identical to the standard DDFA procedure, except that SCAN [57] pre-trained863

weights or SCAN [57] contrastive pre-text weights are used to initialize the domain discriminator864

before it is fine-tuned on the domain discrimination task. Hyperparameters used also differ.865

When SCAN pretrained weights are available, we use those. When they are not, we train SCAN866

ourselves.867

Much like SCAN (RI), we used CIFAR-10 final test acuracy to choose hyperparameters and make868

algorithm decisions. For all other datasets, we consulted only validation domain discrimination loss.869

Final evaluation runs used the following fixed hyperparameters:870

Common Hyperparameters871

Faiss KMeans number of iterations (niter): 100872
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Faiss Kmeans number of clustering redos (nredo): 5873

Learning Rate: 0.00001874

Learning Rate Decay: Exponential, parameter 0.97875

SKlearn NMF initialization: random876

Dataset-Specific Hyperparameters877

• CIFAR-10 Dataset878

Architecture: ResNet-18879

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-10880

(from SCAN repo).881

Training Epochs: 25882

Number of Clusters (m): 10883

Transforms used: Same as SCAN repo.884

• CIFAR-20 Dataset885

Architecture: ResNet-18886

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of CIFAR-20887

(from SCAN repo).888

Training Epochs: 25889

Number of Clusters (m): 20890

Transforms used: Same as SCAN repo.891

• ImageNet-50 Dataset892

Architecture: ResNet-50893

Pre-seed: Weights trained with SCAN pretext and SCAN-loss on entirety of ImageNet-50894

(from SCAN repo).895

Training Epochs: 25896

Number of Clusters (m): 50897

Transforms used: Same as SCAN repo.898

• FieldGuide-2 Dataset899

Architecture: ResNet-18900

Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-2 (trained by us).901

Training Epochs: 30902

Number of Clusters (m): 2903

Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate904

mean, std, and crop size 224.905

Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224,906

normalize907

Learning rate used for SCAN: 0.001 (other hyperparameters were same as in SCAN repo908

for CIFAR-10)909

Note: During one of the random seeds of training, test data transforms were mismatched with910

train transforms (specifically, missing the Resize(256) transform on test only). We consider911

this to disadvantage our approach for that random seed as compared to the SCAN baseline,912

which uses the proper transforms in all seeds. We report these results regardless due to the913

fact that our approach still competes effectively even despite the transform disadvantage.914

This random seed is the one displayed in Section 6 of the main paper. The results shown915

in App. F are different results, with the Resize(256) included (and are therefore the best,916

fair-footing evaluation comparison between our method and baseline).917

• FieldGuide-28 Dataset918

Architecture: ResNet-18919

Pre-seed: Weights trained with SCAN pretext on entirety of FieldGuide-28 (trained by us).920

Training Epochs: 60921

Number of Clusters (m): 28922
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Transforms used for pretext: Same strategy as CIFAR-10 in SCAN repo with appropriate923

mean, std, and crop size 224.924

Transform used for SCAN: Resize to 256, Random horizontal flip, Random crop to 224,925

normalize926

Learning rate used for SCAN: 0.01 (other hyperparameters were same as in SCAN repo for927

CIFAR-10)928

Note: During one of the random seeds of training, test data transforms were mismatched with929

train transforms (specifically, missing the Resize(256) transform on test only). We consider930

this to disadvantage our approach for that random seed as compared to the SCAN baseline,931

which uses the proper transforms in all seeds. We report these results regardless due to the932

fact that our approach still competes effectively even despite the transform disadvantage.933

This random seed is the one displayed in Section 6 of the main paper. The results shown934

in App. F are different results, with the Resize(256) included (and are therefore the best,935

fair-footing evaluation comparison between our method and baseline).936

F Additional Experimental Results937

Table 2: Results on CIFAR-10. Each entry is produced with the averaged result of 3 different random
seeds. With DDFA (RI) we refer to DDFA with randomly initialized backbone. With DDFA (SI) we
refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI), we do not leverage SCAN
for clustering. α is the Dirichlet parameter used for generating label marginals in each domain, κ
is the maximum allowed condition number of the generated QY |D matrix, r is number of domains.
”Test acc” is classification accuracy, under the best permutation of the recovered classes, and ”QY |D

err” is the average entry-wise absolute error in the recovered QY |D.

r Approaches α : 0.5, κ : 4 α : 3, κ : 4 α : 10, κ : 8

Test acc QY |D err Test acc QY |D err Test acc QY |D err

10 SCAN 0.823 0.146 0.826 0.126 0.804 0.082
DDFA (RI) 0.736 0.035 0.539 0.048 0.314 0.074
DDFA (SI) 0.899 0.023 0.757 0.040 0.536 0.054

15 SCAN 0.822 0.154 0.817 0.116 0.812 0.080
DDFA (RI) 0.773 0.033 0.532 0.046 0.275 0.074
DDFA (SI) 0.961 0.016 0.844 0.026 0.733 0.038

20 SCAN 0.802 0.143 0.809 0.117 0.818 0.087
DDFA (RI) 0.688 0.047 0.565 0.046 0.270 0.071
DDFA (SI) 0.966 0.016 0.904 0.019 0.798 0.030

25 SCAN 0.801 0.155 0.811 0.114 0.811 0.085
DDFA (RI) 0.724 0.039 0.562 0.044 0.280 0.086
DDFA (SI) 0.970 0.013 0.917 0.017 0.820 0.027
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Table 3: Results on ImageNet-50. Each entry is produced with the averaged result of 3 different
random seeds. With DDFA (SI) we refer to DDFA’s backbone initialized with SCAN. Note that in
DDFA (SI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating
label marginals in each domain, κ is the maximum allowed condition number of the generated QY |D

matrix, r is number of domains. ”Test acc” is classification accuracy, under the best permutation of
the recovered classes, and ”QY |D err” is the average entry-wise absolute error in the recovered QY |D.

r Approaches α : 0.5, κ : 200 α : 3, κ : 205 α : 10, κ : 210

Test acc QY |D err Test acc QY |D err Test acc QY |D err

50 SCAN 0.726 0.039 0.745 0.037 0.741 0.032
DDFA (SI) 0.720 0.013 0.632 0.015 0.343 0.022

60 SCAN 0.755 0.039 0.730 0.037 0.748 0.032
DDFA (SI) 0.818 0.010 0.743 0.012 0.578 0.018

Table 4: Results on FieldGuide-2. Each entry is produced with the averaged result of 3 different
random seeds. With DDFA (RI) we refer to DDFA with randomly initialized backbone. With DDFA
(SPI) we refer to DDFA initialized with pretext training adopted by SCAN. Note that in DDFA
(SPI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating
label marginals in each domain, κ is the maximum allowed condition number of the generated QY |D

matrix, r is number of domains.

r Approaches α : 0.5, κ : 3 α : 3, κ : 5 α : 10, κ : 7

Test acc QY |D err Test acc QY |D err Test acc QY |D err

2 SCAN 0.583 0.508 0.564 0.524 0.577 0.281
DDFA (RI) 0.715 0.222 0.602 0.500 0.622 0.200
DDFA (SPI) 0.776 0.241 0.773 0.150 0.658 0.264

3 SCAN 0.589 0.858 0.590 0.458 0.590 0.273
DDFA (RI) 0.840 0.180 0.660 0.218 0.611 0.209
DDFA (SPI) 0.960 0.055 0.830 0.148 0.693 0.224

5 SCAN 0.586 0.881 0.576 0.422 0.580 0.234
DDFA (RI) 0.653 0.126 0.596 0.253 0.576 0.159
DDFA (SPI) 0.953 0.093 0.784 0.141 0.617 0.258

7 SCAN 0.580 0.777 0.586 0.449 0.587 0.275
DDFA (RI) 0.757 0.269 0.623 0.177 0.581 0.161
DDFA (SPI) 0.904 0.115 0.816 0.145 0.661 0.198

10 SCAN 0.582 0.828 0.589 0.374 0.582 0.186
DDFA (RI) 0.692 0.237 0.619 0.149 0.534 0.271
DDFA (SPI) 0.907 0.155 0.714 0.170 0.582 0.164

G Discussion of Convex Polytope Geometry938

The geometric properties of topic modeling for finite, discrete random variables has been explored939

in depth in related works ([33, 20, 12]). The observation that columns in QX|D are convex combi-940

nations of columns in QX|Y leads to a perspective on identification of the matrix decomposition as941

identification of the convex polytope in Rm which encloses all of the columns of QX|D (the corners942

of which correspond to columns of QX|Y under certain identifiability conditions).943

Here, we briefly discuss an interesting but somewhat different application of convex polytope944

geometry. Instead of a convex polytope in Rm with corners as columns of QX|Y , we concern945

ourselves with the convex polytope in Rr with corners as columns in QD|Y , which must enclose all946

values taken by the oracle domain discriminator fpxq for x P X , qpxq ą 0.947

Let us assume that Assumptions A.1–A.4 are satisfied. We recall the oracle domain discriminator f948

defined such that rfpxqsd “ qpd|X “ xq. Let x P X “ Rp. Now, since the r values qpd|X “ xq for949
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Table 5: Results on FieldGuide-28. Each entry is produced with the result of a single trial. With
DDFA (SPI) we refer to DDFA initialized with pretext training adopted by SCAN. Note that in DDFA
(SPI), we do not leverage SCAN for clustering. α is the Dirichlet parameter used for generating
label marginals in each domain, κ is the maximum allowed condition number of the generated QY |D

matrix, r is number of domains. ”Test acc” is classification accuracy, under the best permutation of
the recovered classes, and ”QY |D err” is the average entry-wise absolute error in the recovered QY |D.

r Approaches α : 0.5, κ : 12 α : 3, κ : 20 α : 10, κ : 28

Test acc QY |D err Test acc QY |D err Test acc QY |D err

28 SCAN 0.281 0.064 0.276 0.059 0.310 0.048
DDFA (SPI) 0.547 0.036 0.310 0.034 0.314 0.036

37 SCAN 0.300 0.066 0.316 0.059 0.309 0.049
DDFA (SPI) 0.760 0.028 0.521 0.032 0.326 0.041

42 SCAN 0.279 0.065 0.332 0.059 0.295 0.047
DDFA (SPI) 0.670 0.032 0.471 0.037 0.408 0.031

47 SCAN 0.285 0.066 0.314 0.062 0.307 0.049
DDFA (SPI) 0.709 0.035 0.473 0.035 0.299 0.039

 

(0,0,1)

(0,1,0)(1,0,0)

Convex polytope

Image of anchor subdomain

Figure 4: This figure illustrates the case with 3 domains and 3 classes. The oracle domain discrimi-
nator maps points from a high-dimensional input space to a k “ 3 vertex convex polytope (shaded
red) embedded in ∆r´1, r “ 3 (shaded yellow). The anchor subdomains map to the vertices of this
polytope.

d P t1, 2, ..., ru together constitute a categorical distribution, each of these r values lie between 0950

and 1, and also their sum adds to 1. Therefore the vector fpxq lies on the simplex ∆r´1. We now951

express fpxq as a convex combination of the k columns of QD|Y . We denote these column vectors952

QD|Y r:, ys for each y P Y “ rks. Note that each such vector also lies in the ∆r´1 simplex.953

As an intermediate step in the proof of Lemma 3 given in App. B, we showed that each fpxq is a954

linear combination of these columns of QD|Y with coefficients qpy|X “ xq for all y P Y . That is,955

we can rewrite fpxq “ QD|Y rQpY “ 1|X “ xq ... QpY “ k|X “ xqs
J

956

Since the coefficients in the linear combination are probabilities which, taken together, form a957

categorical distribution, they lie between 0 and 1 and sum to 1. Thus, for all x P X with qpxq ą 0,958

fpxq can be expressed as a convex combination of the columns of QD|Y . Therefore, for any x with959

qpxq ą 0, fpxq lies inside the k´vertex convex polytope with corners as the columns of QD|Y960

(which are linearly independent by Lemma 6). This polytope is embedded in ∆r´1.961

Now consider x in an anchor sub-domain, that is x P Ay for some y P Y . We know that if qpxq ą 0,962

qpy|X “ xq “ 1, qpy1|X “ xq “ 0 for all y1 ‰ y (Lemma 5). Since the qpy|X “ xq are now one-963
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hot, we have that fpxq “ QD|Y r:, ys for x P Ay . In words, this means that fpAyq is precisely the yth964

column of QD|Y . It follows that the domain discriminator maps each of the k anchor sub-domains965

exactly to a unique vertex of the polytope. The situation is described in Fig. 4.966

We could now recover the columns of QD|Y , up to permutation, with the following procedure:967

1. Push all x P X through f .968

2. Find the minimum volume convex polytope that contains the resulting density of points969

on the simplex. The vectors that compose the vertices of this polytope are the columns of970

QD|Y , up to permutation.971

Note that from Assumption A.4, we are guaranteed to have a region of the input space with at least972

ϵ ą 0 mass that gets mapped to each of the vertices when carrying out step (i). Therefore, our973

discovered minimum volume polytope must enclose all of these vertices. Since no mass will exist974

outside of the true polytope, requiring a minimum volume polytope will ensure that the recovered975

polytope fits the true polytope’s vertices precisely (as any extraneous volume outside of the true976

polytope must be eliminated). Then step (ii) recovers QD|Y , up to permutation of columns. Having977

recovered QD|Y , we can use Lemmas 1 and 2 to recover qpy|x, dq.978

This procedure is a geometric alternative to the clustering approach outlined in Algorithm 1. In979

practice, fitting a convex hull around the outputs of a noisy, non-oracle estimated domain discriminator980

may be computationally expensive, and noise may lead this sensitive procedure to fail to recover the981

true vertices.982
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H Ablation Study on Number of Clusters983

We conduct an ablation on the choice of m, the parameter indicating how many clusters to find in the984

qpd|xq space. We use the CIFAR-20 dataset with 20 domains and employ DDFA (SI) and SCAN985

models, following the same hyperparameters as outlined in App. E, except for modifying the choice986

of m for DDFA (SI). Results are obtained as the average of three random seeds.987
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Test accuracy vs. number of clusters m, on CIFAR20 with 20 domains, across problem settings (alpha)
alpha 0.5: DDFA (SI)
alpha 0.5: SCAN
alpha 3: DDFA (SI)
alpha 3: SCAN
alpha 10: DDFA (SI)
alpha 10: SCAN

Figure 5: Test accuracy of DDFA (SI) approach and SCAN baseline on CIFAR20 with 20 domains,
while modifying the number of clusters m for DDFA (SI). The choice of α roughly modifies the
difficulty of the problem, where small α is easier. We note that typically we require choice of m ě k.
We portray one datapoint where this constraint is violated, and m “ 10. Black dots indicate tested
values of m, and lines are plotted only to show the trend. Larger accuracy is better.

The number of true classes is 20 in CIFAR-20. As seen in Fig. 5, whenm is chosen to be 10, violating988

the typical constraint that m ě k, we can still solve for the solution, but we get poor performance,989

seeing a drop in accuracy as much as 20% from a better-chosen value of m. Choosing m directly990

equal to or slightly larger than k provide the best performance, with a slope-off in performance at991

very large m.992

The trend is roughly mirrored in Fig. 6, which shows how the reconstruction error modifies over the993

same change in m. Under all settings, using m “ 10 ă k clusters provides a poor reconstruction,994

while the best reconstruction is found with m roughly equal to k or slightly larger. Performance995

degrades as m grows very large, although the effect is very slight for the alpha = 0.5 setting.996

Intuitively, these results show that breaking the m ě k condition not only violates the theoretical997

identifiability, but also leads to poorer empirical performance; choosing very large m can also lead to998

degraded performance, likely due to propagation of inaccuracies in the finite-sample estimation of999

the pQcpXq|D matrix.1000
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QY|D err vs. number of clusters m, on CIFAR20 with 20 domains, across problem settings (alpha)
alpha 0.5: DDFA (SI)
alpha 0.5: SCAN
alpha 3: DDFA (SI)
alpha 3: SCAN
alpha 10: DDFA (SI)
alpha 10: SCAN

Figure 6: Element-wise average absolute QY |D reconstruction error of DDFA (SI) approach and
SCAN baseline on CIFAR-20 with 20 domains, while modifying the number of clusters m for DDFA
(SI). The choice of α roughly modifies the difficulty of the problem, where small α is easier. We note
that typically we require choice of m ě k. We portray one datapoint where this constraint is violated,
and m “ 10. Black dots indicate tested values of m, and lines are plotted only to show the trend.
Smaller error is better.

I Ablation Study with a Naïve Feature Space1001

One might ask whether the semantic meaning of the domain discrimination space is necessary in1002

DDFA; might we exchange the domain discrimination step in Algorithm 1 for a naive step in which1003

we simply pass the input through an arbitrary feature extractor and then proceed to clustering in this1004

space?1005

The first remark we make is that the domain discriminator does not purely provide a clustering1006

representation; its semantic meaning is also important for the computation of the final domain-1007

adjusted pdpy|xq prediction, as a reliable estimate of qpd|xq, in conjunction with the estimate of the1008

QY |D matrix, allow us to estimate pdpy|xq via Algorithm 2. Without this semantic meaning, our1009

class prediction can be based only on a coarse prediction at the level of the cluster, not the individual1010

datapoint.1011

However, if we are still determined to use an alternate representation, it is indeed possible to do so.1012

We illustrate a variant of DDFA using a naïve representation in Algorithms 3 and 4, and then evaluate1013

this procedure on CIFAR-20 as an ablative study on DDFA. We compare naïve results with standard1014

DDFA results, and with a traditional SCAN baseline, in Table 6.1015

Naïve Representation Variant of DDFA The only major changes from the original DDFA for1016

Algorithm 3 are the removal of the need to train any pf domain discriminator, the use of the arbitrary1017

representation space ϕ before clustering, and the output of the clustering discretization function c1018

as well as pQcpXq|Y (which are both discarded in the original procedure). We need c and pQcpXq|Y1019

because in Algorithm 4 we will use them for domain-adjusted class prediction.1020

Algorithm 4 includes significant changes from the DDFA procedure. Since we do not have the1021

estimate of qpd|xq to use, we cannot directly reason about how different locations in the representation1022

space induced by ϕ correspond to different probabilities of class labels. However, because we have1023

pQcpXq|Y and pQY |D, two outputs of the NMF decomposition in Algorithm 3, we can calculate a1024

coarse prediction over labels y for each cluster, and then assign the same prediction to each point in1025
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Algorithm 3 DDFA (Naïve) Training

input k ě 1, r ě k, tpxi, diquiPrns „ qpx, dq, A naive representation function ϕ from Rp Ñ Rr

1: Push all txiuiPrns through ϕ.
2: Train clustering algorithm on the n points tϕpxiquiPrns, obtain m clusters.
3: cpxiq Ð Cluster id of ϕpxiq

4: pqpcpXq “ a|D “ bq Ð

ř

iPrns Ircpxiq“a, di“bs
ř

jPrns Irdj“bs

5: Populate pQcpXq|D as r pQcpXq|Dsa,b Ð pqpcpXq “ a|D “ bq

6: pQcpXq|Y , pQY |D Ð NMF p pQcpXq|Dq

output pQcpXq|Y , pQY |D, clustering discretization function c

Algorithm 4 DDFA (Naïve) Prediction

input pQcpXq|Y , pQY |D, clustering discretization function c, px1, d1q „ qpx, dq

1: Pass x1 through c to get cluster id cpx1q.
2: pqpcpx1q|Y “ y2q Ð r pQcpXq|Y scpx1q,y2 for all y2

3: pqpy2|D “ d1q Ð r pQY |Dsy2,d1 for all y2

4: pqpy|cpXq “ cpx1q, D “ d1q Ð
pqpcpx1q|Y “ yqpqpy|D “ d1q

ř

y2PY
pqpcpx1q|Y “ y2qpqpy2|D “ d1q

5: ypred Ð argmaxyPrks pqpy|cpXq “ cpx1q, D “ d1q

output : pqpy|cpXq “ cpx1q, D “ d1q “ ppd1 py|cpx1qq, ypred

that cluster. To obtain the closed-form for this coarse prediction ppdpy|cpxqq used in Algorithm 4, we1026

use the following derivation:1027

ppdpy|cpxqq “ pqpy|d, cpxqq “
pqpcpxq|y, dqpqpy, dq

pqpd, cpxqq

“
pqpcpxq|y, dqpqpy, dq

ř

y2PY
pqpcpxq|y2, dqpqpy2, dq

By label shift, qpcpxq|y, dq “ qpcpxq|yq, then “
pqpcpxq|yqpqpy, dq

ř

y2PY
pqpcpxq|y2qpqpy2, dq

“
pqpcpxq|yqpqpy|dqpqpdq

ř

y2PY
pqpcpxq|y2qpqpy2|dqpqpdq

“
pqpcpxq|yqpqpy|dqp1{rq

ř

y2PY
pqpcpxq|y2qpqpy2|dqp1{rq

“
pqpcpxq|yqpqpy|dq

ř

y2PY
pqpcpxq|y2qpqpy2|dq

Combining Algorithms 3 and 4 allows us to empirically evaluate the behavior of an ablation on DDFA1028

which does not use any domain discriminator. For a reasonable comparison, we need a meaningful1029

naïve representation space. We use a SCAN pretrain backbone for ResNet-18, and remove the last1030

linear layer in the ResNet-18 backbone in order to expose a 512-dimension representation space.1031

Since clustering in high-dimensional spaces often performs poorly, we also map this 512-dimension1032

representation down to only r (the number of domains) dimensions using two different common1033

dimensionality reduction methods: Independent Component Analysis (ICA) [35] and Principal1034

Component Analysis (PCA) [59]. These smaller-dimension clustering problems provide a closer1035

comparison to the dimensionality of the clustering problem in the DDFA (SI) procedure, for which1036

we employ m clusters. Note: we use ICA and PCA implementations from scikit-learn [48].1037
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SCAN, DDFA (RI), and DDFA (SI) experiment details are the same as explained in App. E; in fact1038

these are the same results presented for CIFAR-20 in Sec. 6.1039

In general, we can see that all variants of the Naïve/ablated DDFA procedure perform worse than1040

DDFA (SI) in all problem settings, over both metrics of interest. All variants of the Naïve procedure1041

are also worse than DDFA (RI) in both metrics of interest when α is 0.5 or 3, although they match1042

or outpace it slightly in some of the hardest settings (α “ 10). It is worth pointing out that this is1043

predominantly due to the fact that DDFA (RI) performs notably poorly at harder settings.1044

The SCAN baseline outpaces these Naïve approaches, in terms of classification accuracy, in all1045

problem settings. However, the Naïve approaches always achieve better QY |D reconstruction error.1046

Table 6: Extended Results on CIFAR-20. Each entry is produced with the averaged result of 3 different
random seeds. With DDFA (RI) we refer to DDFA with randomly initialized backbone. With DDFA
(SI) we refer to DDFA’s backbone initialized with SCAN. Note that in DDFA (SI), we do not leverage
SCAN for clustering. With Naïve we refer to an ablation in which DDFA’s domain discriminator is
replaced with the SCAN pretrained backbone, with its final linear layer removed so that its output is
a 512-dimension unsupervised representation space. With Naïve (ICA) and Naïve (PCA) we refer
to similar ablations in which the activations from the second-to-last layer of SCAN network are
mapped to r-dimensional space with ICA and PCA respectively. α is the Dirichlet parameter used
for generating label marginals in each domain, κ is the maximum allowed condition number of the
generated QY |D matrix, r is number of domains.

r Approaches α : 0.5, κ : 8 α : 3, κ : 12 α : 10, κ : 20

Test acc QY |D err Test acc QY |D err Test acc QY |D err

20
SCAN 0.439 0.092 0.446 0.079 0.434 0.060
DDFA (RI) 0.517 0.042 0.336 0.045 0.163 0.057
DDFA (SI) 0.784 0.023 0.593 0.027 0.390 0.034
Naïve 0.231 0.075 0.156 0.065 0.116 0.054
Naïve (ICA) 0.225 0.073 0.137 0.070 0.105 0.056
Naïve (PCA) 0.204 0.076 0.141 0.065 0.108 0.055

25
SCAN 0.438 0.090 0.441 0.078 0.438 0.060
DDFA (RI) 0.489 0.049 0.292 0.049 0.075 0.081
DDFA (SI) 0.837 0.020 0.669 0.025 0.487 0.030
Naïve 0.224 0.078 0.165 0.064 0.112 0.055
Naïve (ICA) 0.204 0.076 0.146 0.063 0.100 0.057
Naïve (PCA) 0.207 0.078 0.135 0.067 0.105 0.054

30
SCAN 0.432 0.094 0.457 0.077 0.431 0.059
DDFA (RI) 0.512 0.046 0.299 0.048 0.087 0.077
DDFA (SI) 0.820 0.022 0.743 0.021 0.543 0.028
Naïve 0.208 0.077 0.152 0.066 0.122 0.051
Naïve (ICA) 0.197 0.076 0.134 0.064 0.097 0.056
Naïve (PCA) 0.200 0.078 0.148 0.065 0.114 0.051
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