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Abstract

Post-processing in algorithmic fairness is a versatile approach for correcting bias1

in ML systems that are already used in production. The main appeal of post-2

processing is that it avoids expensive retraining. In this work, we propose a suite3

of general post-processing algorithms for individual fairness (IF). We consider a4

setting where the learner only has access to the predictions of the original model and5

a similarity graph between individuals guiding the desired fairness constraints. We6

cast the IF post-processing problem as a graph smoothing problem corresponding to7

graph Laplacian regularization that preserves the desired “treat similar individuals8

similarly” interpretation. Our theoretical results demonstrate the connection of9

the new objective function to a local relaxation of the original individual fairness.10

Empirically, our post-processing algorithms correct individual biases in large scale11

NLP models, e.g., BERT, while preserving accuracy.12

1 Introduction13

There are many instances of algorithmic bias in machine learning (ML) models [1, 24, 6, 3], which14

has led to the development of methods for quantifying and correcting algorithmic biases. To quantify15

algorithmic biases, researchers have proposed numerous mathematical definitions of algorithmic16

fairness. Broadly speaking, these definitions fall into two categories: group fairness [9] and individual17

fairness [14]. The former formalizes the idea that ML system should treat certain groups of individuals18

similarly, e.g., requiring the average loan approval rate for applicants of different ethnicities be similar19

[18]. The latter asks for similar treatment of similar individuals, e.g., same outcome for applicants20

with resumes that differ say only in names [4]. Researchers have also developed many ways of21

correcting algorithmic biases. These fairness interventions broadly fall into three categories: pre-22

processing the data, enforcing fairness during model training (also known as in-processing), and23

post-processing the outputs of a model.24

While both group and individual fairness (IF) definitions have their benefits and drawbacks [14,25

9, 15], the existing suite of algorithmic fairness solutions mostly enforces group fairness. The26

few prior works on individual fairness are all in-processing methods [21, 37, 36, 33]. Although27

in-processing is arguably the most-effective type of intervention, it has many practical limitations.28

First, it requires training models from scratch. Nowadays, it is more common to fine-tune publicly29

available models (e.g., language models such as BERT [12] and GPT-3 [5]) than to train models30

afresh, as many practitioners do not have the necessary computational resources. Even with enough31

computational resources, training large deep learning models has a significant environmental impact32

[32, 3]. Post-processing offers an easier path towards incorporating algorithmic fairness into deployed33

ML models, and has potential to reduce environmental harm from re-training with in-processing34

fairness techniques.35

In this paper, we propose a computationally efficient suite of methods for post-processing off-the-shelf36

models to be individually fair. We consider a setting where we are given the outputs of a (possibly37

unfair) ML model on a set of n individuals, and side information about their similarity for the ML task38
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at hand, which can either be obtained using a fair metric on the input space or from some human anno-39

tator. Our starting point is a post-processing version of the algorithm of Dwork et al. [14] (see (2.3)).40
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Figure 1: IF on a graph

Unfortunately, this method has two drawbacks: poor scal-41

ability and a sharp trade-off with accuracy. As we shall42

see, the sharp trade-off is due to the restrictions imposed43

on dissimilar individuals by Dwork et al. [14]’s global44

Lipschitz continuity condition. By relaxing these restric-45

tions on dissimilar individuals, we obtain a better trade-off46

between accuracy and fairness while preserving the intu-47

ition of treating similar individuals similarly. This leads48

us to consider a graph signal-processing approach to IF49

post-processing that only enforces similar outputs between50

similar individuals. The nodes in the underlying graph cor-51

respond to individuals, edges (possibly weighted) indicate52

similarity, and the signal on the graph is the output of the53

model on the corresponding node-individuals. To enforce54

IF, we use Laplacian regularization [8], which encourages the signal to be smooth on the graph. We55

illustrate this idea in Figure 1: an algorithm decides whom to show a job ad based on their CVs and56

chooses Bob and Joy. Alice and Bob have similar qualification, i.e., they are both Ruby experts, and57

should be treated similarly to satisfy IF. We represent all four candidates as nodes in a graph, where58

node signal (tick or cross) is the algorithm’s decision for the corresponding candidate. As Alice and59

Bob are connected via an edge, for this graph to be smooth, their node signals need to be similar. On60

the contrary, directly enforcing IF constraints [14] requires certain degree of output similarity on all61

pairs of candidates. Our main contributions are summarized below.62

1. We cast post-processing for individual fairness as a graph smoothing problem. We also propose a63

coordinate descent algorithm to scale the approach to large datasets where memory availability is64

a limiting factor;65

2. We demonstrate theoretically and verify empirically that graph smoothing enforces individual66

fairness constraints locally, i.e., it guarantees similar treatment of similar individuals.67

3. We empirically compare the Laplacian smoothing method to the post-processing adaptation of the68

algorithm of Dwork et al. [14] enforcing global Lipschitz continuity. The Laplacian smoothing69

method is not only computationally more efficient but also more effective in reducing algorithmic70

bias, and preserves accuracy of the original model.71

4. We demonstrate the efficacy of Laplacian smoothing on two large-scale text datasets by reducing72

biases in fine-tuned BERT models.73

2 Post-processing Problem Formulation74

Let X be the feature space, Y be the set of possible labels/targets, and h : X → Y be a (possibly75

unfair) ML model trained for the task. Our goal is to post-process the outputs of h so that they are76

individually fair. Formally, the post processor is provided with a set of inputs {xi}
n
i=1 and the outputs77

of h on the inputs {ŷi , h(xi)}
n
i=1, and its goal is to produce {f̂i}

n
i=1 that is both individually fair78

and similar to the ŷi’s. Recall that individual fairness of h is the Lipschitz continuity of h with respect79

to a fair metric dX on the input space:80

dY(h(x1), h(x2)) ≤ LdX (x1, x2) for all x1, x2 ∈ X , (2.1)

where L > 0 is a Lipschitz constant. The fair metric encodes problem-specific intuition of which81

samples should be treated similarly by the ML model. It is analogous to the knowledge of protected82

attributes in group fairness needed to define corresponding fairness constraints. Recent literature83

proposes several practical methods for learning fair metric from data [20, 27]. We assume the post-84

processor is either given access to the fair metric (it can evaluate the fair distance on any pair of points85

in X ), or receives feedback on which inputs should be treated similarly. We encode this information86

in an adjacency matrix W ∈ R
n×n of a graph with individuals as nodes. If the post-processor is87

given the fair metric, then the entries of W are88

Wij =

{
exp(−θdX (xi, xj)

2) dX (xi, xj) ≤ τ

0 otherwise
, (2.2)
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where θ > 0 is a scale parameter and τ > 0 is a threshold parameter. If the post-processor is given an89

annotator’s feedback, then W is a binary matrix with Wij = 1 if i and j are considered to be treated90

similarly by the annotator and 0 otherwise. Extensions to multiple annotators are straightforward.91

We start with a simple post-processing adaptation of the algorithm of Dwork et al. [14] for enforcing92

individual fairness, that projects the (possibly unfair) outputs of h onto a constraint set to enforce93

(2.1). In order words, the post-processor seeks the closest set of outputs to the ŷi’s that satisfies94

individual fairness:95

{f̂i}
n
i=1 ∈

{
argminf1,...,fn

∑n
i=1

1
2dY(fi, ŷi)

2

subject to dY(fi, fj) ≤ LdX (xi, xj)

}
. (2.3)

This objective function, though convex, scales poorly due to the order of n2 constraints. Empirically96

we observe that (2.3) leads to post-processed outputs that are dissimilar to the ŷi’s, leading to poor97

performance in practice. The goal of our method is to improve performance and scalability, while98

preserving the IF desiderata of treating similar individual similarly. Before presenting our method,99

we discuss other post-processing perspectives that differ in their applicability and input requirements.100

2.1 Alternative Post-processing Formulations101

We review three post-processing problem setups and the corresponding methods in the literature. First,102

one can fine-tune a model via an in-processing algorithm to reduce algorithmic biases. Yurochkin103

and Sun [36] proposed an in-processing algorithm for IF and used it to train fair models for text104

classification using sentence BERT embeddings. This setting is the most demanding in terms of105

input and computational requirements: a user needs access to the original model parameters, fair106

metric function, and train a predictor, e.g., a moderately deep fully connected neural network, with a107

non-trivial fairness-promoting objective function.108

Second, it is possible to post-process by training additional models to correct the initial model’s109

behavior. For example, Kim et al. [22] propose a boosting-based method for group fairness post-110

processing. This perspective can be adapted to individual fairness, however it implicitly assumes that111

we can train weak-learners to boost. Lohia et al. [26], Lohia [25] propose to train a bias detector112

to post-process for group fairness and a special, group based, notion of individual fairness. Such113

methods are challenging to apply to text data or other non-tabular data types.114

The third perspective is the most generic: a user has access to original model outputs only, and a115

minimal additional feedback guiding fairness constraints. Wei et al. [34] consider such setting and116

propose a method to satisfy group fairness constraints, however it is not applicable to individual117

fairness. Our problem formulation belongs to this post-processing setup. The main benefit of this118

approach is its broad applicability and ease of deployment.119

3 Graph Laplacian Individual Fairness120

To formulate our method, we cast IF post-processing as a graph smoothing problem. Using the fair121

metric or human annotations as discussed in Section 2, we obtain an n× n matrix W that we treat122

as an adjacency matrix. As elaborated earlier, the goal of post-processing is to obtain a model f123

that is individually fair and accurate. The accuracy is achieved by minimizing the distance between124

the outputs of f and h, a pre-trained model assumed to be accurate but possibly biased. Recall that125

we don’t have access to the parameters of h, but can evaluate its predictions. Our method enforces126

fairness using a graph Laplacian quadratic form [31] regularizer:127

f̂ = argmin
f

gλ(f) = argmin
f
‖f − ŷ‖22 + λ f⊤Lnf , (3.1)

where f is the vector of the post-processed outputs, i.e., fi = f(xi) for i = 1, . . . , n. The matrix128

Ln ∈ R
n×n is called graph Laplacian matrix and is a function of W . There are multiple versions of129

Ln popularized in the graph literature (see e.g., [1] or [10]). To elucidate connection to individual130

fairness, consider unnormalized Laplacian Lun,n = D −W , where Dii =
∑n

j=1 Wij , Dij = 0 for131

i 6= j is the degree matrix corresponding to W . Then a known identity is:132

f⊤Lun,nf =
1
2

∑
i 6=j Wij (fi − fj)

2
. (3.2)
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Hence the Laplacian regularizer is small when for large Wij (i.e., individuals i and j are similar),133

post-processed model outputs fi and fj (i.e., treatment) are similar, promoting the philosophy of134

individual fairness “treat similar individuals similarly”. This observation intuitively explains the135

motivation for minimizing graph Laplacian quadratic form to achieve individual fairness. In Section 4136

we present a more formal discussion on the connections between quadratic graph Laplacian quadratic137

regularization and individual fairness.138

Our post-processing problem (3.1) is easy to solve: setting the gradient of gλ to 0 implies that the139

optimal solution f̂ is:140

f̂ =

(
I + λ

(
Ln + L

⊤
n

2

))−1

ŷ . (3.3)

The Laplacian Ln is a positive semi-definite matrix ensuring that (3.1) is strongly convex and that141

(3.3) is a global minima. Comparing to the computationally expensive constraint optimization142

problem (2.3), this approach has a simple closed-form expression.143

Note that the symmetry of the unnormalized Laplacian Lun,n simplifies (3.3), however there are144

also non-symmetric Laplacian variations. In this work, we also consider the normalized random145

walk Laplacian Lnrw,n =
(
I − D̃−1W̃

)
, where W̃ = D−1/2WD−1/2 is the normalized adjacency146

matrix and D̃ is its degree matrix. We discuss its properties in the context of IF in Section 4.147

Henceforth, we refer to our method as Graph Laplacian Individual Fairness (GLIF) when using the148

unnormalized Laplacian, and GLIF-NRW when using Normalized Random Walk Laplacian.149

3.1 Prior Work on Graph Laplacians150

Graph based learning via a similarity matrix is prevalent in statistics and ML literature, specifically,151

in semi-supervised learning. The core idea is to gather information from similar unlabeled inputs to152

improve prediction accuracy (e.g., see [38], [2], [30] and references therein). Laplacian regularization153

is widely used in science engineering. We refer to Chapelle et al. [8] for a survey.154

3.2 Extensions of the Basic Method155

3.2.1 Multi-dimensional Output156

We presented our objective function (3.1) and post-processing procedure (3.3) for the case of uni-157

variate outputs. This covers regression and binary classification. Our method readily extends to158

multi-dimensional output space, for example in classification fi, ŷi ∈ R
K can represent logits, i.e.,159

softmax inputs, of the K classes. In this case f and ŷ are n×K matrices, and the term f⊤Lnf is a160

K ×K matrix. We use the trace of it as a regularizer. The optimization problem (3.1) then becomes:161

f̂ = argminf gλ(f) = argminf ‖f − ŷ‖2F + λ tr
(
f⊤Lnf

)
, (3.4)

where ‖ · ‖F is the Frobenious norm. Similar calculation as for the univariate output yields:162

f̂ =
(
I + λ

(
Ln+L

⊤
n

2

))−1

ŷ . (3.5)

The solution is the same as (3.3), however it now accounts for the multi-dimensional outputs.163

3.2.2 Coordinate Descent for Large Data164

Although our method has a closed form solution, is not immediately scalable as we have to invert a165

n× n matrix to obtain the optimal solution. We propose a coordinate descent variant of our method166

that readily scales to any data size. The idea stems primarily from the gradient of equation (3.4),167

where we solve:168

f − ŷ + λ
Ln + L

⊤
n

2
f = 0 . (3.6)

Fixing {fj}j 6=i, we can solve (3.6) for fi:169

fi ←
ŷi −

λ
2

∑
j 6=i(Ln,ij + Ln,ji)fj

1 + λLn,ii
. (3.7)
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This gives rise to the coordinate descent algorithm. We perform asynchronous updates over randomly170

selected coordinate batches until convergence. We refer the reader to Wright [35] and the references171

therein for the convergence properties of (asynchronous) coordinate descent.172

3.2.3 Extension to Inductive Setting173

This coordinate descent update is also the key to extending our approach to the inductive setting.174

To handle new unseen points, we assume we have a set of test points on which we have already175

post-processed the outputs of the ML model. To post-process new unseen points, we simply fix the176

outputs of the other test points and perform a single coordinate descent step with respect to the output177

of the new point. Similar strategies are often employed to extend transductive graph-based algorithms178

to the inductive setting [8].179

3.2.4 Alternative Discrepancy Measures on the Output Space180

So far we have considered the squared Euclidean distance as a measure of discrepancy between181

outputs. This is a natural choice for post-processing models with continuous-valued outputs. For182

models that output a probability distribution over the possible classes, we consider alternative183

discrepancy measures on the output space. It is possible to replace the squared Euclidean distance184

with a Bregman divergence with very little change to the algorithm in the case of the unnormalized185

Laplacian. Below, we work through the details for the KL divergence as a demonstration of the idea.186

Suppose the output of the pre-trained model h is ŷi ∈ ∆K , where ŷi = {e
τi,j/

∑K
k=1 e

τi,k}Kj=1 a187

K-dimensional probability vector corresponding to a K class classification problem (τi is the output188

of the penultimate layer of the pre-trained model and ŷi is obtained by passing it through the soft-max189

layer) and ∆K = {x ∈ R
K : xi ≥ 0,

∑K
i=1 xi = 1} is the probability simplex in R

K . Denote by Pv ,190

the multinomial distribution with success probabilities v for any v ∈ ∆k. Define η̂i ∈ R
K−1 (resp.191

ηi) as the natural parameter corresponding to ŷi (resp. fi), i.e., η̂i,j = log (ŷi,j/ŷi,K) = τi,j − τi,K192

for 1 ≤ j ≤ K − 1. The (unnormalized) Laplacian smoothing problem with the KL divergence is193

ỹi = argminy∈∆K

[
KL (Py||Pŷi

) + λ
2

∑n
j=1,j 6=i WijKL

(
Py||Pyj

)]
. (3.8)

The following theorem establishes that (3.5) solves the above problem in the logit space, or equiva-194

lently in the space of the corresponding natural parameters (see Appendix 1 for the proof):195

Theorem 3.1. Consider the following optimization problem on the space of natural parameters:196

η̃i = argminη

[
‖η − η̂i‖

2 + λ
2

∑n
j=1,j 6=i Wij‖ηj − ηi‖

2
]
. (3.9)

Then, the minimizer η̃i of equation (3.9) is the natural parameter corresponding to the minimizer ỹi197

of (3.8).198

4 Local IF and Graph Laplacian Regularization199

In this section we provide theoretical insights to understand why graph Laplacian regularizer enforces200

individual fairness. It is pointed out in section 2 that enforcing IF globally is expensive and often201

reduces a significant amount of accuracy of the final classifier. Here we establish that solving (3.1) is202

tantamount to enforcing a localized version of individual fairness, namely Local Individual Fairness,203

which is defined below:204

Definition 4.1 (Local Individual Fairness). An ML model h is said to be locally individually fair if it
satisfies:

EX∼P

[
lim supy:dX (X,y)↓0

dY(h(X),h(y))
dX (X,y)

]
<∞ .

Example 4.2. For our theoretical analysis, we need to specify a functional form of the fair metric. A
popular choice is a Mahalanobis fair metric proposed by [27], which is defined as:

d2X (x1, x2) = (x1 − x2)
⊤Σ(x1 − x2)

where Σ is a dispersion matrix that puts lower weight in the directions of sensitive attributes and
higher weight in the directions of relevant attributes. [27] also proposed several algorithms to
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learn such a fair metric from the data. If we further assume dY(y1, y2) = |y1 − y2|, then a simple
application of Lagrange’s mean value theorem yields for any realization of X:

lim supy:dX (X,y)↓0
|h(X)−h(y)|

dX (X,y) ≤ ‖Σ−1/2∇h(X)‖ .

This immediately implies:

EX∼P

[
lim supy:dX (X,y)↓0

dY(h(X),h(y))
dX (X,y)

]
≤ E[‖Σ−1/2∇h(X)‖] ,

i.e., h satisfies local individual fairness constraint as long as E[‖Σ−1/2∇h(X)‖] < ∞. On the205

other hand, the global IF constraint necessitates supx∈X ‖Σ
−1/2∇h(x)‖ <∞, i.e., h is Lipschitz206

continuous with respect to Mahalanobis distance.207

The main advantage of this local notion of IF over its global counterpart is that the local definition208

concentrates on the input pairs with smaller fair distance and ignores those with larger distance. For209

example, in Figure 2, the edge-weight between Bob and Alice is much larger than any other pairs,210

therefore this local notion strongly enforces fairness constraint on that pair, while ignoring (or being211

less stringent on) others. This prevents over-smoothing and consequently preserves accuracy while212

enforce fairness as is evident from our real data experiment in Section 5.213

We now present our main result, which establishes that, under certain assumptions on the underlying
hypothesis class and the distribution of inputs, the graph Laplacian (both unnormalized and normalized
random walk) regularizer enforces local IF constraint (as defined in definition 4.1) in the limit. For
our theory, we work with dX as the Mahalanobis distance introduced in Example 4.2 in equation
(2.2) along with θ = 1/(2h2) (h is a bandwidth parameter which goes to 0 at an appropriate rate as
n→∞) and τ =∞. All our results will be thorough for any finite τ but with more tedious technical
analysis. Therefore our weight matrix W becomes:

Wij =
|Σ|1/2

(2π)d/2hd
e−

1

2h2
(xi−xj)

⊤Σ(xi−xj)

The constant |Σ|1/2/((2π)d/2hd) is for the normalization purpose and can be absorbed into the214

penalty parameter λ. We start by listing our assumptions:215

Assumption 4.3 (Assumption on the domain). The domain of the inputs X is a compact subset of216

R
d where d is the underlying dimension.217

Assumption 4.4 (Assumption on hypothesis). All functions f ∈ F of the hypothesis class satisfy the218

following:219

1. The ith derivative f (i) is uniformly bounded over the domain X of inputs for i ∈ {0, 1, 2}.220

2. f (1)(x) = 0 for all x ∈ ∂X , where ∂X denotes the boundary of X .221

Assumption 4.5 (Assumption on density of inputs). The density p of X on the domain X satisfies222

the following:223

1. There exists pmax <∞ and pmin > 0 such that for all x ∈ X , we have pmin ≤ p(x) ≤ pmax.224

2. The derivatives of the density p(i) is uniformly bounded on the domain X for i ∈ {0, 1, 2}.225

Discussion on the assumptions Most of our assumptions (e.g., compactness of the domain,226

bounded derivatives of f or p) are for technical simplicity and are fairly common for the asymptotic227

analysis of graph regularization (see, e.g., Hein et al. [16, 1] and references therein). It is possible to228

relax some of the assumptions: for example, if the domain X of inputs is unbounded, then the target229

function f and the density p should decay at certain rate so that observations far away will not be able230

to affect the convergence (e.g., sub-exponential tails). Part (ii) of Assumption 4.4 can be relaxed if we231

assume p(x) is 0 at boundary. However we don’t pursue these extensions further in this manuscript232

as they are purely technical and do not add anything of significance to the main intuition of the result.233

Theorem 4.6. Under Assumptions 4.3 - 4.5, we have:234

1. If the sequence of bandwidths h ≡ hn ↓ 0 such that nh2 → ∞ and Lun,n is unnormalized
Laplacian matrix, then

2
n2h2 f

⊤
Lun,nf

P
−→ E

[
∇f(X)⊤Σ−1∇f(X) p(X)

]
.
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2. If the sequence of bandwidths h ≡ hn ↓ 0 such that (nhd+4)/(log (1/h)) → ∞ and Lnrw,n is
the normalized random walk Laplacian matrix, then:

1
nh2 f

⊤
Lnrw,nf

P
−→ E

[
∇f(X)⊤Σ−1∇f(X)

]
.

where f = {f(xi)}
n
i=1. Consequently both the Laplacian regularizers asymptotically enforce weak235

local IF.236

The proof of the above theorem can be found in Appendix 1. If we use normalized ran-237

dom walk graph Laplacian matrix Lnrw,n as regularizer, then (asymptotically) it penalizes238

E
[
∇f(X)⊤Σ−1∇f(X)

]
= E

[
‖Σ−1/2∇f(X)‖2

]
, which, by Example 4.2, is equivalent to en-239

forcing local IF constraint. Similarly, the un-normalized Laplacian matrix Lun,n, also enforces the240

same under Assumption 4.5 as:241

E
[
‖Σ−1/2∇f(X)‖2

]
≤ 1

pmin

E
[
∇f(X)⊤Σ−1∇f(X) p(X)

]
, where pmin = infx∈X p(x).

Although both the Laplacian matrices enforce local IF, the primary difference between them is that242

the limit of the unnormalized Laplacian involves the density p(x), i.e., it upweights the high-density243

region (consequently stringent imposition of fairness constraint), whereas down-weights the under-244

represented/low-density region. On the other hand, the limit corresponding to the normalized random245

walk Laplacian matrix does not depend on p(x) and enforces fairness constraint with equal intensity246

on the entire input space. It is not immediately clear in what situation one should be preferable to247

the other, however we used both the regularizers in our experiments to compare and contrast their248

performance on several practical ML problems.249

5 Empirical Studies250

The goals of our experimental studies are threefold: (1) Explore the trade-offs between post-processing251

for local individual fairness with GLIF and post-processing with individual fairness constraints252

following our adaptation of the Dwork et al. [14] algorithm described in (2.3). We use CVXPY [13]253

to solve (2.3) and call this method IF-constraints. Due to its poor scalability, we consider a smaller254

dataset for this study; (2) study practical implications of theoretical differences between GLIF and255

GLIF-NRW, i.e., different graph Laplacians, presented in Section 4; (3) evaluate the effectiveness of256

GLIF in its main application, i.e., computationally light debiasing of large deep learning models such257

as BERT.258

5.1 Comparing GLIF and IF-constraints259

For this experiment we consider the sentiment prediction task [19], i.e., classifying words as positive260

or negative. The baseline model is a neural network trained with GloVe word embeddings [29].261

Yurochkin et al. [37] evaluate such classifier on a set of human names typical for Caucasian and262

African-American ethnic groups [7] and show that it tends to assign drastically different sentiment263

scores to the names. An individually fair model should assign similar sentiment scores to all names.264

Yurochkin et al. [37] propose a fair metric learning procedure for this task using a side dataset of265

names, and an in-processing technique for achieving individual fairness. We use their method to266

obtain the fair metric and compare post-processing of the baseline model with GLIF and IF-constraints.267

The test set consists of 663 sentiment words from the original task and 94 names. Post-processing268

methods are applied on the concatenated (unlabeled) sentiment words and the names, i.e., no problem269

specific knowledge is used. The resulting post-processed outputs on sentiment words are used to270

evaluate accuracy, and outputs on names for evaluating fairness metrics. Even for this small problem,271

IF-constraints, i.e., CVXPY implementation of (2.3), takes 5 minutes to run. For GLIF(-NRW), we272

implement the closed-form solution (3.3) that takes less than a second to run. See Appendix 2 for273

additional experimental details.274

We evaluate fairness-accuracy trade-off for a grid of hyperparameters in Figure 2. The left figure275

shows standard deviation of the post-processed outputs on all names as a function of test accuracy on276

the original sentiment task. Lower values imply that all names received similar predictions, which277

is the goal of individual fairness. The center figure visualizes group fairness and accuracy, i.e.,278

difference in average name sentiment scores for the two ethnic groups. In this problem, individual279

fairness is a stronger notion of fairness: achieving similar predictions for all names implies similar280

7
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fairness and accuracy. Right: Frequencies of violations of the IF constraints, frequency of constraints
corresponding to names, and frequency of violations for names; most violations are not among the
names.
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Figure 3: Accuracy-Consistency trade-offs for Bios and Toxicity.

group averages, but not vice a versa. Therefore, for this task, post-processing for individual fairness281

can also correct group disparities.282

Both GLIF and GLIF-NRW achieve significantly better fairness metrics for the same levels of test283

accuracy in comparison to IF-constraints. To understand the reason, we study which IF constraints284

are violated by GLIF. There are n(n− 1)/2 unique constraints in (2.3), and IF-constraints satisfies285

all of them by design. Each constraint corresponds to a fair metric value, which we bin and present286

the proportion of constraints violated by GLIF for each bin in Figure 2 (right). We set L = 2.25 in287

(2.3) corresponding to 89.4% accuracy of IF-constraints and show constraint violations of GLIF cor-288

responding to 95% accuracy. First, note the effect of enforcing local individual fairness demonstrated289

in our theoretical analysis in Section 4. GLIF does not violate any constraints corresponding to290

small fair distances, i.e., it satisfies IF on similar individuals, while violating many large fair distance291

constraints. Figure 2 (right) also shows that majority of constraints corresponding to small fair292

distances correspond to pairs of names. This is expected in this task because we consider all names293

similar, so fair distances between them should be small. To summarize, GLIF ignores unnecessary (in294

the context of this problem) constraints allowing it to achieve higher accuracy, while satisfying the295

more relevant local IF constraints (the green area in the figure is tiny) leading to improved fairness296

metrics.297

We comment on the practical differences between GLIF and GLIF-NRW. In Figure 2 (left) GLIF has298

smaller standard deviation on the name outputs, but in the center plot GLIF-NRW achieves lower299

race gap. In Theorem 4.6, we showed that GLIF penalizes fairness violations in high density data300

regions stronger. As a result, GLIF may favor enforcing similar outputs in the high density region301

causing lower standard deviation, while leaving outputs nearly unchanged in the lower density region,302

resulting in larger race gaps. GLIF-NRW weighs all data density regions equally, i.e., it is less likely303

to miss a small subset of names, but is less stringent in the high density regions.304

5.2 Post-processing to Debias Large Language Models305

Large language models have achieved impressive results on many tasks, however there is also306

significant evidence demonstrating that they are prone to biases [23, 28, 3]. Debiasing these models307

remains largely an open problem: most in-processing algorithms are not applicable or computationally308

prohibitive due to large and highly complex model architectures, and challenges in handling text309
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Table 1: Results for the Bios task.

Method Test Acc. Pred. Consist.

Baseline 0.8460.8460.846± 0.003 0.942± 0.002
GLIF 0.830± 0.004 0.986± 0.002
GLIF-NRW 0.834± 0.003 0.9880.9880.988± 0.002
SenSEI 0.843± 0.003 0.977± 0.001

Table 2: Results for the Toxicity task.

Method Test Acc. Pred. Consist.

Baseline 0.8090.8090.809± 0.004 0.614± 0.013
GLIF 0.803± 0.003 0.835± 0.012
GLIF-NRW 0.803± 0.003 0.8440.8440.844± 0.013
SenSEI 0.791± 0.005 0.773± 0.043

inputs. Even if an appropriate in-processing algorithm arises, significant environmental impact due to310

re-training is unavoidable [32, 3]. In our experiments we evaluate effectiveness of GLIF as a simple311

post-processing technique to debias BERT-based models for text classification. Another possible312

solution is to fine-tune BERT with an in-processing technique as was done by Yurochkin and Sun [36].313

The two approaches are not directly comparable: fine-tuning with SenSeI [36] requires knowledge314

of the model parameters, alleviates only part of the computational burden, and has more stringent315

requirements on the fair metric, while post-processing with GLIF is transductive, i.e., it requires316

access to unlabeled test data (see extended discussion in Section 2.1).317

We replicate the experiments of Yurochkin and Sun [36] on Bios [11] and Toxicity1 datasets. They318

use the approach of Mukherjee et al. [27] for fair metric learning which we reproduce. We refer to319

the Appendix B.1 of Yurochkin and Sun [36] for details. In both tasks, following Yurochkin and320

Sun [36], we quantify performance with balanced accuracy due to class imbalance, and measure321

individual fairness via prediction consistency, i.e., the fraction of test points where the prediction322

remains unchanged when performing task-specific input modifications.323

In Bios the goal is to predict occupation of a person based on their textual biography. Such models324

can be useful for recruiting purposes. However, due to historical gender bias in some occupations,325

the baseline BERT model learns to associate gender pronouns and names with the corresponding326

occupations. Individual fairness is measured with prediction consistency with respect to gender327

pronouns and names alterations. We present the fairness-accuracy trade-off in Figure 3 for a grid328

of hyperparameters, and compare performance based on hyperparameter values selected with a329

validation data in Table 1. Both GLIF and GLIF-NRW noticeably improve individual fairness330

measured with prediction consistency, while retaining most of the accuracy.331

In Toxicity the task is to identify toxic comments—an important tool for facilitating inclusive332

discussions online. Baseline BERT model learns to associate certain identity words, e.g., “gay”, with333

toxicity, because they are often abused in online conversations. Prediction consistency is with respect334

to changes to identity words in the inputs. There are 50 identity words, e.g., “gay”, “muslim”, “asian”,335

etc. We present the trade-off results in Figure 3 and compare performance in Table 2. Our methods336

reduce individual biases in BERT predictions. We note that in both Toxicity and Bios experiments we337

observe no practical differences between GLIF and GLIF-NRW.338

6 Summary and Discussion339

We studied a suite of post-processing methods for enforcing individual fairness. The methods provably340

enforce a local form of IF and scale readily to large datasets. We hope this broadens the appeal of IF341

by (i) alleviating the computational costs of operationalizing IF and (ii) allowing practitioners to use342

off-the-shelf models for standard ML tasks. We also note that it is possible to use our objective for343

in-processing.344

We conclude with two warnings: first, enforcing any algorithmic fairness definition does not guarantee345

complete fairness from the perspective of the user. The problem-specific meaning of fairness is often346

hard to encode exactly with a mathematical fairness definition; second, while we believe that in many347

applications it is reasonable to consider local individual fairness, this choice should be understood and348

verified by a practitioner when choosing to enforce individual fairness with our method as opposed to349

directly enforcing IF constraints.350

1Based on the Kaggle “Toxic Comment Classification Challenge”.
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