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ABSTRACT

Adversarial discriminative domain adaptation (ADDA) is an efficient framework
for unsupervised domain adaptation, where the source and target domains are as-
sumed to have the same classes, but no labels are available for the target domain.
While ADDA has already achieved better training efficiency and competitive ac-
curacy in comparison to other adversarial based methods, we investigate whether
we can improve performance by incorporating task knowledge into the adversar-
ial loss functions. We achieve this by extending the discriminator output over the
source classes and leverage on the distribution over the source encoder posteriors,
which is fixed during adversarial training, in order to align a shared encoder dis-
tribution to the source domain. The shared encoder can receive a proportion of
examples from both the source and target datasets, in order to smooth the learned
distribution and improve its convergence properties during adversarial training.
We additionally consider how the extended discriminator can be regularized in
order to further improve performance, by treating the discriminator as a denoising
autoencoder and corrupting its input. Our final design employs maximum mean
discrepancy and reconstruction-based loss functions for adversarial training. We
validate our framework on standard datasets like MNIST, USPS, SVHN, MNIST-
M and Office-31. Our results on all datasets show that our proposal is both simple
and efficient, as it competes or outperforms the state-of-the-art in unsupervised
domain adaptation, whilst offering lower complexity than other recent adversarial
methods such as DIFA and CoGAN.

1 INTRODUCTION

The long-standing goal in visual learning is to generalize the learned knowledge from a source
domain to new domains, even without the presence of labels in the target domains. Significant
strides have been made towards this goal in the last few years, mainly due to proposals based on
multilayered convolutional neural networks that have shown cross-domain generalizations and fast
learning of new tasks by fine-tuning on limited subsets of labelled data.

Unsupervised domain adaptation directly aims at improving the generalization capability between a
labelled source domain and an unlabelled target domain. Deep domain adaptation methods can gen-
erally be categorized as either being discrepancy based or adversarial based, with the common end
goal of minimizing the difference between the source and target distributions. Adversarial methods
in particular have become increasingly popular due to their simplicity in training and success in min-
imizing the domain shift. In this paper we focus on the recently proposed adversarial discriminative
domain adaptation (ADDA) (Tzeng et al., 2017), which is related to generative adversarial learning
and uses the GAN (Goodfellow et al., 2014) objective to train on the target domain adversarially
until it is aligned to the source domain. Whilst ADDA only pretrains the source encoder with source
dataset labels, in this paper, we improve on the ADDA framework by first extending the discrim-
inator output over the source classes, in order to additionally incorporate task knowledge into the
adversarial loss functions. In adversarial training, we leverage on the fixed distribution over source
encoder posteriors, and propose a maximum mean discrepancy (MMD) (Gretton et al., 2012) and
reconstruction-based loss function for training a shared encoder and discriminator respectively. We
additionally provide an analysis of how our method substantially improves over a base discrimina-
tive variant of semi-supervised GANs (Odena, 2016; Salimans et al., 2016). Finally, we evaluate
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on standard domain adaptation tasks with digits and Office-31 datasets on which we surpass the
performance of ADDA by up to 17% and remain competitive to other recent proposals.

2 RELATED WORK

Discrepancy based methods.Discrepancy based methods typically minimize the maximum mean
discrepancy (MMD) (Gretton et al., 2012) loss for this purpose. For example,Tzeng et al.(2014)
proposed the deep domain confusion (DDC) method which applied a joint classification and linear
MMD loss on an intermediate adaptation layer.Long et al.(2015) extended on DDC by adding
multiple task-specific adaptation layers and minimizing the domain shift with a multiple-kernel
maximum mean discrepancy. Rather than matching the marginal distributions, the joint adapta-
tion network (JAN) (Long et al., 2016) aligns the domain shift between the joint distributions of
input features and output labels. The DSN proposed byBousmalis et al.(2016) embeds the MMD
or adversarial loss as similarity losses in an overarching system of private and shared encoders. No-
tably, the MMD is commonly used with a Gaussian kernel, which from the Taylor expansion enables
matching between all moments of distributions, albeit with some cost in processing. Alternatively,
CORAL (Sun & Saenko, 2016) matches only the mean and covariance between distributions whilst
still maintaining competitive performance. More recently,Haeusser et al.(2017) proposed associa-
tive domain adaptation that replaces the MMD with an efficient discrepancy-based alternative that
reinforces association between source and target embeddings.

Adversarial based methods.Adversarial based methods opt for an adversarial loss to minimize the
domain shift. The domain adversarial neural network (DANN) (Ganin et al., 2016) first introduced
a gradient reversal layer that reversed the gradients of a binary classifier predicting the domain in
order to train for domain confusion. Other recent proposals (Liu & Tuzel, 2016; Bousmalis et al.,
2017; Taigman et al., 2016) have explored generative models such as GANs (Goodfellow et al.,
2014; Mirza & Osindero, 2014) to learn from synthetic source and target data. These approaches
typically train two GANs on the source and target input data with tied parameters. In order to
circumvent the need to generate images, ADDA (Tzeng et al., 2017) was recently proposed as an
adversarial framework for directly minimizing the distance between the source and target encoded
representations. A discriminator and target encoder are iteratively optimized in a two-player game
akin to the original GAN setting, where the goal of the discriminator is to distinguish the target
representation from the source domain and the goal of target encoder is to confuse the discriminator.
This implicitly aligns the target distribution to the (fixed) source distribution. The simplicity and
power of ADDA has been demonstrated in visual adaptation tasks like MNIST, USPS and SVHN
digits datasets.Volpi et al.(2017) further build on ADDA by adding back in a generative component
that generates augmented features for more rigorous training.

3 IMPROVING ADVERSARIAL ADAPTATION

We illustrate the framework for improving unsupervised adversarial discriminative domain adapta-
tion in Figure1. Let XS = {(xi

s, y
i
s)}

Ns
i=0 represent the set of source image and label pairs, where

(xs, ys) ∼ DS , XT = {(xi
t)}

Nt
i=0 represent the set of unlabeled target images,xt ∼ DT and

XB = X̂S ∪ XT represent the union of the two sets withxb ∼ DB , whereX̂S ⊆ XS . In the case
thatX̂S = ∅, thenDB = DT andXB = XT . LetEs(xs; θs) represent the source encoder function,
parameterized byθs which maps an imagexs to the encoder outpuths, where(hs, ys) ∼ HS .
Likewise, letEb(xb; θb) represent the shared encoder function, parameterized byθb which maps an
imagexb to the encoder outputhb, wherehb ∼ HB . In addition,Cs represents a classifier function
that maps the encoder outputh to class probabilitiesp. In this paper, we only considerhs andhb as
representing the source and shared logits respectively and thereforeCs simply denotes the softmax
function on the logits. Finally, letEd(h; φd) represent an encoder mapping fromh to an intermedi-
ate representation, andCd represent a classifier function on said representation;Ed andCd jointly
constitute our discriminator mapping, which we refer to asD = Cd(Ed). Our method consists of
three steps, which involve learning the source mapping on the source dataset, adversarial training
to align the source and shared domains and finally inferring on the target dataset. The classifierCs

is fully interchangeable between the source encoderEs and the shared encoderEb. This means we
can embedCs into the adversarial training of the shared encoderEb and discriminatorD.
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Figure 1: Improved adversarial discriminative domain adaptation. The figure shows the best config-
uration for training and inference explored in the paper.

3.1 STEP 1: SUPERVISED TRAINING OF THE SOURCE ENCODER AND CLASSIFIER

Given that we have access to labels in the source domain, we first train the source encoderEs and
classifierCs on the source image and label pairs (xs, ys ∈ {1, ...,K}) in a supervised fashion, by
minimizing the standard cross entropy loss withK classes:

LS = −E(xs,ys)∼DS

K∑

k=1

1[k=ys] log Cs(Es(xs)) (1)

The source encoder parametersφs are now frozen, which fixes the distributionHS . This becomes
our reference distribution for adversarial training, analogous to the real image distribution in the
GAN setting, where our aim is now to align the shared distributionHB toHS by learning a suitable
shared encodingEb.

3.2 STEP 2: ADVERSARIAL TRAINING OF THE SHARED ENCODER

3.2.1 DISCRIMINATOR LOSS FUNCTION

We train a shared encoder adversarially by passing the source and shared encoder logits,hs and
hb, to a discriminatorD. The shared encoder and discriminator are trained alternately until the
discriminator is unable to distinguish between the source and shared domains. In doing so, we
implicitly align the shared encoder distribution to that of the source; i.e.,Eb(xb) ∼ HS . As the
source encoder has fixed parameters, we learn an asymmetric encoding with untied weights, which
is the standard setting in both ADDA (Tzeng et al., 2017) and GAN implementations (Goodfellow
et al., 2014; Mirza & Osindero, 2014). In addition, we can improve the convergence properties by
first initializing the shared encoder weights with the source encoder weights; i.e.,θt = θs.

We now consider how to train the shared encoder and discriminator adversarially. Rather than train-
ing the discriminator and encoder with the standard GAN loss formulations (i.e., training a logistic
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function on the discriminator by assigning labels 0 and 1 to the source and shared domains respec-
tively and training the generator with inverted labels (Goodfellow et al., 2014)), our approach is in-
spired by semi-supervised GANs (Odena, 2016; Salimans et al., 2016), where it has been found that
incorporating task knowledge into the discriminator can jointly improve classification performance
and quality of images produced by the generator. Under the discriminative adversarial framework,
we can equivalently incorporate task knowledge by replacing the discriminator logistic function with
a K + 1 multi-class classifier, whereCd simply denotes the softmax function on the discriminator
logits. As such, the discriminator outputq is a K + 1 dimensional vector representing the class
probabilities, in which the firstK dimensions represent the task-specific classesy ∈ {1, . . . ,K}
and the finalK + 1 dimension represents the ‘shared’ classy = K + 1, assigned to inputs from the
shared encoder. However, contrary to semi-supervised GANs, the discriminator inputs and outputs
now share common supports over theK task classes. For the source domain, we can leverage on
this fact by effectively modelling the discriminator as a denoising autoencoder (Vincent et al., 2008),
where we can jointly train the discriminator to reconstruct the source encoder logits and encourage
the discriminator to learn something more informative by corrupting its inputs. We refer to the
corruption process asN(h̃s|hs), which represents the conditional distribution over the corrupted
source encoder logits̃hs given the source encoder logitshs. Therefore, the first term of our discrim-
inator loss function is effectively a reconstruction loss, which we set as the cross entropy between
the transformed source encoder posteriorsp̂s = Cs(hs/T )||0 and source discriminator posteriors
qs (i.e., post-softmax), where|| denotes a concatentation operation andT is a temperature constant:

LD1 = −E(hs,ys)∼HS
Eh̃s∼N(h̃s|hs)(Cs(hs/T )||0 ∙ log (D(h̃s)))

= −E(hs,ys)∼HS
Eh̃s∼N(h̃s|hs)

K∑

k=1

p̂s,k log(qs,k)
(2)

Notably, we append a zero to the source encoder posteriors to represent theK + 1-th ‘shared’ class,
which maintains a valid probability distribution (sums to 1), whilst enforcing a zero probability that
the posteriors were generated by the shared encoder. We additionally soften the source encoder
posterior distribution by dividing the source encoder logitshs by temperatureT , in order to further
deviate from the discriminator learning an identity function. In this paper, the corruption processN
is simply configured as dropout on the encoder logits; it is worth noting that a keep probabilityz
greater than 0.5 generally maintains overlapping class supports between the encoder and discrimi-
nator posteriors.

We also apply dropout independently to the shared encoder logitshb, in order to symmetrize the
source and shared encoder inputs presented to the discriminator. However, we want the discriminator
to distinguish between the source and shared encoder logits. We train the discriminator to assign the
K +1-th class to the corrupted shared encoder logitsh̃s, such that they lie in an orthogonal space to
the source domain. In other words, the second term of our discriminator loss function for the shared
encoder logits is:

LD2 = −E(hb,yb)∼HB
Eh̃b∼N(h̃b|hb)

K+1∑

k=1

1[k=K+1] log(D(h̃b)) (3)

The discriminator loss functionLD is thus simply the sum of (2) and (3): LD = LD1 + LD2.

3.2.2 SHARED ENCODER LOSS FUNCTION

In order to train the shared encoder adversarially, we want the shared encoder to generate an output
that is representative of one of the firstK task-specific classes rather than theK+1-th ‘shared’ class
that it is assigned when training the discriminator. To achieve this, we leverage on the two source
posteriors,ps andqs, generated by the source encoder and discriminator respectively. Contrary to
supervised domain adaptation methods, there are no known source and shared pairwise correspon-
dences and we cannot formulate a paired test over the posteriors. However, we can formulate the
problem as a two-sample test by considering the distribution over shared discriminator posteriorsqb

compared to the distribution over the source encoder posteriors, where our null hypothesis is that
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the distributions are equal. We consider a set of shared posteriorsQB = {q1
b , . . . , qm

b } ∼ QB and
a set of source posteriorsPS = {p1

s, . . . , p
n
s } ∼ PS . Effectively, we want to minimize the distance

betweenPS andQB without performing any density estimation. To this end, we adopt the Maxi-
mum Mean Discrepancy (MMD) (Gretton et al., 2012) metric as a measure of distance between the
mean embeddings ofps andqb. For reproducing kernel Hilbert space (RKHS)H, function classF
= {f : ‖f‖ ≤ 1} and infinite dimensional feature mapφ : X → H the MMD can be expressed as:

DMMD = sup
f∈F ,‖f‖H≤1

|Eps∼PS
f(ps||0) − Eqb∼QB

f(qb)| = ‖Eps∼PS
φ(ps||0) − Eqb∼QB

φ(qb)‖H

(4)

We again append a 0 to the source encoder posteriors to represent the shared class probability, such
that both source and target posteriors areK + 1 dimensional prior to mapping toH. This zero
constraint on theK + 1-th class acts as a stronger prior upon which to learn the shared encoder;
as such, the source encoder posterior provides a more informative representation than the source
discriminator posterior. It is additionally worth noting that MMD employed in our proposal can be
interpreted as matching all moments between the source and shared posterior distributions, whereas
conventional feature matching (as inSalimans et al.(2016)) is only empirically matching the first
order moments (means) of the intermediate discriminator layer activations. The feature mapφ in (4)
corresponds to a PSD kernelk such thatk(x, y) = 〈φ(x), φ(y)〉H, which means we can rewrite (4)
in terms ofk. The loss function on our shared encoder that we wish to minimize can thus be written
as:

LB = DMMD
2 = Eps,p′s∼PS ,PS

k(ps||0, p′
s||0)−Eps,qb∼PS ,QB

k(ps||0, qb)+Eqb,q′b∼QB ,QB
k(qb, q

′
b)

(5)

In this paper we opt to use a linear combination ofr multiple RBF kernels over a range of standard
deviations, such thatk(x, y) =

∑
r exp{− 1

2σr
‖x − y‖2}, whereσr is the standard deviation of

ther-th RBF kernel. We find that the standard RBF kernel as above performs better in practice than
a generalized RBF kernel with a distribution based metric such as chi-squared distance or squared
Hellinger’s distance, although these are viable options. By introducing a linear combination over
varying bandwidths, we improve the generalization performance over different sample distributions.
This method of generalization with fixed kernels is commonly used both in generative models (Li
et al., 2015; Dziugaite et al., 2015) and other domain adaptation discrepancy based methods (Bous-
malis et al., 2016; Long et al., 2015). To ensure consistency, we fix the kernel combination for all
experiments. Specifically, after experimentation, we found that optimal performance for our frame-
work is achieved with a summation over five kernels, withσr = 10−r, r ∈ {0, . . . , 4}. Finally, we
note that, in order to improve the generalization in the context of GANs, recent work (Li et al., 2017;
Mroueh et al., 2017) has looked at kernel optimization by adversarially training the kernel with the
discriminator or critic, such that the kernel is maximally discriminative. While, we can also perform
this kernel optimization in the discriminative adversarial setting with multiple classes, we leave this
for future work.

3.3 STEP 3: INFERENCE ON THE TARGET DATASET

After training the shared encoder, we can now perform inference on the target dataset. However,
we have effectively trained two sets of logits on target examples; namely, the mapped shared en-
coder outputhb and the discriminator outputhd. In the optimal setting, where we have trained the
discriminator to equilibrium, we would expect the discriminator mapped source and shared distribu-
tions would be aligned - however, in practice we tend to gain 1-2% on test datasets by averaging the
K task components of the encoder and discriminator logits. Our final label predictionŷ is computed
as:

ŷ = arg max
j∈1,...,K

(hb + hd[1:K]) (6)
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(a) Base (b) Improved

Figure 2: (Best viewed in color) Computational graphs for a) our base discriminative variant to
semi-supervised GANs and b) our improved model for discriminative adversarial training. Each
node is represented with its modelled distribution. Blue nodes/arrows represents the source domain
components and green nodes/arrows represent the target/shared domain components. Nodes that are
not colored in are fixed during adversarial training and those that are colored in are trainable. Red
and black arrows represent the discriminator and encoder loss components respectively and their
arrow direction represents the direction of alignment for asymmetric losses.

3.4 COMPARISONS WITH DISCRIMINATIVE VARIANTS TO SEMI-SUPERVISED GANS

In order to substantiate the novelty in our proposal, Figure2 presents the computational graphs
during adversarial training for (a) a base discriminative variant to semi-supervised GANs and (b)
our improved model for discriminative adversarial training. Each node is displayed with the corre-
sponding distribution being modelled, withLS representing the source task label distribution and
K + 1 representing the fixed encoder label. The base method in (a) trains an encoder on target
examples fromDT only and learns the encoder and discriminator posterior distributionsPT ,QS and
QT respectively during adversarial training. The discriminator is trained by aligning the source and
target discriminator posteriors to their respective labels with cross entropy loss and the encoder is
trained to minimize a discrepancy-based loss between the source and target disciminator posteriors
(or intermediate discriminator layers). In our experiments, we adopt maximum mean discrepancy
for this loss, with kernels configured as in Section3.2.2.

On the other hand, our proposal in (b) trains a shared encoder on target and a subset of source
examples fromDB , where the additional source examples ensure thatPS andPB (andQS and
QB) have overlapping supports, in a similar manner to label smoothing (Salimans et al., 2016),
except the mapped source examples are now parameterized byθb. Importantly, we recognize that the
distribution of the source encoder posteriorsPS is fixed and only changes stochastically with mini-
batch; as such, we centralize our discriminator and encoder loss functions around this distribution.
This, along with the hard zero constraint on the source encoder posteriors for theK + 1-th class
probability, is key for stabilizing training of the shared encoder. For the discriminator lossLD,
aligning the source discriminator to the softened source encoder posteriors in our proposal enables
the discriminator to quickly learn inter-relationships between classes. For the encoder lossLB ,
QB is aligned to the fixedPS , which is favorable to the base method where both targetQT and
the referenceQS are changing with time. We note that we can provide an additional constraint by
maximizing a discrepancy loss betweenQS andQB when training the discriminator but we found
that, in practice, this did not improve results in our tests.

4 EXPERIMENTAL RESULTS

We present experimental results on the unsupervised domain adaptation task. In order to compare
with ADDA and other recently proposed methods, we experiment on four digits datasets of varying
sizes and difficulty: MNIST-M (Ganin et al., 2016), MNIST (LeCun et al., 1998), USPS and SVHN
(Netzer et al., 2011). We demonstrate substantial gain over ADDA and other recent methods, which
is evident on the more difficult domain adaptation tasks such as SVHN→ MNIST. We additionally

6



Under review as a conference paper at ICLR2019

Method SVHN→ MNIST USPS→ MNIST MNIST → USPS MNIST→ MNIST-M

Source only 0.644 0.597 0.754 0.705

DANN Ganin et al.(2016) 0.739 0.730 0.771 0.529
DDC Tzeng et al.(2014) 0.681 0.665 0.791 -

DSNBousmalis et al.(2016) 0.827 - - 0.832
DTN Taigman et al.(2016) 0.844* - - -

UNIT Liu et al. (2017) 0.905* - - -
CoGANLiu & Tuzel (2016) no convergence 0.891 0.912 -
RAAN Chen et al.(2018) 0.892 0.921 0.890 0.985
ADDA Tzeng et al.(2017) 0.760 (26%) 0.901 (58%) 0.894 (19%) 0.800 (14%)**
DIFA Volpi et al. (2017) 0.897 (32%) 0.897 (43%) 0.923 (28%) -

Base (Fig.2(a)) 0.767 (19%) 0.914 (53%) 0.857 (14%) 0.921(31%)
Improved 1 (target only,z = 1.0) 0.863 (34%) 0.925 (55%) 0.854 (13%) 0.930 (32%)

Improved 2 (source + target,z = 1.0) 0.899 (40%) 0.939 (57%) 0.907 (20%) 0.920 (31%)
Improved 3 (source + target,z = 0.7) 0.927 (44%) 0.948 (59%) 0.910 (21%) 0.915(30%)

Table 1: Accuracy for our base configuration (Figure2(a)) and 3 variants of our proposed method
(Figure 2(b)) compared to the current state-of-the-art. ‘Target only’ and ‘source + target’ refer
respectively to the shared encoder being trained on target examples only or both source and target
examples. In order to isolate the performance gain from domain adaptation for our proposals, we
report in parentheses the percentage increase (relative) over the source-only accuracy, as reported
in the respective papers for DIFA (Volpi et al., 2017) and ADDA (Tzeng et al., 2017).*UNIT (Liu
et al., 2017) and DTN (Taigman et al., 2016) use additional SVHN data (131 images and 531 images
respectively). **This is our implementation of ADDA (Tzeng et al., 2017) on MNIST→ MNIST-M,
as this task is not used in the original paper.

report accuracy on the Office-31 dataset (Saenko et al., 2010) compared to the current state-of-the-art
methods.

4.1 DIGITS DATASETS

We consider four standard domain adaptation scenarios between dataset pairs drawn from MNIST-
M (Ganin et al., 2016), MNIST (LeCun et al., 1998), USPS and SVHN (Netzer et al., 2011) digits
datasets, which are each comprised ofK = 10 digit classes (0-9). Specifically, we evaluate on
MNIST → USPS, USPS→ MNIST, SVHN→ MNIST and MNIST→ MNIST-M. The difficulty in
domain adaptation task increases as the variability between datasets increases. We follow a similar
training procedure ofTzeng et al.(2017). For the MNIST→ USPS and USPS→ MNIST experi-
ments, we sample 2000 images from MNIST and 1800 from USPS, otherwise we train and infer on
the full datasets. For MNIST→ MNIST-M, we generate the unlabelled MNIST-M target dataset by
following the process described by Ganinet al. (Ganin et al., 2016). For all experiments we use a
modified LeNet architecture (LeCun et al., 1998) for the source and target encoder. The discrim-
inator is comprised of 2 fully connected layers with 500 hidden units and a final fully-connected
layer withK + 1 = 11 hidden units that outputs the logits. With this setup, our network is roughly
the same complexity as ADDA in terms of number of parameters. In step 1, the source encoder is
trained with the Adam (Kingma & Ba, 2014) optimizer for 10k iterations with a batch size of 128
and learning rate of 0.001. In step 2, the target/shared encoder is trained with a batch size of 256 per
domain for 10k iterations but with a lower learning rate of 0.0002,β1 = 0.5 andβ2 = 0.999. We set
the temperature constantT in (2) to 2.0 for all experiments. We resize all images to a fixed size of
28× 28 prior to CNN processing. Additonally, we use data augmentation for MNIST→ MNIST-M
by randomly inverting the MNIST grayscale values and replicating the MNIST inputs channel-wise
to match MNIST-M dimensions. Our results are provided in Table1 compared to the current state-
of-the-art and when training on source only. We focus our comparison on ADDA (Tzeng et al.,
2017) and DIFA (Volpi et al., 2017), which are recently proposed adversarial methods.

We report accuracy for the base configuration of Figure2(a) plus variants of our proposal of Figure
2(b). We vary our proposal by training a shared encoder either with only target inputs drawn from
the target distribution onlyDT or with source and target inputs fromDB , and varying the level of
corruptionN in the discriminator loss via the dropout keep probabilityz. We denote each variant
as improved proposal 1, 2 and 3. In order to isolate the performance gain from domain adaptation,
we compute the percentage increase (relative) over the source only accuracy reported in the paper
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Figure 3: (Best viewed in color) 3D scatter plots for a subset of source and target logits for the SVHN
→ MNIST domain adaptation task on 3 classes only (0, 1 and 2). Source and target examples are
randomly selected from the SVHN and MNIST test datasets respectively for visualization.

(shown in parentheses in Table1). First, we note that switching the loss functions from the base
configuration to proposal 1, which uses the target encoder and no corruption, there is a substantial
increase in accuracy on SVHN→ MNIST. Switching from the target to shared encoder in proposal
2 provides further accuracy gain and supplementing this with dropout in proposal 3 (z = 0.7), in
order to corrupt the source and shared encoder logits, gives optimal performance on the majority
of datasets. On average over all datasets, our proposals outperform DIFA, RAAN and ADDA. We
note that on MNIST→ MNIST-M, the base method and all proposals perform very similarly; this
is attributed to the very low variance of the source distribution compared to the target, such that
regularizing the encoder with source examples in the shared encoder has minimal effect.

Rather than using a reduction method such as t-SNE (Maaten & Hinton, 2008) that introduces addi-
tional hyperparameters such as perplexity to visualize the domain shift, we instead present 3D scatter
plots in Figure3 of the source and target logits when trained on 3 classes only from the SVHN→
MNIST domain adaptation task, in order to further validate the performance of our method. For
(b)-(d), adversarial training is stopped after 10000 iterations. As is evident from the Figure, whilst
ADDA is able to learn a better approximation to the source distribution, it is unable to learn class
separation around the origin, where the logit distribution is more uniform. This is also apparent in
the base configuration and as such, both methods misclassify a sizeable proportion of zero examples,
achieving an overall accuracy of around 85% on the test dataset. On the other hand, our proposal
forgoes a tight approximation to the source for better class separation and achieves an accuracy of
98%.
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Method A→ W A → D D → A

Source only 0.707 0.720 0.581

DANN Ganin et al.(2016) 0.730 0.723 0.534
DDC Tzeng et al.(2014) 0.618 0.644 0.521

DRCN Ghifary et al.(2016) 0.687 0.668 0.560
JAN Long et al.(2016) 0.752 0.728 0.575

ADDA Tzeng et al.(2017) 0.751 - -

Improved (target only,z = 0.7) 0.821 0.799 0.610
Improved (source + target,z = 0.7) 0.798 0.807 0.639

Table 2: Accuracy for improved (Figure2(b)) configurations compared to state-of-the-art on the
Office-31 dataset. ‘Target only’ and ‘source + target’ refer respectively to the shared encoder being
trained on target examples only or both source and target examples.

4.2 OFFICE-31 DATASET

We report results on the standard Office-31 (Saenko et al., 2010) dataset in the fully transductive
setting. The Office-31 dataset consists of 4,110 images spread across 31 classes in 3 domains:
Amazon, Webcam, and DSLR. Our results focus on the three of the more difficult domain adaptation
tasks; Amazon→ Webcam (A→ W), Amazon→ DSLR (A → D) and DSLR→ Amazon (D→
A). In order to demonstrate the strength of our proposal, we use VGG-16 pre-trained on ImageNet
and fine-tune only the final fully-connected layer. We train with stochastic gradient descent and a
learning rate of 0.001 and temperature constantT set to 2.0. Our discriminator is restricted to only
500 hidden units per layer and we only train adversarially for 2k iterations. We note that the number
of training parameters is 377 thousand in total, compared to over 6 million utilized for ADDA (Tzeng
et al., 2017). Despite only training on a small subset of total parameters, both improved variants
remain competitive or surpass the performance of other recent methods. We additionally note that
under our training setup, ADDA consistently obtains a degenerate solution due to instability during
training.

5 CONCLUSION

We extend adversarial discriminative domain adaptation by explicitly accounting for task knowl-
edge in the discriminator during adversarial training and leveraging on the fixed distribution over
source encoder posteriors, with which we derive our adversarial loss function. In particular, we con-
sider the discriminator as a denoising autoencoder in its corresponding loss function and minimize
the maximum mean discrepancy between the discriminator posterior and source encoder posterior
distribution to train the encoder. We additionally compare our approach with a base discriminative
variant of semi-supervised GANs. Our framework is shown to compete or outperform the state-of-
the-art in unsupervised transfer learning on standard datasets, while remaining simple and intuitive
to use and can be extended further in future work by embedding kernel optimization into the adver-
sarial framework.
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