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Abstract

Adapting large-scale pretrained language models to downstream tasks via1

fine-tuning is the standard method for achieving state-of-the-art performance on2

NLP benchmarks. However, fine-tuning all weights of models with millions or3

billions of parameters is sample-inefficient, unstable in low-resource settings, and4

wasteful as it requires storing a separate copy of the model for each task. Recent5

work has developed parameter-efficient fine-tuning methods, but these approaches6

either still require a relatively large number of parameters or underperform standard7

fine-tuning. In this work, we propose COMPACTER, a method for fine-tuning8

large-scale language models with a better trade-off between task performance and9

the number of trainable parameters than prior work. COMPACTER accomplishes this10

by building on top of ideas from adapters, low-rank optimization, and parameterized11

hypercomplex multiplication layers.12

Specifically, COMPACTER inserts task-specific weight matrices into a pretrained13

model’s weights, which are computed efficiently as a sum of Kronecker products be-14

tween shared “slow” weights and “fast” rank-one matrices defined per COMPACTER15

layer. By only training 0.047% of a pretrained model’s parameters, COMPACTER16

performs on par with standard fine-tuning on GLUE and outperforms fine-tuning17

in low-resource settings.18

1 Introduction19

State-of-the-art pretrained language models
(PLMs) in natural language processing (NLP) have
used heavily over-parameterized representations
consisting of hundreds of millions or billions of
parameters to achieve success on a wide range of

With four parameters I can fit an elephant,
and with five I can make him wiggle his trunk.

John von Neumann
20

NLP benchmarks [2, 3, 4]. These models are generally applied to downstream tasks via fine-tuning21

[5], which requires updating all parameters and storing one copy of the fine-tuned model per task.22

This causes substantial storage and deployment costs and hinders the applicability of large-scale PLMs23

to real-world applications. Additionally, fine-tuning of over-parameterized models on low-resource24

datasets has been shown to be subject to instabilities and may lead to poor performance [6, 7].25

Inspired by John von Neumann’s quotation, we ask, given that we have already learned general-purpose26

language representations via a PLM (i.e. we have fit our elephant), how many more parameters27

do we need to reach state-of-the-art performance on standard NLP tasks. Specifically, we aim to28

develop practical, memory-efficient methods that train a minimum set of parameters while achieving29

performance on par with full fine-tuning for state-of-the-art NLP models.30

Recent literature has introduced parameter-efficient fine-tuning methods. These approaches generally31

keep the pretrained model’s parameters fixed and introduce a set of trainable parameters per task,32
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Figure 1: The average score on GLUE (y axis), percentage
of trainable parameters per task (x axis, in log scale), and
memory footprint (size of the circles) of different models.
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Figure 2: Left: Adapter integration
in a pretrained transformer model.
Right: Adapter architecture. Follow-
ing Houlsby et al. [1], we include
adapters after the attention and feed-
forward modules. During training, we
only update layer normalizations and
adapters (shown in yellow), while the
pretrained model is fixed.

trading off the number of trainable parameters with task performance. At one end of the spectrum,33

prompts, i.e. natural language descriptions of a task, together with demonstrations have been used34

to achieve reasonable performance without any parameter updates on some benchmarks [8] but their35

performance generally lags behind fine-tuned models. They also require huge models to work well36

but choosing good prompts becomes harder with larger model sizes [9]. Soft prompt methods treat37

prompts as trainable continuous parameters, which are prepended to the inputs at the input layer or38

intermediate layers [10, 11, 12]. Such methods, however, often require large models to achieve good39

performance and are very sensitive to initialization and unstable during training.40

The theoretically motivated low-rank methods train a small number of parameters that lie in a41

low-dimensional subspace using random projections [13, 14]. However, storing the random projection42

matrices causes substantial memory overhead and leads to slow training times. At the other end43

of the spectrum, adapter methods [1, 15] that insert trainable transformations at different layers of44

the pretrained model require more parameters than the aforementioned approaches but are more45

memory-efficient and obtain performance comparable to full fine-tuning [1, 16].46

In this work, we propose COMPACTER, a method for fine-tuning large-scale language models with47

an excellent trade-off between the number of trainable parameters, task performance, and memory48

footprint, compared to existing methods (see Figure 1). COMPACTER builds on ideas from adapters49

[1], low-rank methods [13], as well as recent hypercomplex multiplication layers [17]. Similar50

to adapters, COMPACTER inserts task-specific weight matrices into a pretrained model’s weights.51

Each COMPACTER weight matrix is computed as the sum of Kronecker products between shared52

“slow” weights and “fast” rank-one matrices defined per COMPACTER layer (see Figure 3). As a53

result, COMPACTER achieves a parameter complexity of O(k+d
n ) compared to O(kd) for regular54

adapters, where the adapters are of size k×d and n is the number of Kronecker products. In practice,55

COMPACTER trains 0.047% of a PLM’s parameters. On the standard GLUE benchmark [18],56

COMPACTER outperforms other parameter-efficient fine-tuning methods and obtains performance57

on par with full fine-tuning. On low-resource settings, COMPACTER outperforms standard fine-tuning.58

In summary, we make the following contributions: 1) We propose COMPACTER (Compact Adapter)59

layers, a parameter-efficient method to adapt large-scale language models. 2) We show that60

COMPACTER obtains strong empirical performance on GLUE. 3) We demonstrate that COMPACTER61

outperforms fine-tuning in low-resource settings. 4) We provide a parameter complexity analysis of62

COMPACTER, showing that it requires dramatically fewer parameters than adapters and fine-tuning.63

5) We provide a systematic evaluation of recent parameter-efficient fine-tuning methods in terms of64

training time and memory consumption. We release our code to facilitate future work.65
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2 Background66

We start by introducing the required background on the Kronecker product and adapter layers [1, 15].67

2.1 Kronecker Product68

The Kronecker product between matrixA∈Rm×f andB∈Rp×q, denoted byA⊗B∈Rmp×fq, is69

mathematically defined as:70

A⊗B=

a11B ··· a1fB
...

. . .
...

am1B ··· amfB

, (1)

where aij shows the element in the ith row and jth column ofA.71

2.2 Adapter Layers72

Recent work has shown that fine-tuning all parameters of a language model can lead to a sub-optimal73

solution, particularly for low-resource datasets [6]. As an alternative, Rebuffi et al. [15] and Houlsby74

et al. [1] propose to transfer a model to new tasks by inserting small task-specific modules called75

adapter layers within the layers of a pretrained model, as depicted in Figure 2. They then only train76

adapters and layer normalizations, while the remaining parameters of the pretrained model remain77

fixed. This approach allows pretrained language models to efficiently adapt to new tasks.78

Each layer of a transformer model is composed of two primary modules: a) an attention block, and b)79

a feed-forward block. Both modules are followed by a skip connection. As shown in Figure 2, Houlsby80

et al. [1] suggest to insert an adapter layer after each of these blocks before the skip connection.81

Adapters are bottleneck architectures. By keeping the output dimension similar to their input, they cause82

no change to the structure or parameters of the original model. The adapter layerAl for layer l consists83

of a down-projection,Dl∈Rk×d, GeLU non-linearity [19], and up-projectionU l∈Rd×k, where k84

is the input dimension, and d is the bottleneck dimension for the adapter layer. Adapters are defined as:85

Al(x)=U l(GeLU(Dl(x)))+x, (2)
where x is the input hidden state.86

3 Method87

In this section, we present COMPACTER, a compact and efficient way to adapt large-scale PLMs.88

Problem formulation We consider the general problem of fine-tuning large-scale language models,89

where we are given the training dataD={(xi,yi)}Pi=1 with P samples. We assume we are also given90

a large-scale pretrained language model fθ(.) parameterized by θ that computes the output for input91

xi. Our goal is to fine-tune fθ(.) efficiently to enable the model to adapt to new tasks.92

3.1 Compact and Efficient Adapter Layers93

In this section, we introduce an efficient version of adapter layers, building on top of recent advances94

in parameterized hypercomplex multiplication layers (PHM) [17]. To the best of our knowledge, we95

are the first to exploit PHM layers for efficient fine-tuning of large-scale transformer models. The PHM96

layer has a similar form as a fully-connected layer, which converts an input x∈Rk to an output y∈Rd:97

y=Wx+b, (3)

whereW ∈Rk×d. The key difference is that in a PHM layer,W is learned as a sum of Kronecker98

products. Assume that k and d are both divisible by a user-defined hyperparameter n∈Z>0. Then,99

the matrixW in (3) is computed as the sum of nKronecker products as follows:100

W =

n∑
i=1

Ai⊗Bi, (4)

whereAi∈Rn×n andBi∈R
k
n×

d
n . The PHM layer has a parameter complexity ofO(kdn ), reducing101

parameters by at most 1
n [17] (see §4).102
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Figure 3: Illustration of generating weights of two different COMPACTER layers: W1∈Rd×k (first
row) and W2 ∈ Rd×k (second row). We generate W1 and W2 using Wj =

∑n
i=1Ai ⊗Bi

j =∑n
i=1Ai⊗(sijti

j>) (5), by computing the sum of Kronecker products of shared matricesAi and
adapter-specific matricesBji , with i∈{1,...,n} and adapter index j ∈{1,2}. We generate eachBji
by multiplying independent rank one weights. In this example n=2, d=6, and k=8.

3.2 Beyond Hypercomplex Adapters103

Prior work indicates that some of the information captured in pretrained models can be ignored for104

transfer [20, 21]. Similarly, redundancies have been observed in the information captured by adapters,105

with adapters in lower layers being less important [1]. In addition, sharing adapters across layers leads106

to a comparatively small drop of performance for some tasks [22]. Motivated by these insights, we107

propose the following two extensions to make hypercomplex adapters more efficient.108

Sharing information across adapters Sharing all adapter parameters across layers is overall109

too restrictive and is not able to perform on par with fine-tuning or using regular adapters [22];110

however, our decomposition of adapters intoAi andBi matrices as in Eq. (4) allows us to be more111

flexible. Consequently, we divide our adaptation weights into shared parameters that capture general112

information useful for adapting to the target task and adapter-specific parameters that focus on113

capturing information relevant for adapting each individual layer. Specifically, we defineAi as shared114

parameters that are common across all adapter layers whileBi are adapter-specific parameters.115

Low-rank parameterization Low-rank methods [13, 14] have demonstrated that strong performance116

can be achieved by optimizing a task in a low-rank subspace. Similarly, we hypothesize that a model117

can also be effectively adapted by learning transformations in a low-rank subspace. To this end, we118

propose to parameterize Bi ∈ R k
n×

d
n as a low-rank matrix, which is the product of two low-rank119

weights si∈R
k
n×r and ti∈Rr× d

n where r is the rank of the matrix.1 Putting both extensions together,120

we propose the low-rank parameterized hypercomplex multiplication layer (LPHM):121

W =

n∑
i=1

Ai⊗Bi=
n∑

i=1

Ai⊗(sit>i ). (5)

In general, we set r=1 so thatBi is a rank-one matrix. Depending on the complexity of the target122

task, r can be set to a higher value.2 Figure 3 illustrates our method. Overall, the LPHM layer reduces123

complexity further toO(k+d
n ) (see §4). The LPHM layer can also be seen as leveraging “slow” weights124

Ai that are shared across adapters and capture general information and “fast” weightsBi that learn125

adapter-specific information for adaptation of each individual layer [24].126

COMPACTER Based on the above formulation, we introduce COMPACTER layers, which replace127

the down-projection and up-projection layers in adapters as follows:128

Al(x)=LPHMU l

(GeLU(LPHMDl

(x)))+x,

where the up-projection weights LPHMU l

are computed as in (5), replacing the layer U l in (2).129

Similarly, down-projection weights LPHMDl

replace the layer Dl. While the two adapters in each130

1We do not factorize Ai as they are small, shared between all layers, and factorization hurts performance.
2If factors are over-parameterized, COMPACTER can be used for overcomplete knowledge distillation [23].
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layer of a transformer have their own si and ti rank-one weights, we share theAi across all layers131

and positions of the adapter layers.132

4 Parameter Efficiency133

In this section, we compare the number of parameters of COMPACTER with adapters.134

Adapters parameters In the standard setting, two adapters are added per layer of a transformer135

model [1]. Each adapter layer consists of 2kd parameters for the down and up-projection matrices (U l,136

Dl) respectively where k is the size of the input dimension and d is the adapter’s bottleneck dimension.137

The total number of parameters for adapters for a transformer model withL layers of both an encoder138

and a decoder is, therefore, 2L(2kd), which scales linearly with all three variables.139

PHM-ADAPTER parameters In the conventional PHM layer [17], as depicted in Eq. (4), parameters140

ofAi∈Rn×n andBi∈R
k
n×

d
n define the degree of freedom forW as n( kdn2 +n

2)= kd
n +n3. With the141

mild assumption that kd>n4, then kd
n dominates and the overall parameter size of the PHM layer in (4)142

isO(kdn ). This condition is satisfied for typical values for adapters, PHM layers, and large-scale PLMs143

such as T5-large, with hidden size k=1024, adapter hidden size d∈{24,32,48,96}, and n=2,4,8,12.144

Hence, the PHM layer offers a parameter reduction of almost 1
n compared to standard fully-connected145

layers, which areO(kd).3146

Similarly, employing PHM layers for modeling down and up-projection matrices offers a parameter147

reduction of almost 1
n . Each adapter with a PHM layer has in total 2(kdn +n3) parameters. For a148

Transformer model withL layers, the total number of parameters of PHM-ADAPTER is 4L(kdn +n3).149

COMPACTER parameters COMPACTER shares the trained weight matrices {Ai}ni=1 in (5) consisting150

of n3 parameters across all layers. COMPACTER also has two rank-one weights for each adapter,151

si,ti in (5) consisting of k
n+

d
n parameters, resulting in a total of 2( kn+

d
n ) parameters for down and152

up-projection weights. Therefore, the total number of parameters of COMPACTER is 4L( kn+
d
n )+n

3153

for a transformer withL layers in the encoder and decoder.154

In settings with a large number of layers, the dominant term is 4L( kn+
d
n ). Therefore, COMPACTER155

has a complexity of O(k+d
n ), which is far more efficient compared to adapters’ O(kd) and156

PHM-ADAPTER’s O(kdn ) complexity respectively. In settings where n is large, the number of157

parameters for shared weight matrices {Ai}ni=1 for all layers remain constant in COMPACTER with158

a total of n3 parameters while this scales linearly with the number of layers L for PHM and adapter159

layers. As an example, in the T5BASE model with 222M parameters [3], COMPACTER only learns160

0.047% of the parameters, and maintains comparable performance to full fine-tuning.161

5 Experiments162

Datasets Following Raffel et al. [3], we evaluate the performance of the models on the GLUE163

benchmark [18]. This benchmark covers multiple tasks of paraphrase detection (MRPC, QQP),164

sentiment classification (SST-2), natural language inference (MNLI, RTE, QNLI), and linguistic165

acceptability (CoLA).4 As the original test sets are not publicly available, we follow Zhang et al. [26]166

and split off 1k samples from the training set that we use for validation, while we use the original167

validation data as the test set. For datasets with fewer than 10k samples (RTE, MRPC, STS-B, CoLA),168

we divide the original validation set in half, using one half for validation and the other for testing.169

Experimental details We use the state-of-the-art encoder-decoder T5 model [3] as the underlying170

model for all methods in our experiments. For computational efficiency, we report all results on171

T5BASE models (12 encoder and decoder layers and 222M parameters). We use its HuggingFace172

PyTorch implementation [27]. We fine-tune all methods for 3 epochs on large datasets and 20 epochs173

for low-resource datasets of GLUE (MRPC, CoLA, STS-B, RTE) to allow the models to converge [26].174

For all adapter-based methods, we experiment with adapters of bottleneck size of {96,48,24}. We save a175

3Even for smaller models where the n4 term dominates, we observe a substantial reduction of parameters
compared to adapters.

4Following Devlin et al. [2], Raffel et al. [3], as a common practice, we do not experiment with WNLI [25]
due to its adversarial nature with respect to the training set.
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checkpoint every epoch for all models and report the results for the hyper-parameters performing the best176

on the validation set for each task. For the PHM layers, we use the PyTorch implementation of Le et al.177

[28]. We include low-level details in Appendix A. For our methods, we experiment with n={4,8,12}178

and report the model performing the best. We include the results for all values of n in Appendix B.179

Following Mahabadi et al. [29], we freeze the output layer of the pretrained model for all tasks across180

all methods.5 We show the results with fine-tuning the output layer in Appendix C. Following Houlsby181

et al. [1], we update the layer normalization parameters for all methods where applicable.6182

5.1 Baselines183

We compare against several recently proposed parameter-efficient fine-tuning methods:184

T5BASE We compare our method to the standard practice of fine-tuning T5, where we fine-tune all185

parameters of the model on each individual task.186

ADAPTER We compare to a strong adapter baseline [1], which adds adapters for each task after the187

feed-forward and attention modules in each transformer block of T5.188

PFEIFFER-ADAPTER Pfeiffer et al. [30] propose a more efficient adapter variant, which keeps only189

one of the adapters in each layer for better training efficiency. We experimented with keeping either190

adapter and found keeping the adapter after the self-attention module in each layer to perform the best.191

PROMPT TUNING Prompt tuning [12] is the successor variant of Li and Liang [10], which prepends192

a randomly initialized continuous prompt to the input (PROMPT TUNING-R). We also compare to193

a variant, which initializes prompts using token embeddings of the pretrained language model’s194

vocabulary (PROMPT TUNING-T) [12].195

INTRINSIC-SAID The Structure Aware Intrinsic Dimension [14] fine-tunes the model by reparame-196

terizing the parameters in a lower-dimensional subspace θd
′

(d′�D): θDi =θDi,0+λiPθ
d′−m
i where197

parameter θDi,0 are the pretrained model’s parameters andP ∈Rd′−m→RD is a random linear projec-198

tion via the Fastfood transform [31]. They then consider the total number of weight matrices in the PLM,199

m, and attribute a weight to each of them, resulting inλ∈Rm in total by tradingm parameters from200

the low dimensional space θd
′ ∈Rd′

. Then, the total trainable parameters are θd
′−m∈Rd′−m andλ.201

ADAPTERDROP We apply the method of Rücklé et al. [22], which drops the adapters from lower202

transformer layers for a better training efficiency to T5 with ADAPTER. Consequently, we drop203

adapters from the first five layers of both the encoder and the decoder in T5BASE.204

BITFIT Cai et al. [32] propose to freeze the weights and only train the biases. By not storing205

intermediate activations, this method enables substantial memory savings. Ravfogel et al. [33] study206

a similar method for PLMs that fine-tunes only the biases and the final output layer.7207

5.2 Our Methods208

PHM-ADAPTER We learn the weights of adapters using PHM layers as in (4). To our knowledge, we209

are the first who exploit the idea of PHM [17] for efficient fine-tuning of large-scale language models.210

COMPACTER We learn adapter weights using LPHM layers as described in (5). We also explore211

a variant where we only keep the COMPACTER layer after the feed-forward layer in each transformer212

block (COMPACTER++).8213

5.3 Results on the GLUE Benchmark214

Table 1 shows the results on GLUE. COMPACTER and COMPACTER++ outperform all previous215

parameter-efficient methods and perform on par with full fine-tuning while only training 0.07% and216

0.047% of parameters respectively. We now discuss the different methods in detail.217

5This is much more efficient as the output layer includes 11.1% of the parameters of T5BASE. Tasks are
formulated in a text-to-text format so the model can be applied to them without learning a new output layer [3].
We note that this is in contrast to the original adapter setting, which used an encoder-only masked PLM [1].

6For BITFIT, we only update the biases. For PROMPT TUNING, the entire model is frozen.
7Note that in the HuggingFace T5 implementation, the biases in layer normalizations, linear layers, the output

layer and self-attention layers are removed. We re-introduce these biases for BITFIT.
8We found this to slightly outperform keeping the COMPACTER layer after the self-attention layer instead.
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Table 1: Performance of all models on the GLUE tasks. For each method, we report the total number
of parameters across all tasks and the number of parameters that are trained for each task as a multiple
and proportion respectively of the corresponding T5BASE [3] model. For MNLI, we report accuracy
on the matched validation set. For MRPC and QQP, we report accuracy and F1. For STS-B, we report
Pearson and Spearman correlation coefficients. For CoLA, we report Matthews correlation. For all
other tasks, we report accuracy. Bold fonts indicate the best results. For the results with †, due to
insatiability during training, we restarted experiments with 6 random seeds and report the best. For
INTRINSIC-SAID, d′ is set to 20K.

Model #Total
params

Trained
params /
per task

CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg

Baselines

T5BASE 8.0× 100% 61.76 94.61 90.20/93.06 91.63/88.84 89.68/89.97 86.78 93.01 71.94 86.50
ADAPTER 1.065 0.832% 64.02 93.81 85.29/89.73 90.18/87.20 90.73/91.02 86.49 93.21 71.94 85.78
PFEIFFER-ADAPTER 1.032 0.427% 62.9 93.46 86.76/90.85 90.14/87.15 91.13/91.34 86.26 93.30 76.26 86.32
ADAPTERDROP 1.038 0.494% 62.7 93.58 86.27/90.60 90.2/87.25 91.37/91.61 86.27 93.23 71.22 85.85

PROMPT TUNING-R 1.003 0.034% 0.47† 87.61 68.14/81.05 88.93/85.55 90.25/90.59 46.83† 92.33 54.68 71.49
PROMPT TUNING-T 1.003 0.034% 10.59 90.94 68.14/81.05 89.69/86.14 89.84/90.21 81.46 92.75 54.68 75.95

INTRINSIC-SAID 1.0 0.009% 58.69 94.15 88.24/91.78 90.28/87.13 90.06/90.45 85.23 93.39 70.50 85.45
BITFIT 1.010 0.126% 58.16 94.15 86.76/90.53 90.06/86.99 90.88/91.26 85.31 92.99 67.63 84.97

Our Proposed Methods

PHM-ADAPTER (n=12) 1.013 0.179% 57.35 94.50 91.67/93.86 90.25/87.05 90.45/90.84 85.97 92.92 75.54 86.40

COMPACTER (n=4) 1.004 0.073% 63.75 93.00 89.22/92.31 90.23/87.03 90.31/90.74 85.61 92.88 77.70 86.62
COMPACTER++ (n=4) 1.002 0.047% 61.27 93.81 90.69/93.33 90.17/86.93 90.46/90.93 85.71 93.08 74.82 86.47

Adapter-based methods For ADAPTER, not fine-tuning the classifier hurts the performance sub-218

stantially (85.78 versus 86.48; cf. Appendix C). PFEIFFER-ADAPTER, which adds adapters only after219

the self-attention module outperforms the standard ADAPTER while being more parameter-efficient.220

ADAPTERDROP obtains lower performance than fine-tuning, demonstrating that adapting the lower221

layers of an encoder-decoder T5 model is important for its performance.222

Prompt tuning and BitFit For PROMPT TUNING, we observe high sensitivity to initialization and223

learning rate, as also confirmed in [10]. We experimented with multiple random seeds but performance224

lags behind fine-tuning substantially, in particular on low-resource datasets. This can be explained225

by the low flexibility of such methods as all the information needs to be contained in the prefixes. As226

a result, the method only allows limited interaction with the rest of the model and good performance227

requires very large models [12]. In addition, increasing the sequence length leads to memory overhead228

(see §5.4) and the number of prompt tokens is limited by the number of tokens that can fit in the model’s229

maximum input length, which makes such methods less flexible and unsuitable for dealing with large230

contexts. Similarly, BITFIT performs worse than fine-tuning, especially on low-resource datasets.231

Intrinsic-SAID Interestingly, the average performance of INTRINSIC-SAID, which fine-tunes only232

0.009% of a model’s parameters is only 1.05 points below the fine-tuning baseline. However, this233

method has two practical drawbacks: a) storing the random projection matrices results in a substantial234

memory overhead; b) it is very slow to train (see §5.4). Despite this, INTRINSIC-SAID provides235

insights regarding the effectiveness of low-rank optimization of pretrained language models [14],236

which motivate the development of parameter-efficient methods such as COMPACTER.237

COMPACTER For our proposed methods, we observe fine-tuning the output layer for both238

PHM-ADAPTER and COMPACTER++ does not provide much performance difference (see Appendix239

C). PHM-ADAPTER reduces the parameters of ADAPTER from 0.83% to 0.179% (with n=12), being240

4.64×more parameter-efficient. COMPACTER reduces the number of parameters to the remarkable241

rate of 0.073% while obtaining comparable results to full fine-tuning. By removing the COMPACTER242

layer after self-attention, COMPACTER++ obtains similar performance, while reducing the parameters243

to 0.047%. Adaptation without updating the layer normalization can be a promising direction to reduce244

the parameters further, for instance by building on recent advances in normalization-free models [34],245

which we leave to future work.246

5.4 Efficiency Evaluation247

In this section, we compare the efficiency of our proposed methods with various recently proposed248

parameter-compact fine-tuning methods under the same computation budget. To this end, we train249

all methods for 1 epoch on the MNLI dataset. For each method, we select the largest batch size that250
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Table 2: Percentage of trained parameters per task, average peak memory and training time for all
methods. ∆% is the relative difference with respect to full fine-tuning (T5BASE). Lower is better.

Model Trained params/
per task

Memory
(MB) ∆%

Time/Epoch
(min) ∆%

T5BASE 100% 167.99 — 42.13 —
ADAPTER 0.832% 124.02 -35.45% 31.81 -24.50%
PFEIFFER-ADAPTER 0.427% 118.4 -41.88% 28.19 -33.09%
ADAPTERDROP 0.494% 119.41 -40.68% 28.08 -33.35%
PROMPT TUNING 0.034% 222.27 24.42% 44.54 5.72%
INTRINSIC-SAID 0.009% 285.40 41.14% 144.01 241.82%
BITFIT 0.126% 102.31 -64.20% 27.36 -35.06%

PHM-ADAPTER 0.179% 123.93 -35.55% 35.55 -15.62%
COMPACTER 0.073% 123.91 -35.57% 36.48 -13.41%
COMPACTER++ 0.047% 118.35 -41.94% 30.96 -26.51%

fits a fixed budget of the GPU memory (24 GB). For all adapter-based methods, we fix the adapter251

size to 24. For PROMPT TUNING, we set the number of prefix tokens to 100. For INTRINSIC-SAID,252

we set d′=1400. Finally, we set n=4. In Table 2, we report the percentage of trained parameters253

per task, training time per epoch, and per-sample memory usage of each method.254

Figure 1 shows the trade-off between quantitative performance, percentage of trained parameters,255

and memory footprint. Our approaches have several attractive properties. Based on our analysis in256

Table 1, COMPACTER and COMPACTER++ obtain the best combination of high GLUE score averaged257

across all tasks, plus a substantially lower number of parameters (0.073% and 0.047% respectively).258

In addition to COMPACTER++ performing well, its memory requirement is the second best among all259

methods, reducing memory usage by -41.94% compared to T5BASE. COMPACTER and COMPACTER++260

also speed up training substantially, by -13.41% and -26.51% relative to T5BASE. On the other hand,261

BITFIT, by not storing intermediate activations, has the lowest memory requirement (-64.2% relative262

to T5BASE) and is the fastest (-35.06% relative to T5BASE) at the cost of lower quantitative performance263

(1.53 points lower; see Table 1).264

Methods relying on pruning adapters, i.e., PFEIFFER-ADAPTER and ADAPTERDROP reduce the265

memory overhead and improve training time. However, their number of parameters is almost an266

order of magnitude more compared to COMPACTER++, with 9.1× and 10.5× more parameters267

respectively. Moreover, although, PFEIFFER-ADAPTER performs on par with full fine-tuning with268

a slight degradation (Table 1), ADAPTERDROP obtains a lower performance (-0.65 less on average269

across all tasks.) We note that dropping adapters from transformer layers is a general technique and270

could be applied to COMPACTER for improving efficiency even further, which we leave to future work.271

At the other end of the spectrum, INTRINSIC-SAID and PROMPT TUNING methods have the272

lowest number of parameters. However, they both come with high memory overhead (41.14% and273

24.42% relative to full fine-tuning (T5BASE) respectively), are slowest to train, and their performance274

substantially lags behind full fine-tuning (see Table 1). For PROMPT TUNING, high memory costs275

are due to the fact that the computational complexity of self-attention, which requires storing the full276

attention matrix for gradient computation, scales quadratically with the sequence length [35]. For277

INTRINSIC-SAID, the high memory requirement is due to storing large random projection matrices,278

which limits the application of INTRINSIC-SAID for fine-tuning large-scale PLMs. Moreover,279

computing projections via FastFood transform, although theoretically possible in O(Dlogd′) [31],280

is slow in practice even with a CUDA implementation. For pretrained language models with a large281

number of parameters, allocating random projections for the full parameter space is intractable. While282

using Fastfood transform partially ameliorates this issue by reducing the memory usage fromO(Dd′)283

toO(D), the memory issue with such methods remains unresolved.284

Overall, given the size of large-scale transformer models with millions and billions of parameters, such285

as T5 [3], efficient memory usage is of paramount importance for practical applications. COMPACTER286

and COMPACTER++ offer a great trade-off in terms of performance, memory usage, and training time.287

With regard to our inspiration of von Neumann’s quotation, we thus find that only a comparatively288

small number of additional parameters are necessary for the practical and efficient adaptation of PLMs.289
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Figure 4: Results on GLUE for the various number of training samples per task
(100,500,1000,2000,4000). We show mean and standard deviation across 5 seeds.

5.5 Low-resource Fine-tuning290

COMPACTER++ has substantially fewer parameters compared to T5BASE. In this section, we investigate291

whether this could help COMPACTER++ to generalize better in resource-limited settings. We subsample292

each dataset of GLUE for varying sizes in the range {100,500,1000,2000,4000}. Figure 4 shows the293

results. COMPACTER++ substantially improves the results in the low-resource setting, indicating more294

effective fine-tuning in this regime.295

6 Related Work296

Adapters Adapters have recently emerged as a new paradigm for fine-tuning pretrained language mod-297

els [1]. In another line of work, Üstün et al. [36] proposed a multilingual dependency parsing method298

based on adapters and contextual parameter generator networks [37], where they generate adapter299

parameters conditioned on trained input language embeddings. This, however, leads to a large number300

of additional parameters compared to the base model. Contemporaneously, Mahabadi et al. [29] use a301

single compact hypernetwork allowing to generate adapter weights efficiently conditioned on multiple302

tasks and layers of a transformer model. The aforementioned work is complementary to COMPACTER,303

and one could potentially combine COMPACTER with contextual parameter generation to generate304

adapter modules. Compared to Mahabadi et al. [29], COMPACTER++ reduces the parameters by 6.2×.305

Hypercomplex representations Deep learning advances in the hypercomplex domain are in a nascent306

stage, and most work is fairly recent [38, 39, 40, 41, 42]. Replacing matrix multiplications in standard307

networks with Hamilton products that have fewer degrees of freedom offers up to a 4× saving of param-308

eter size in a single multiplication operation [40, 42]. Very recently, Zhang et al. [17] extend such meth-309

ods in a way that they could reduce the parameters of a fully connected layer under a mild assumption to310

1/n, where n is a user-specified parameter. To the best of our knowledge, there is no previous work that311

attempts to leverage the hypercomplex space for efficient fine-tuning of large-scale language models.312

Other parameter-efficient models Li et al. [13] and Aghajanyan et al. [14] study training models313

in a low-dimensional randomly oriented subspace instead of their original parameter space. Another314

recent line of work has shown that pretrained models such as BERT are redundant in their capacity,315

allowing for significant sparsification without much degradation in end metrics [43, 44, 45]. Such316

methods, however, remain not well supported by current hardware and often perform worse compared317

to dedicated efficient architectures [46].318

7 Conclusion319

We have proposed COMPACTER, a light-weight fine-tuning method for large-scale language models.320

COMPACTER generates weights by summing Kronecker products between shared “slow” weights321

and “fast” rank-one matrices, specific to each COMPACTER layer. Leveraging this formulation,322

COMPACTER reduces the number of parameters in adapters substantially from O(kd) to O(k+d
n ).323

Through extensive experiments, we demonstrate that despite learning 2127.66× fewer parameters324

than standard fine-tuning, COMPACTER obtains comparable performance in a full-data setting and325

outperforms fine-tuning in data-limited scenarios.326
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