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ABSTRACT

This paper proposes a new actor-crtitic-style algorithm called Dual Actor-Critic
or Dual-AC . It is derived in a principled way from the Lagrangian dual form
of the Bellman optimality equation, which can be viewed as a two-player game
between the actor and a critic-like function, which is named as dual critic. Com-
pared to its actor-critic relatives, Dual-AC has the desired property that the actor
and dual critic are updated cooperatively to optimize the same objective func-
tion, providing a more transparent way for learning the critic that is directly re-
lated to the objective function of the actor. We then provide a concrete algorithm
that can effectively solve the minimax optimization problem, using techniques
of multi-step bootstrapping, path regularization, and stochastic dual ascent algo-
rithm. We demonstrate that the proposed algorithm achieves the state-of-the-art
performances across several benchmarks.

1 INTRODUCTION

Reinforcement learning (RL) algorithms aim to learn a policy that maximizes the long-term return
by sequentially interacting with an unknown environment. Value-function-based algorithms first
approximate the optimal value function, which can then be used to derive a good policy. These
methods (Sutton, 1988; Watkins, 1989) often take advantage of the Bellman equation and use boot-
strapping to make learning more sample efficient than Monte Carlo estimation (Sutton & Barto,
1998). However, the relation between the quality of the learned value function and the quality of the
derived policy is fairly weak (Bertsekas & Tsitsiklis, 1996). Policy-search-based algorithms such
as REINFORCE (Williams, 1992) and others (Kakade, 2002; Schulman et al., 2015a), on the other
hand, assume a fixed space of parameterized policies and search for the optimal policy parameter
based on unbiased Monte Carlo estimates. The parameters are often updated incrementally along
stochastic directions that on average are guaranteed to increase the policy quality. Unfortunately,
they often have a greater variance that results in a higher sample complexity.

Actor-critic methods combine the benefits of these two classes, and have proved successful in a
number of challenging problems such as robotics (Deisenroth et al., 2013), meta-learning (Bello
et al., 2016), and games (Mnih et al., 2016). An actor-critic algorithm has two components: the
actor (policy) and the critic (value function). As in policy-search methods, actor is updated towards
the direction of policy improvement. However, the update directions are computed with the help of
the critic, which can be more efficiently learned as in value-function-based methods (Sutton et al.,
2000; Konda & Tsitsiklis, 2003; Peters et al., 2005; Bhatnagar et al., 2009; Schulman et al., 2015b).
Although the use of a critic may introduce bias in learning the actor, its reduces variance and thus
the sample complexity as well, compared to pure policy-search algorithms.

While the use of a critic is important for the efficiency of actor-critic algorithms, it is not entirely
clear how the critic should be optimized to facilitate improvement of the actor. For some parametric
family of policies, it is known that a certain compatibility condition ensures the actor parameter
update is an unbiased estimate of the true policy gradient (Sutton et al., 2000). In practice, temporal-
difference methods are perhaps the most popular choice to learn the critic, especially when nonlinear
function approximation is used (e.g., Schulman et al. (2015b)).

In this paper, we propose a new actor-critic-style algorithm where the actor and the critic-like func-
tion, which we named as dual critic, are trained cooperatively to optimize the same objective func-
tion. The algorithm, called Dual Actor-Critic , is derived in a principled way by solving a dual
form of the Bellman equation (Bertsekas & Tsitsiklis, 1996). The algorithm can be viewed as a
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two-player game between the actor and the dual critic, and in principle can be solved by standard
optimization algorithms like stochastic gradient descent (Section 2). We emphasize the dual critic
is not fitting the value function for current policy, but that of the optimal policy. We then show
that, when function approximation is used, direct application of standard optimization techniques
can result in instability in training, because of the lack of convex-concavity in the objective function
(Section 3). Inspired by the augmented Lagrangian method (Luenberger & Ye, 2015; Boyd et al.,
2010), we propose path regularization for enhanced numerical stability. We also generalize the
two-player game formulation to the multi-step case to yield a better bias/variance tradeoff. The full
algorithm is derived and described in Section 4, and is compared to existing algorithms in Section 5.
Finally, our algorithm is evaluated on several locomotion tasks in the MuJoCo benchmark (Todorov
et al., 2012), and compares favorably to state-of-the-art algorithms across the board.

Notation. We denote a discounted MDP byM = (S,A, P,R, γ), where S is the state space, A
the action space, P (·|s, a) the transition probability kernel defining the distribution over next-state
upon taking action a in state x, R(s, a) the corresponding immediate rewards, and γ ∈ (0, 1) the
discount factor. If there is no ambiguity, we will use

∑
a f(a) and

∫
f(a)da interchangeably.

2 DUALITY OF BELLMAN OPTIMALITY EQUATION

In this section, we first describe the linear programming formula of the Bellman optimality equa-
tion (Bertsekas et al., 1995; Puterman, 2014), paving the path for a duality view of reinforcement
learning via Lagrangian duality. In the main text, we focus on MDPs with finite state and action
spaces for simplicity of exposition. We extend the duality view to continuous state and action spaces
in Appendix A.2.

Given an initial state distribution µ(s), the reinforcement learning problem aims to find a policy
π(·|s) : S → P(A) that maximizes the total expected discounted reward with P(A) denoting all
the probability measures over A, i.e.,

Es0∼µ(s)Eπ
[∑∞

i=0 γ
iR(si, ai)

]
, (1)

where si+1 ∼ P (·|si, ai), ai ∼ π(·|si).

Define V ∗(s) := maxπ∈P(A) E
[∑∞

i=0 γ
iR(si, ai)|s0 = s

]
, the Bellman optimality equation states

that:
V ∗(s) = (T V ∗)(s) := max

a∈A

{
R(s, a) + γEs′|s,a [V ∗(s′)]

}
, (2)

which can be formulated as a linear program (Puterman, 2014; Bertsekas et al., 1995):
P∗ := min

V
(1− γ)Es∼µ(s) [V (s)] (3)

s.t. V (s) > R(s, a) + γEs′|s,a [V (s′)] , ∀(s, a) ∈ S ×A.
For completeness, we provide the derivation of the above equivalence in Appendix A. Without loss
of generality, we assume there exists an optimal policy for the given MDP, namely, the linear pro-
gramming is solvable. The optimal policy can be obtained from the solution to the linear program (3)
via

π∗(s) = argmax
a∈A

{
R(s, a) + γEs′|s,a [V ∗(s′)]

}
. (4)

The dual form of the LP below is often easier to solve and yield more direct relations to the optimal
policy.

D∗ := maxρ>0

∑
(s,a)∈S×A

R(s, a)ρ(s, a) (5)

s.t.
∑
a∈A ρ(s′, a) = (1− γ)µ(s′) + γ

∑
s,a∈S×A ρ(s, a)P (s′|s, a)ds,∀s′ ∈ S.

Since the primal LP is solvable, the dual LP is also solvable, and P∗ − D∗ = 0. The optimal dual
variables ρ∗(s, a) and optimal policy π∗(a|s) are closely related in the following manner:

Theorem 1 (Policy from dual variables)
∑
s,a∈S×A ρ

∗(s, a) = 1, and π∗(a|s) = ρ∗(s,a)∑
a∈A ρ

∗(s,a) .
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Since the goal of reinforcement learning task is to learn an optimal policy, it is appealing to deal
with the Lagrangian dual which optimizes the policy directly, or its equivalent saddle point problem
that jointly learns the optimal policy and value function.

Theorem 2 (Competition in one-step setting) The optimal policy π∗, actor, and its corresponding
value function V ∗, dual critic, is the solution to the following saddle-point problem

max
α∈P(S),π∈P(A)

min
V

L(V, α, π) := (1− γ)Es∼µ(s) [V (s)] +
∑

(s,a)∈S×A

α(s)π (a|s) ∆[V ](s, a), (6)

where ∆[V ](s, a) := R(s, a) + γEs′|s,a[V (s′)]− V (s).

The saddle point optimization (6) provides a game perspective in understanding the reinforcement
learning problem (Goodfellow et al., 2014). The learning procedure can be thought as a game be-
tween the dual critic, i.e., value function for optimal policy, and the weighted actor, i.e., α(s)π(a|s):
the dual critic V seeks the value function to satisfy the Bellman equation, while the actor π tries to
generate state-action pairs that break the satisfaction. Such a competition introduces new roles for
the actor and the dual critic, and more importantly, bypasses the unnecessary separation of policy
evaluation and policy improvement procedures needed in a traditional actor-critic framework.

3 SOURCES OF INSTABILITY

To solve the dual problem in (6), a straightforward idea is to apply stochastic mirror prox (Ne-
mirovski et al., 2009) or stochastic primal-dual algorithm (Chen et al., 2014) to address the saddle
point problem in (6). Unfortunately, such algorithms have limited use beyond special cases. For
example, for an MDP with finite state and action spaces, the one-step saddle-point problem (6) with
tabular parametrization is convex-concave, and finite-sample convergence rates can be established;
see e.g., Chen & Wang (2016) and Wang (2017). However, when the state/action spaces are large
or continuous so that function approximation must be used, such convergence guarantees no longer
hold due to lack of convex-concavity. Consequently, directly solving (6) can suffer from severe bias
and numerical issues, resulting in poor performance in practice (see, e.g., Figure 1):

1. Large bias in one-step Bellman operator: It is well-known that one-step bootstrapping
in temporal difference algorithms has lower variance than Monte Carlo methods and often
require much fewer samples to learn. But it produces biased estimates, especially when
function approximation is used. Such a bias is especially troublesome in our case as it
introduces substantial noise in the gradients to update the policy parameters.

2. Absence of local convexity and duality: Using nonlinear parametrization will easily break
the local convexity and duality between the original LP and the saddle point problem, which
are known as the necessary conditions for the success of applying primal-dual algorithm
to constrained problems (Luenberger & Ye, 2015). Thus none of the existing primal-dual
type algorithms will remain stable and convergent when directly optimizing the saddle
point problem without local convexity.

3. Biased stochastic gradient estimator with under-fitted value function: In the absence
of local convexity, the stochastic gradient w.r.t. the policy π constructed from under-fitted
value function will presumably be biased and futile to provide any meaningful improvement
of the policy. Hence, naively extending the stochastic primal-dual algorithms in Chen &
Wang (2016); Wang (2017) for the parametrized Lagrangian dual, will also lead to biased
estimators and sample inefficiency.

4 DUAL ACTOR-CRITIC

In this section, we will introduce several techniques to bypass the three instability issues in the
previous section: (1) generalization of the minimax game to the multi-step case to achieve a better
bias-variance tradeoff; (2) use of path regularization in the objective function to promote local
convexity and duality; and (3) use of stochastic dual ascent to ensure unbiased gradient estimates.
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4.1 COMPETITION IN MULTI-STEP SETTING

In this subsection, we will extend the minimax game between the actor and critic to the multi-step
setting, which has been widely utilized in temporal-difference algorithms for better bias/variance
tradeoffs (Sutton & Barto, 1998; Kearns & Singh, 2000). By the definition of the optimal value
function, it is easy to derive the k-step Bellman optimality equation as

V ∗(s) =
(
T kV ∗

)
(s) := maxπ∈P

{
Eπ
[∑k

i=0 γ
iR(si, ai)

]
+ γk+1Eπ [V ∗(sk+1)]

}
. (7)

Similar to the one-step case, we can reformulate the multi-step Bellman optimality equation into a
form similar to the LP formulation, and then apply Lagrangian duality to obtain the corresponding
dual problem. This leads to the following mimimax problem:

Theorem 3 (Competition in multi-step setting) The optimal policy π∗ and its corresponding
value function V ∗ is the solution to the following saddle point problem

max
α∈P(S),π∈P(A)

min
V

Lk(V, α, π) = (1− γk+1)Eµ [V (s)] + Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)]
, (8)

where δ
(
{si, ai}ki=0 , sk+1

)
=
∑k
i=0 γ

iR(si, ai) + γk+1V (sk+1)− V (s) and

Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)]
=

∑
{si,ai}ki=0,sk+1

α(s0)

k∏
i=0

π(ai|si)p(si+1|si, ai)δ
(
{si, ai}ki=0 , sk+1

)
.

Although the saddle-point problem (8) is similar to the one-step Lagrangian (6), it should be empha-
sized that due to the existence of max-operator over the space of distributions P(A), rather than A,
in the multi-step Bellman optimality equation (7), the establishment of the competition in multi-step
setting in Theorem 3 is not straightforward: i), its corresponding optimization is no longer a linear
programming; ii), the strong duality in (8) is not obvious because of the lack of the convex-concave
structure. Due to space limit, detailed analyses for generalizing the competition to multi-step setting
are provided in Appendix A.

4.2 PATH REGULARIZATION

When function approximation is used, the one-step or multi-step saddle point problems (8) will
no longer be convex in the primal parameter space. This could lead to severe instability and even
divergence when solved by brute-force stochastic primal-dual algorithms. One then desires to par-
tially convexify the objectives without affecting the optimal solutions. The augmented Lagrangian
method (Boyd et al., 2010; Luenberger & Ye, 2015), also known as method of multipliers, is de-
signed and widely used for such purposes. However, directly applying this method would require
introducing penalty functions of the multi-step Bellman operator, which renders extra complexity
and challenges in optimization. Interested readers are referred to Appendix B.2 for details.

Instead, we propose to use path regularization, as a stepping stone for promoting local convex-
ity and computation efficiency. The regularization term is motivated by the fact that the op-
timal value function satisfies the constraint V (s) = Eπ∗

[∑∞
i=0 γ

iR(si, ai)|s
]
. In the same

spirit as augmented Lagrangian, we will introduce to the objective the simple penalty function
Es∼µ(s)

[(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V (s)

)2]
, resulting in

Lr(V, α, π) := (1− γk+1)Eµ [V (s)] + Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)]
(9)

+ ηV Es∼µ(s)
[(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V (s)

)2]
.

Note that in the penalty function we use some behavior policy πb instead of the optimal policy, since
the latter is unavailable. Adding such a regularization enables local duality in the primal parameter
space. Indeed, this can be easily verified by showing the positive definite of the Hessian at a local
solution.

Intuitively, one can also see that the regularization indeed provides guidance and preference to search
for the solution path. We name the regularization as path regularization, since it exploits the rewards
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in the sample path to regularize the solution path of value function V in the optimization procedure.
As a by-product, the regularization also provides the mechanism to utilize off-policy samples from
behavior policy πb. Moreover, with appropriate ηV , the optimal solution (V ∗, α∗, π∗) is not affected.
The main results of this subsection are summarized by the following theorem.

Theorem 4 (Property of path regularization) The local duality holds for Lr(V, α, π). De-
note (V ∗, α∗, π∗) as the solution to Bellman optimality equation, with some appropriate ηV ,
(V ∗, α∗, π∗) = argmaxα∈P(S),π∈P(A) argminV Lr(V, α, π).

The proof of the theorem is given in Appendix B.3.

4.3 STOCHASTIC DUAL ASCENT UPDATE

The remaining technical challenge is to optimize maxα∈P(S),π∈P(A) minV Lr(V, α, π), which
is the focus of this subsection. First define the regularized dual function `r(α, π) :=
minV Lr(V, α, π). We first show the unbiased gradient estimator of `r w.r.t. θρ = (θα, θπ), which
are parameters associated with α and π. Then, we incorporate the stochastic update rule to dual
ascent algorithm (Boyd et al., 2010), resulting in the dual actor-critic (Dual-AC ) algorithm.

The gradient estimators of the dual functions can be derived using chain rule and are provided below.

Theorem 5 The regularized dual function `r(α, π) has gradients estimators

∇θα`r (θα, θπ) = Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)
∇θα logα(s)

]
, (10)

∇θπ`r (θα, θπ) = Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)∑k
i=0∇θπ log π(a|s)

]
. (11)

Therefore, we can apply stochastic mirror descent algorithm with the gradient estimator given in
Theorem 5 to the regularized dual function `r(α, π). Since the dual variables are probabilistic
distributions, it is natural to use KL-divergence as the prox-mapping to characterize the geometry
in the family of parameters (Amari & Nagaoka, 1993; Nemirovski et al., 2009). Specifically, in the
t-th iteration,

θtρ = argminθρ −θρ
>ĝt−1ρ + 1

ζt
KL(ρθρ (s, a) ||ρθρt−1 (s, a)), (12)

where ĝt−1ρ = ∇̂θρ`r
(
θt−1α , θt−1π

)
denotes the stochastic gradients estimated through (10) and (11)

via given samples and KL(q(s, a)||p(s, a)) =
∫
q(s, a) log q(s,a)

p(s,a)dsda. Rather than just update V
once via the stochastic gradient of ∇V Lr(V, α, π) in each iteration for solving saddle-point prob-
lem (Nemirovski et al., 2009), which is only valid in convex-concave setting, Dual-AC requires
V t = argminV Lr(V, α

t−1, πt−1) in t-th iteration for estimating ∇θρ`r (θα, θπ). As we discussed,
such operation will keep the gradient estimator of dual variables unbiased.

In Algorithm 1, we update V t by solving optimization minV Lr(V, α
t−1, πt−1). In fact, the V func-

tion in the path-regularized Lagrangian Lr(V, α, π) plays two roles: i), inherited from the original
Lagrangian, the first two terms in regularized Lagrangian (9) push the V towards the value function
of the optimal policy with on-policy samples; ii), on the other hand, the path regularization enforces
V to be close to the value function of behavior policy πb with off-policy samples. Therefore, the
V function in the DAC algorithm can be understood as an interpolation between these two value
functions learned from both on and off policy samples.

4.4 PRACTICAL IMPLEMENTATION

In above, we have introduced path regularization for recovering local duality property of the
parametrized multi-step Lagrangian dual form and tailored stochastic mirror descent algorithm for
optimizing the regularized dual function. Here, we present several strategies for practical computa-
tion considerations.

Update rule of V t. In each iteration, we need to solve V t = argminθV Lr(V, α
t−1, πt−1), which

depends on πb and ηV , for estimating the gradient for dual variables. In fact, the closer πb to π∗ is,
the smaller Es∼µ(s)

[(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V ∗(s)

)2]
will be. Therefore, we can set ηV to be

large for better local convexity and faster convergence. Intuitively, the πt−1 is approaching to π∗ as

5



Under review as a conference paper at ICLR 2018

Algorithm 1 Dual Actor-Critic (Dual-AC )

1: Initialize θ0V , θ0αand θ0π randomly, set β ∈ [ 12 , 1].
2: for episode t = 1, . . . , T do
3: Start from s ∼ αt−1(s), collect samples {τl}ml=1 follows behavior policy πt−1.
4: Update θtV = argminθV L̂r(V, α

t−1, πt−1) by SGD based on {τl}ml=1.
5: Update α̃t(s) according to closed-form (14).
6: Decay the stepsize ζt in rate O

(
1/tβ

)
.

7: Compute the stochastic gradients for θπ following (11).
8: Update θtπ according to the exact prox-mapping (16) or the approximate closed-form (17).
9: end for

the algorithm iterates. Therefore, we can exploit the policy obtained in previous iteration, i.e., πt−1,
as the behavior policy. The experience replay can also be used.

Furthermore, notice the L(V, αt−1, πt−1) is a expectation of functions of V , we will use stochastic
gradient descent algorithm for the subproblem. Other efficient optimization algorithms can be used
too. Specifically, the unbiased gradient estimator for∇θV L(V, αt−1, πt−1) is

∇θV Lr(V, αt−1, πt−1) = (1− γk+1)Eµ [∇θV V (s)] + Eπα
[
∇θV δ

(
{si, ai}ki=0 , sk+1

)]
(13)

−2ηV Eπbµ
[(∑∞

i=0 γ
iR(si, ai)− V (s)

)
∇θV V (s)

]
.

We can use k-step Monte Carlo approximation for Eπbµ
[∑∞

i=0 γ
iR(si, ai)

]
in the gradient estimator.

As k is large enough, the truncate error is negligible (Sutton & Barto, 1998). We will iterate via
θt,iV = θt,i−1V + κi∇̂θt,i−1

V
Lr(V, α

t−1, πt−1) until converges.

Update rule of αt. In practice, we may face the situation that the initialization sampling distribution
is fixed, e.g., in MuJoCo tasks. Therefore, we cannot obtain samples start from αt(s) in each
iteration. We assume that ∃ηmu ∈ (0, 1], such that α(s) = (1−ηµ)β(s)+ηµµ(s) with β(s) ∈ P(S),
then, the term

Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)]
= Eπµ

[
(α̃(s) + ηµ) δ

(
{si, ai}ki=0 , sk+1

)]
where α̃(s) = (1 − ηµ)β(s)µ(s) . We emphasize that such assumption is weaker than the requirement
for popular policy gradient algorithms (e.g., Sutton et al. (1999); Silver et al. (2014)), where µ(s)
should be the stationary distribution. In fact, we can obtain the closed-form update for α̃ with the
square regularization introduced into the dual function. Specifically,

Theorem 6 In t-th iteration, given V t and πt−1,

argmax
α>0

Eµ(s)πt−1(s)

[
(α̃(s) + ηµ) δ

(
{si, ai}ki=0 , sk+1

)]
− ηα ‖α̃‖2µ (14)

=
1

ηα
max

(
0,Eπ

t−1
[
δ
(
{si, ai}ki=0 , sk+1

)])
. (15)

Then, we can update α̃t through (14) with Monte Carlo approximation of
Eπt−1

[
δ
(
{si, ai}ki=0 , sk+1

)]
, avoiding the parametrization of α̃. As we can see, the α̃t(s)

reweights the samples based on the temporal differences, providing an principled justification for
the heuristic prioritized reweighting trick in (Schaul et al., 2015).

Update rule of θtπ . The parameters for dual function, θρ, are updated by the prox-mapping opera-
tor (12) following the stochastic mirror descent algorithm for the regularized dual function. Specifi-
cally, in t-th iteration, given V t and αt, for θπ , the prox-mapping (12) reduces to

θtπ = argminθπ −θπ
>ĝtπ + 1

ζt
KL

(
πθπ (a|s)||πt−1(a|s)

)
, (16)

where ĝtπ = ∇̂θπ`r (θtα, θ
t
π) and KL

(
πθπ (a|s)||πt−1(a|s)

)
=
∫
αt(s)πθπ (a|s) log

πθπ (a|s)
π
θ
t−1
π

(a|s)dads.

Then, the update rule will become exactly the natural policy gradient (Kakade, 2002) with a prin-
cipled way to compute the “policy gradient” ĝtπ , which can be understood as the penalty version of
the trust region policy optimization (Schulman et al., 2015a).

Exactly solving the prox-mapping for θπ requires another optimization, which may be computational
cost. To further accelerate the prox-mapping, we approximate the KL-divergence with the second-
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order Taylor expansion, resulting an approximate closed-form update as

θtπ ≈ argmin
θπ

{
−θπ>ĝtπ +

1

2

∥∥θπ − θt−1π

∥∥2
Ft

}
= θt−1π + ζtF

−1
t ĝtπ (17)

where Ft := Eαtπt−1

[
∇2 log πθt−1

π

]
denotes the Fisher information matrix. Empirically, we may

normalize the gradient by its norm
√
gtπF

−1
t gtπ (Rajeswaran et al., 2017) for better performances.

In sum, combining these practical tricks to the stochastic mirror descent update, we obtain the prac-
tical dual actor-critic in Algorithm 1.

5 RELATED WORK

The dual actor-critic algorithm includes both the learning of optimal value function and optimal
policy in a unified framework based on the duality of the linear programming (LP) representation of
Bellman optimality equation. The linear programming representation of Bellman optimality equa-
tion and its duality have been utilized for (approximate) planning problem (de Farias & Roy, 2004;
Wang et al., 2008; Pazis & Parr, 2011; O’Donoghue et al., 2011; Malek et al., 2014; Cogill, 2015), in
which the transition probability of the MDP is known and the value function or policy are in tabular
form. Chen & Wang (2016); Wang (2017) apply stochastic first-order algorithms (Nemirovski et al.,
2009) for the one-step Lagrangian of the LP problem in reinforcement learning setting. However,
as we discussed in Section 3, their algorithm is restricted to tabular parametrization and are not
applicable to MDPs with large or continuous state/action spaces.

The duality view has also been exploited in (Neu et al., 2017). Their algorithm is based on the
duality of entropy-regularized Bellman equation (Todorov, 2007; Rubin et al., 2012; Fox et al.,
2015; Haarnoja et al., 2017; Nachum et al., 2017), rather than the exact Bellman optimality equation
used in our work. Meanwhile, their algorithm is only derived and tested in tabular form.

Our dual actor-critic algorithm can be understood as a nontrivial extension of the (approximate) dual
gradient method (Bertsekas, 1999, Chapter 6.3) using stochastic gradient and Bregman divergence,
which essentially parallels the view of (approximate) stochastic mirror descent algorithm (Ne-
mirovski et al., 2009) in the primal space. As a result, the algorithm converges with diminishing
stepsizes and decaying errors from solving subproblems.

Particularly, the update rules of α and π in the dual actor-critic are related to several existing algo-
rithms. As we see in the update of α, the algorithm reweighs the samples which are not fitted well.
This is related to the heuristic prioritized experience replay Schaul et al. (2015). For the update in π,
the proposed algorithm bears some similarities with trust region poicy gradient (TRPO) Schulman
et al. (2015a) and natural policy gradient (NPR) Kakade (2002); Rajeswaran et al. (2017). Indeed,
TRPO and NPR solve the same prox-mapping but are derived from different perspectives. We em-
phasize that although the updating rules share some resemblance to several reinforcement learning
algorithms in the literature, they are purely originated from a stochastic dual ascent algorithm for
solving the two-play game derived from Bellman optimality equation.

6 EXPERIMENTS

We evaluated the dual actor-critic (Dual-AC ) algorithm on several continuous control environ-
ments from the OpenAI Gym (Brockman et al., 2016) with MuJoCo physics simulator (Todorov
et al., 2012). We compared Dual-AC with several representative actor-critic algorithms, including
trust region policy optimization (TRPO) (Schulman et al., 2015a) and proximal policy optimization
(PPO) (Schulman et al., 2017)1. We ran the algorithms with 5 random seeds and reported the av-
erage rewards with 50% confidence interval. Details of the tasks and setups of these experiments
including the policy/value function architectures and the hyperparameters values, are provided in
Appendix C.

1As discussed in (Henderson et al., 2017), different implementations of TRPO can provide different perfor-
mances. For a fair comparison, we use the one from https://github.com/joschu/modular rl reported to have
achieved the best scores in (Henderson et al., 2017).
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6.1 ABLATION STUDY

To justify our analysis in identifying the sources of instability in directly optimizing the parametrized
one-step Lagrangian duality and the effect of the corresponding components in the dual actor-critic
algorithm, we perform comprehensive Ablation study in InvertedDoublePendulum-v1 environment.

We conducted comparison between the Dual-AC and its variants, including Dual-AC w/o
multi-step, Dual-AC w/o path-regularization, Dual-AC w/o unbiased V , and the naive
Dual-AC , for demonstrating the three instability sources in Section 3, respectively.

Figure 1: Comparison between the Dual-
AC and its variants for justifying the anal-
ysis of the source of instability.

Specifically, Dual-AC w/o path-regularization re-
moves the path-regularization components; Dual-
AC w/o multi-step removes the multi-step exten-
sion and the path-regularization; Dual-AC w/o un-
biased V calculates the stochastic gradient with-
out achieving the convergence of inner optimiza-
tion on V ; and the naive Dual-AC is the one with-
out all components. The empirical performances on
InvertedDoublePendulum-v1 tasks are shown in Fig-
ure 1. The results are consistent with the analysis.
The naive Dual-AC performs the worst. The per-
formances of the Dual-AC found the optimal policy
which solves the problem much faster than the alter-
native variants. The Dual-AC w/o unbiased V con-
verges slower, showing its sample inefficiency caused
by the bias in gradient calculation. The Dual-AC w/o
multi-step and Dual-AC w/o path-regularization cannot converge to the optimal policy, indicating
the importance of the path-regularization in recovering the local duality. Meanwhile, the perfor-
mance of Dual-AC w/o multi-step is worse than Dual-AC w/o path-regularization, showing the bias
in one-step can be alleviated via multi-step trajectories.

6.2 COMPARISON IN CONTINUOUS CONTROL TASKS

In this section, we evaluated the Dual-AC against TRPO and PPO across multiple tasks, including
the InvertedDoublePendulum-v1, Hopper-v1, HalfCheetah-v1, and Swimmer-v1. These tasks have
different dynamic properties, ranging from unstable to stable, therefore, provides sufficient bench-
mark for testing the algorithms. We reported the average rewards across 5 random seeded training
runs with 50% confidence interval during the training stage in Figure 2. We also reported the average
final rewards in Table 1.

The proposed Dual-AC achieves comparable results to the best algorithm among the competitors in
Swimmer. A significant gap is observed in other environments, i.e., Pendulum, InvertedDoublePen-
dulum, Hopper and HalfCheetah. These results demonstrate the proposed Dual-AC is a competitive
RL algorithm which can handle varies of RL tasks with different dynamic properties.

Table 1: The average final performances of the policies learned from Dual-AC and the competitors.

Environment Dual-AC PPO TRPO
Pendulum −155.45 −266.98 −245.11

InvertedDoublePendulum 8599.47 1776.26 3070.96
Swimmer 234.56 223.13 232.89
Hopper 2983.79 2376.15 2483.57

HalfCheetah 3041.47 2249.10 2347.19

A particularly notable case is the InvertedDoublePendulum, where the Dual-AC substantially im-
prove the learning speed and sample efficiency comparing to the TRPO and PPO, showing that the
Dual-AC is preferable to the unstable dynamics. We conjecture this benefits might come from the
different meaning of V in our algorithm. In the unstable system, the failure will happen frequently,
resulting the collected data are far away from the optimal trajectories. Therefore, the policy improve-

8
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(a) Pendulum (b) InvertedDoublePendulum-v1

(a) Swimmer-v1 (b) Hopper-v1 (c) HalfCheetah-v1

Figure 2: The results of Dual-AC against TRPO and PPO baselines. Each plot shows average
reward during training across 5 random seeded runs, with 50% confidence interval. The x-axis is the
number of training iterations. The Dual-AC achieves comparable performances to he best algorithm
in TRPO and PPO in some tasks, but outperforms on more challenging tasks.

ment through the value function corresponding to current policy is slower, while in our algorithm,
we are fitting the optimal value function, so that promoting the sample efficiency.

7 CONCLUSION

In this paper, we revisited the linear program formulation of the Bellman optimality equation, whose
Lagrangian dual form yields a game-theoretic view for the roles of the actor and the dual critic. Al-
though such a framework for actor and dual critic allows them to be optimized for the same objective
function, parametering the actor and dual critic unfortunately induces instablity in optimization. We
analyze the sources of instability, which is corroborated by numerical experiments. We then pro-
pose Dual Actor-Critic , which exploits stochastic dual ascent algorithm for the path regularized,
multi-step bootstrapping two-player game, to bypass these issues. The algorithm achieves the state-
of-the-art performances on several MuJoco benchmarks.
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Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Brendan O’Donoghue, Yang Wang, and Stephen Boyd. Min-max approximate dynamic program-
ming. In Computer-Aided Control System Design (CACSD), 2011 IEEE International Symposium
on, pp. 424–431. IEEE, 2011.

Jason Pazis and Ronald Parr. Non-parametric approximate linear programming for mdps. In AAAI,
2011.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In Machine Learning:
ECML 2005, 16th European Conference on Machine Learning, Porto, Portugal, October 3-7,
2005, Proceedings, pp. 280–291. Springer, 2005.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Aravind Rajeswaran, Kendall Lowrey, Emanuel Todorov, and Sham Kakade. Towards generalization
and simplicity in continuous control. arXiv preprint arXiv:1703.02660, 2017.

Jonathan Rubin, Ohad Shamir, and Naftali Tishby. Trading value and information in mdps. Decision
Making with Imperfect Decision Makers, pp. 57–74, 2012.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, pp. 1889–1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3(1):
9–44, 1988.

R. S. Sutton, David McAllester, S. Singh, and Yishay Mansour. Policy gradient methods for rein-
forcement learning with function approximation. In S. A. Solla, T. K. Leen, and K.-R. Müller
(eds.), Advances in Neural Information Processing Systems 12, pp. 1057–1063, Cambridge, MA,
2000. MIT Press.

Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approximation. In NIPS, volume 99, pp. 1057–
1063, 1999.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

Emanuel Todorov. Linearly-solvable markov decision problems. In Advances in neural information
processing systems, pp. 1369–1376, 2007.

11



Under review as a conference paper at ICLR 2018

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026–
5033. IEEE, 2012.

Mengdi Wang. Randomized Linear Programming Solves the Discounted Markov Decision Problem
In Nearly-Linear Running Time. ArXiv e-prints, 2017.

Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Dual representations for dy-
namic programming. 2008.

C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford, May
1989. (To be reprinted by MIT Press.).

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

12



Appendix

A DETAILS OF THE PROOFS FOR SECTION 2

A.1 DUALITY OF BELLMAN OPTIMALITY EQUATION

Puterman (2014); Bertsekas et al. (1995) provide details in deriving the linear programming form of
the Bellman optimality equation. We provide a briefly proof here.

Proof We rewrite the linear programming 3 as
V ∗ = argmin

V>T V
Eµ [V (s)] . (18)

Recall the T is monotonic, i.e., if V > T V ⇒ T V > T 2V and V ∗ = T ∞V for arbitrary V , we
have for ∀V feasible, V > T V > T 2V > . . . > T ∞V = V ∗.

Theorem 1 (Optimal policy from occupancy)
∑
s,a∈S×A ρ

∗(s, a) = 1, and π∗(a|s) =
ρ∗(s,a)∑
a∈A ρ

∗(s,a) .

Proof For the optimal occupancy measure, it must satisfy∑
a∈A

ρ∗(s′, a) = γ
∑

s,a∈S×A
ρ∗(s, a)p(s′|s, a) + (1− γ)µ(s′), ∀s′ ∈ S

⇒ (1− γ)µ+
∑

s,a∈S×A
(γP − I)ρ∗(s, a) = 0,

where P denotes the transition distribution and I denotes a |S| × |SA| matrix where Iij = 1 if and
only if j ∈ [(i− 1) |A|+ 1, . . . , i |A|]. Multiply both sides with 1, due to µ and P are probabilities,
we have 〈1, ρ∗〉 = 1.

Without loss of generality, we assume there is only one best action in each state. Therefore, by the
KKT complementary conditions of (3), i.e.,

ρ(s, a)
(
R(s, a) + γEs′|s,a [V (s′)]− V (s)

)
= 0,

which implies ρ∗(s, a) 6= 0 if and only if a = a∗, therefore, the π∗ by normalization.

Theorem 2 The optimal policy π∗ and its corresponding value function V ∗ is the solution to the
following saddle problem

max
α∈P(S),π∈P(A)

min
V

L(V, α, π) := (1− γ)Es∼µ(s) [V (s)] +
∑

(s,a)∈S×A

α(s)π (a|s) ∆[V ](s, a)

where ∆[V ](s, a) = R(s, a) + γEs′|s,a[V (s′)]− V (s).

Proof Due to the strong duality of the optimization (3), we have

min
V

max
ρ(s,a)>0

(1− γ)Es∼µ(s) [V (s)] +
∑

(s,a)∈S×A

ρ(s, a)∆[V ](s, a)

= max
ρ(s,a)>0

min
V

(1− γ)Es∼µ(s) [V (s)] +
∑

(s,a)∈S×A

ρ(s, a)∆[V ](s, a).

Then, plugging the property of the optimum in Theorem 1, we achieve the final optimization (6).

A.2 CONTINUOUS STATE AND ACTION MDP EXTENSION

In this section, we extend the linear programming and its duality to continuous state and action
MDP. In general, the only weak duality holds for infinite constraints, i.e., P∗ > D∗. With a mild
assumption, we will recover the strong duality for continuous state and action MDP, and most of the
conclusions in discrete state and action MDP still holds.
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Specifically, without loss of generality, we consider the solvable MDP, i.e., the optimal policy,
π∗(a|s), exists. If ‖R(s, a)‖∞ 6 CR, ‖V ∗‖∞ 6 CR

1−γ . Moreover,

‖V ∗‖22,µ =

∫
(V ∗(s))

2
µ(s)ds =

∫ (
R(s, a) + γEs′|s,a [V ∗(s′)]

)2
π∗(a|s)µ(s)d(s, a)

6 2

∫
(R(s, a))

2
π∗(a|s)µ(s)ds+ 2γ2

∫ (
Es′|s,a [V ∗(s′)]

)2
π∗(a|s)µ(s)ds

6 2 max
a∈A
‖R(s, a)‖2µ + 2γ2

∫ (∫
P ∗(s′|s)µ(s)ds

)
(V ∗(s′))

2
ds′

6 2 max
a∈A
‖R(s, a)‖2µ + 2γ2 ‖V ∗(s′)‖2∞

∫ ∫
P ∗(s′|s)µ(s)dsds′

6 2 max
a∈A
‖R(s, a)‖2µ + 2γ2 ‖V ∗(s′)‖2∞ ,∥∥V ∗ − γEs′|s,a [V (s′)]

∥∥2
µπb

6 2 ‖V ∗‖2µ + 2γ2
∥∥Es′|s,a [V ∗(s′)]

∥∥2
µπb

6 2 ‖V ∗‖2µ + 2γ2 ‖V ∗(s′)‖2∞ ,

for some πb ∈ P that πb(a|s) > 0 for ∀ (s, a) ∈ S × A. Therefore, with the assumption that
‖R(s, a)‖2µ 6 CµR,∀a ∈ A, we haveR(s, a) ∈ L2

µπb
(S ×A) and V ∗(s′) ∈ L2

µ(S). The constraints
in the primal form of linear programming can be written as

(I − γP)V −R �L2
µπb

0,

where I − γP : L2
µ(S) → L2

µπb
(S × A) without any effect on the optimality. For simplicity, we

denote� as�L2
µπb

and 〈f, g〉 =
∫
f(s, a)g(s, a)µ(s)πb(a|s)dsda. Apply the Lagrangian multiplier

for constraints in ordered Banach space in Burger (2003), we have
P∗ = min

V ∈L
max
%�0

(1− γ)Eµ [V (s)]− 〈%, (I − γP)V −R〉. (19)

The solution (V ∗, %∗) also satisfies the KKT conditions,

(1− γ)1− (I − γP)
>
%∗ = 0, (20)
%∗ � 0, (21)

(I − γP)V ∗ −R � 0, (22)
〈%∗, (I − γP)V ∗ −R〉 = 0. (23)

where > denotes the conjugate operation. By the KKT condition, we have〈
1, (1− γ)1− (I − γP)

>
%∗
〉

= 0⇒ 〈1, %〉 = 1. (24)

The strongly duality also holds, i.e.,
P∗ = D∗ := max

%�0
〈R(s, a), %(s, a)〉 (25)

s.t. (1− γ)1− (I − γP)
>
% = 0 (26)

Proof We compute the duality gap
(1− γ)〈1, V ∗〉 − 〈R, %∗〉

= 〈%∗, (I − γP)V ∗〉 − 〈R, %∗〉
= 〈%∗, (I − γP)V ∗ −R〉 = 0,

which shows the strongly duality holds.

B DETAILS OF THE PROOFS FOR SECTION 4

B.1 COMPETITION IN MULTI-STEP SETTING

Once we establish the k-step Bellman optimality equation (7), it is easy to derive the λ-Bellman
optimality equation, i.e.,

V ∗(s) = max
π∈P

(1− λ)

∞∑
k=0

λkEπ
[

k∑
i=0

γiR(si, ai) + γk+1V ∗(sk+1)

]
:= (TλV ∗)(s). (27)
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Proof Denote the optimal policy as π∗(a|s), we have

V ∗(s) = Eπ
∗

{st}i=0|s

[
k∑
i=0

γiR(si, ai)

]
+ γk+1Eπ

∗

sk+1|s [V ∗(sk+1)] ,

holds for arbitrary ∀k ∈ N. Then, we conduct k ∼ Geo(λ) and take expectation over the countable
infinite many equation, resulting

V ∗(s) = (1− λ)

∞∑
k=0

λkEπ
∗

[
k∑
i=0

γiR(si, ai) + γk+1V ∗(sk+1)

]

= max
π∈P

(1− λ)

∞∑
k=0

λkEπ
[

k∑
i=0

γiR(si, ai) + γk+1V ∗(sk+1)

]

Next, we investigate the equivalent optimization form of the k-step and λ-Bellman optimality equa-
tion, which requires the following monotonic property of Tk and Tλ.

Lemma 7 Both Tk and Tλ are monotonic.

Proof Assume U and V are the value functions corresponding to π1 and π2, and U > V , i.e.,
U(s) > V (s), ∀s ∈ S, apply the operator Tk on U and V , we have

(TkU) (s) = max
π∈P

Eπ{si}ki=1|s

[
k∑
i=0

γiR(si, ai)

]
+ γk+1Eπsk+1|s [U(sk+1)] ,

(TkV ) (s) = max
π∈P

Eπ{si}ki=1|s

[
k∑
i=0

γiR(si, ai)

]
+ γk+1Eπsk+1|s [V (sk+1)] .

Due to U > V , we have Eπsk+1|s [U(sk+1)] > Eπsk+1|s [V (sk+1)], ∀π ∈ P , which leads to the first
conclusion, TkU > TkV .

Since Tλ = (1− λ)
∑∞
k=1 Tk = Ek∼Geo(λ) [Tk], therefore, Tλ is also monotonic.

With the monotonicity of Tk and Tλ, we can rewrite the V ∗ as the solution to an optimization,

Theorem 8 The optimal value function V ∗ is the solution to the optimization

V ∗ = argmin
V>TkV

(
1− γk+1

)
Es∼µ(s) [V (s)] , (28)

where µ(s) is an arbitrary distribution over S.

Proof Recall the Tk is monotonic, i.e., V > TkV ⇒ TkV > T 2
k V and V ∗ = T ∞k V for arbitrary

V , we have for ∀V , V > TkV > T 2
k V > . . . > T ∞k V = V ∗, where the last equality comes

from the Banach fixed point theorem Puterman (2014). Similarly, we can also show that ∀V ,
V > T ∞λ V = V ∗. By combining these two inequalities, we achieve the optimization.

We rewrite the optimization as

min
V

(1− γk+1)Es∼µ(s) [V (s)] (29)

s.t. V (s) > R(s, a) + max
π∈P

Eπ{si}k+1
i=1 |s

[
k∑
i=1

γiR(si, ai) + γk+1V (sk+1)

]
,

(s, a) ∈ S ×A,
We emphasize that this optimization is no longer linear programming since the existence of max-
operator over distribution space in the constraints. However, Theorem 1 still holds for the dual
variables in (32).
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Proof Denote the optimal policy as π̃∗V = argmaxπ∈P Eπ{si}k+1
i=1 |s

[∑k
i=1 γ

iR(si, ai) + γk+1V (sk+1)
]
,

the KKT condition of the optimization (29) can be written as(
1− γk+1

)
µ(s′) + γk+1

∑
{si,ai}ki=0

p(s′|sk, ak)

k−1∏
i=0

p(si+1|si, ai)
k∏
i=1

π̃∗V (ai|si)ρ∗(s0, a0)

=
∑

a0,{si,ai}ki=1

k∏
i=0

p(si+1|si, ai)ρ∗(s′, a)

k∏
i=1

π̃∗V (ai|si).

Denote Pπk (sk+1|s, a) =
∑
{si,ai}ki=1

p(sk+1|sk, ak)
∏k−1
i=0 p(si+1|si, ai)

∏k
i=1 π(ai|si), we sim-

plify the condition, i.e.,(
1− γk+1

)
µ(s′) + γk+1

∑
s,a

P
π̃∗V
k (s′|s, a)ρ∗(s, a) =

∑
a

ρ∗(s′, a).

Due to the Pπ
∗
V

k (s′|s, a) is a conditional probability for ∀V , with similar argument in Theorem 1,
we have

∑
s,a ρ

∗(s, a) = 1.

By the KKT complementary condition, the primal and dual solutions, i.e., V ∗ and ρ∗, satisfy

ρ∗(s, a)

(
R(s, a) + Eπ̃

∗
V ∗

{si}k+1
i=1 |s

[
k∑
i=1

γiR(si, ai) + γk+1V ∗(sk+1)

]
− V ∗(s)

)
= 0. (30)

Recall V ∗ denotes the value function of the optimal policy, then, based on the definition, π̃∗V ∗ = π∗

which denotes the optimal policy. Then, the condition (30) implies ρ(s, a) 6= 0 if and only if a = a∗,
therefore, we can decompose ρ∗(s, a) = α∗(s)π∗(a|s).

The corresponding Lagrangian of optimization (29) is

min
V

max
ρ(s,a)>0

Lk(V, ρ) = (1− γk+1)Eµ [V (s)] +
∑

(s,a)∈S×A

ρ(s, a)

(
max
π∈P

∆π
k [V ](s, a)

)
, (31)

where ∆π
k [V ](s, a) = R(s, a) + Eπ{st}k+1

i=1 |s

[∑k
i=1 γ

iR(si, ai) + γk+1V (sk+1)
]
− V (s).

We further simplify the optimization. Since the dual variables are positive, we have

min
V

max
ρ(s,a)>0,π∈P

Lk(V, ρ) = (1− γk+1)Eµ [V (s)] +
∑

(s,a)∈S×A

ρ(s, a) (∆π
k [V ](s, a)) . (32)

After clarifying these properties of the optimization corresponding to the multi-step Bellman opti-
mality equation, we are ready to prove the Theorem 3.

Theorem 3 The optimal policy π∗ and its corresponding value function V ∗ is the solution to the
following saddle point problem

max
α∈P(S),π∈P(A)

min
V

Lk(V, α, π) := (1− γk+1)Eµ [V (s)] (8)

+
∑

{si,ai}ki=0,sk+1

α(s0)

k∏
i=0

π(ai|si)p(si+1|si, ai)δ[V ]
(
{si, ai}ki=0 , sk+1

)
where δ[V ]

(
{si, ai}ki=0 , sk+1

)
=
∑k
i=0 γ

iR(si, ai) + γk+1V (sk+1)− V (s).

Proof By Theorem 1 in multi-step setting, we can decompose ρ(s, a) = α(s)π(a|s) without any
loss. Plugging such decomposition into the Lagrangian 32 and realizing the equivalence among
the optimal policies, we arrive the optimization as minV maxα∈P(S),π∈P(A) Lk(V, α, π). Then,
because of the strong duality as we proved in Lemma 9, we can switch min and max operators in
optimization 8 without any loss.
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Lemma 9 The strong duality holds in optimization (8).

Proof Specifically, for every α ∈ P(S), π ∈ P(A),

`(α, π) = min
V

Lk(V, α, π) 6 min
V

{
Lk(V, α, π); δ[V ]

(
{si, ai}ki=0 , sk+1

)
6 0
}

6 min
V

{
(1− γk+1)Es∼µ(s) [V (s)] ,

s.t. δ[V ]
(
{si, ai}ki=0 , sk+1

)
6 0

}
= (1− γk+1)Es∼µ(s) [V ∗(s)] .

On the other hand, since Lk(V, α∗, π∗) is convex w.r.t. V , we have V ∗ ∈ argminV Lk(V, α∗, π∗),
by checking the first-order optimality. Therefore, we have

max
α∈P(S),π∈P(A)

`(α, π) = max
α∈P(S),π∈P(A),V ∈argminV Lk(V,α,π)

Lk(V, α, π)

> L(V ∗, α∗, π∗) = (1− γk+1)Es∼µ(s) [V ∗(s)] .

Combine these two conditions, we achieve the strong duality even without convex-concave property

(1− γk+1)Es∼µ(s) [V ∗(s)] 6 max
α∈P(S),π∈P(A)

`(α, π) 6 (1− γk+1)Es∼µ(s) [V ∗(s)] .

B.2 THE COMPOSITION IN APPLYING AUGMENTED LAGRANGIAN METHOD

We consider the one-step Lagrangian duality first. Following the vanilla augmented Lagrangian
method, one can achieve the dual function as

`(α, π) = min
V

(1− γ)Es∼µ(s) [V (s)] +
∑

(s,a)∈S×A

Pc (∆[V ](s, a), α(s)π(a|s)) ,

where

Pc (∆[V ](s, a), α(s)π(a|s)) =
1

2c

{
[max (0, α(s)π(a|s) + c∆[V ](s, a))]

2 − α2(s)π2(a|s)
}
.

The computation of Pc is in general intractable due to the composition of max and the condition ex-
pectation in ∆[V ](s, a), which makes the optimization for augmented Lagrangian method difficult.

For the multi-step Lagrangian duality, the objective will become even more difficult due to con-
straints are on distribution family P(S) and P(A), rather than S ×A.

B.3 PATH REGULARIZATION

Theorem 4 The local duality holds for Lr(V, α, π). Denote (V ∗, α∗, π∗) as the
solution to Bellman optimality equation, with some appropriate ηV , (V ∗, α∗, π∗) =
argmaxα∈P(S),π∈P(A) argminV Lr(V, α, π).

Proof The local duality can be verified by checking the Hessian of Lr(θV ∗). We apply the local
duality theorem (Luenberger & Ye, 2015)[Chapter 14]. Suppose (Ṽ ∗, α̃∗, π̃∗) is a local solution
to minV maxα∈P(S),π∈P(A) Lr(V, α, π), then, maxα∈P(S),π∈P(A) minV Lr(V, α, π) has a local
solution Ṽ ∗ with corresponding α̃∗, π̃∗.

Next, we show that with some appropriate ηV , the path regularization does not change the optimum.
Let Uπ(s) = Eπ

[∑∞
i=0 γ

iR(si, ai)|s
]
, and thus, Uπ

∗
= V ∗. We first show that for ∀πb ∈ P(A),
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we have

E
[(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V ∗(s)

)2]
= E

[(
Uπb (s)− Uπ∗(s) + Uπ

∗
(s)− V ∗(s)

)2]
= E

[(
Uπb(s)− Uπ∗(s)

)2]
6 E

[∫ ( ∞∏
i=0

πb(ai|si)−
∞∏
i=0

π∗(ai|si)

) ∞∏
i=0

p(si+1|si, ai)

( ∞∑
i=1

γiR(si, ai)

)
d {si, ai}∞i=0

]
6

∥∥∑∞
i=1 γ

iR(si, ai)
∥∥
∞ ‖(

∏∞
i=0 πb(ai|si)−

∏∞
i=0 π

∗(ai|si))
∏∞
i=0 p(si+1|si, ai)‖1

6 2
∥∥∑∞

i=1 γ
iR(si, ai)

∥∥
∞ 6 2

1−γ ‖R(s, a)‖∞
where the last inequality comes from the fact that πb(ai|si)p(si+1|si, ai) is distribution.

We then rewrite the optimization minV maxα∈P(S),π∈P(A) Lr(V, α, π) as
min
V

max
α∈P(S),π∈P(A)

Lk(V, α, π)

s.t. V ∈ Ωε,πb :=
{
V : Es∼µ(s)

[(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V (s)

)2]
6 ε
}
,

due to the well-known one-to-one correspondence between regularization ηV and εNesterov (2005).
If we set ηV with appropriate value so that its corresponding ε(ηV ) > 2

1−γ ‖R(s, a)‖∞, we will have
V ∗ ∈ Ωε(ηV ), which means adding such constraint, or equivalently, adding the path regularization,
does not affect the optimality. Combine with the local duality, we achieve the conclusion.

In fact, based on the proof, the closer πb to π∗ is, the smaller
Es∼µ(s)

[(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V ∗(s)

)2]
will be. Therefore, we can set ηV bigger for

better local convexity, which resulting faster convergence.

B.4 STOCHASTIC DUAL ASCENT UPDATE

Corollary 5 The regularized dual function `r(α, π) has gradients estimators

∇θα`r (θα, θπ) = Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)
∇θα logα(s)

]
,

∇θπ`r (θα, θπ) = Eπα
[
δ
(
{si, ai}ki=0 , sk+1

)∑k
i=0∇θπ log π(a|s)

]
.

Proof We mainly focus on deriving∇θπ`r (θα, θπ). The derivation of ∇θα`r (θα, θπ) is similar.

By chain rule, we have
∇θπ`r (θα, θπ) =

(
∇V Lk(V (α, θ), α, θ)− 2ηV

(
Eπb

[∑∞
i=0 γ

iR(si, ai)
]
− V ∗(s)

))︸ ︷︷ ︸
0

∇θπV (α, θ)

+Eπα

[
δ
(
{si, ai}ki=0 , sk+1

) k∑
i=0

∇θπ log π(a|s)

]

= Eπα

[
δ
(
{si, ai}ki=0 , sk+1

) k∑
i=0

∇θπ log π(a|s)

]
.

The first term in RHS equals to zero due to the first-order optimality condition for
V (α, π) = argminV Lr(V, α, π).
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B.5 PRACTICAL ALGORITHM

Theorem 6 In t-th iteration, given V t and πt−1,

argmax
α>0

Eµ(s)πt−1(s)

[
(α̃(s) + ηµ) δ

(
{si, ai}ki=0 , sk+1

)]
− ηα ‖α̃‖2µ

=
1

ηα
max

(
0,Eπ

t−1
[
δ
(
{si, ai}ki=0 , sk+1

)])
.

Proof Recall the optimization w.r.t. α̃ is maxα̃>0 Eµ
[
α̃(s)Eπ

[
δ
(
{si, ai}ki=0 , sk+1

)]
− ηαα̃2(s)

]
,

denote τ(s) as the dual variables of the optimization, we have the KKT condition as
ηαα̃ = τ + Eπ

[
δ
(
{si, ai}ki=0 , sk+1

)]
,

τ(s)α̃(s) = 0,

α̃ > 0,

τ > 0,

⇒


α̃ =

τ+Eπ[δ({si,ai}ki=0,sk+1)]
ηα

,

τ(s)
(
τ(s) + Eπ

[
δ
(
{si, ai}ki=0 , sk+1

)])
= 0,

α̃ > 0,

τ > 0,

⇒ τ(s) =

−E
π
[
δ
(
{si, ai}ki=0 , sk+1

)]
Eπ
[
δ
(
{si, ai}ki=0 , sk+1

)]
< 0

0 Eπ
[
δ
(
{si, ai}ki=0 , sk+1

)]
> 0

.

Therefore, in t-th iteration, α̃t(s) = 1
ηα

max
(

0,Eπ
[
δ
(
{si, ai}ki=0 , sk+1

)])
.

C EXPERIMENT DETAILS

Policy and value function parametrization. For fairness, we use the same parametrization across
all the algorithms. The parametrization of policy and value functions are largely based on the recent
paper by (Rajeswaran et al., 2017), which shows the natural policy gradient with the RBF neural
network achieves the state-of-the-art performances of TRPO on MuJoCo. For the policy distribution,
we parametrize it as πθπ (a|s) = N (µθπ (s),Σθπ ), where µθπ (s) is a two-layer neural nets with the
random features of RBF kernel as the hidden layer and the Σθπ is a diagonal matrix. The RBF
kernel bandwidth is chosen via median trick (Dai et al., 2014; Rajeswaran et al., 2017). The same
as (Rajeswaran et al., 2017), we use 100 hidden nodes in Pendulum, InvertedDoublePendulum,
Swimmer, Hopper, and use 500 hidden nodes in HalfCheetah. Since the TRPO and PPO uses
GAE (Schulman et al., 2015b) with linear baseline as V , we also use the parametrization for V
in our algorithm. However, the Dual-AC can adopt arbitrary function approximator without any
change.

Training details. We report the hyperparameters for each algorithms here. We use the γ = 0.995
for all the algorithms. We keep constant stepsize and tuned for TRPO, PPO and Dual-AC in
{0.001, 0.01, 0.1}. The batchsize are set to be 52 trajectories for comparison to the competitors
in Section 6.2. For the Ablation study, we set batchsize to be 24 trajectories for accelerating. The
CG damping parameter for TRPO is set to be 10−4. We iterate 20 steps for the Fisher information
matrix computation. For the ηV , ηµ, 1

ηα
in Dual-AC from {0.001, 0.01, 0.1, 1}.
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