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Abstract

Abstract reasoning, as one of the hallmarks of human intelligence, involves col-1

lecting information, identifying abstract rules, and applying the rules to solve new2

problems. Although the neural networks have achieved human-level performances3

in several tasks, the abstract reasoning techniques still far lag behind due to the4

complexity of learning and applying the logic rules, especially in an unsupervised5

manner. In this work, we propose a novel framework, ARII, that learns rule rep-6

resentations for Abstract Reasoning via Internal Inferences. The key idea is to7

repeatedly apply a rule to different instances in hope of having a comprehensive8

understanding (i.e., representations) of the rule. Specifically, ARII consists of a9

rule encoder, a reasoner, and an internal referrer. Based on the representations10

produced by the rule encoder, the reasoner draws the conclusion while the referrer11

performs internal inferences to regularize rule representations to be robust and12

generalizable. We evaluate ARII on two benchmark datasets, including PGM and13

I-RAVEN. We observe that ARII achieves the new state-of-the-art records on the14

majority of the reasoning tasks, including most of the generalization tests in RPM.15

In particular, ARII beats the previous best models by 23.2% on the generalization16

test of held-out attribute pairs on RPM.17

1 Introduction18

Abstract reasoning, the ability to extract patterns and rules from concrete instances and apply them19

to solve new problems, is one of the hallmarks of human intelligence. It is a critical topic to endow20

neural networks with the capacity of abstract reasoning on the road from artificial intelligence (AI) to21

human-like intelligence. As “thinking in pictures” is one of the most effortless and natural ways for22

humans to perform inference, Raven’s Progressive Matrices (RPM) test [1] is a widely accepted task23

to evaluate AI’s reasoning ability. As shown in Fig 1, a RPM problem contains an incomplete 3× 324

matrix where the bottom-right entry is missing. The subjects are aware of that the rows in the matrix25

implicitly share identical rules and are asked to pick the suitable answer from the choices that would26

best complete the missing entry. Considering that the RPM test is shown to be highly correlated with27

real intelligence [2] in cognitive and psychological science, AI community recently presents a huge28

interest in this task to explore the model’s capacity of abstract reasoning [3, 4, 5, 6, 7].29

In the early years, computational models for RPM usually assume the access to the symbolic30

representations of the images and thus solve RPM with heuristics. Recently, various neural networks31

are proposed to accomplish abstract reasoning with the help of the abundant reasoning data (such as32

PGM [5], RAVEN[7], I-RAVEN [8]). These models mainly treat the RPM problem as a classification33

task for multiple choice panels based on the rules hidden in rows or columns. For example, CoPINet34

[9] develops a contrastive perceptual inference network to improve the feature extraction capacity [7].35
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Figure 1: An example of RPM problem and the general solution of this work.

SCL designs compositions of neural networks according to the specific characteristics of the RPM36

problems (e.g., the number of the attributes) [10].37

Although existing models have achieved impressive performance on abstract reasoning, the critical38

capacity, i.e. generalization to different environments remains unsolved [5, 11, 12, 13]. In particular,39

Małkiński [14] report that, the performances of the current models would significantly decrease even40

if the test images changes slightly [5, 11, 12, 13]. For example, a generalization regime (i.e., an41

evaluation task) in the PGM dataset is extrapolation, where the model is trained on the images with42

color or size restricted to the lower half of the value set and tested on images taking these values from43

the upper half. MLRN [13] achieves nearly perfect accuracy in the normal test of the PGM dataset,44

but fails completely in the extrapolation regime, yielding only slightly above chance. This reveals45

that these models are just overfitted to the specific data rather than mastering the reasoning essence,46

reflected by low generalization to distracting features [15].47

This paper provides a novel framework that ameliorates the reasoning generalizability by learning48

a robust rule representation. To achieve it, we make two assumptions of the rule representation for49

abstract reasoning. On the one hand, we assume the space of the abstract rules is finite and usually50

not large. Thus, we propose a rule encoder that produces discrete rule representations by vector51

quantisation [16]. On the other hand, we assume the rule representation should be invariant to specific52

instances or distracting features. In human reasoning, people usually apply an abstract rule to different53

instances for several times to deepen the understanding of the rule. We mimic this cognitive process54

by introducing an internal inference process based on the learned rule representations. Specifically,55

we randomly mask one panel of the first two rows and ask the referrer to infer the masked panel56

based on the rule representation. We perform the internal inference for multiple times to make the57

rule representation invariant to specific instances. Based on these instance-invariant representations,58

we apply another neural network to make conclusions according to the specific context images.59

Therefore, we call our model ARII, the abbreviation of “abstract reasoning via internal inferences.”60

We first conduct comprehensive empirical experiments on the I-RAVEN [8] datasets. Compared61

with the current state-of-the-art models (e.g., SCL [10] and CoPINet [9]), experiments show that our62

model achieves new records on four of the seven single training tasks in the I-RAVEN datasets. As63

the generalization tests can better reflect the real reasoning ability of a model, we also evaluate ARII64

on the seven generalization regimes of the PGM dataset and observe that ARII outperforms the other65

competing method in the five regimes. In particular, ARII beats the previous best models by 23.2%66

on the generalization test of held-out attribute pairs on PGM.67

To summarize, this work makes three contributions as follows:68

• We propose a novel framework that learns rule representations for abstract reasoning by69

internal inferences. In particular, we introduce a rule encoder to produce discrete rule70

representations by vector quantisation. We design an internal inference process to learn an71

instance-invariant and robust rule representation.72

• Our model achieves superior results to state-of-the-art methods on the majority of tasks (four73

out of seven) on I-RAVEN and better generalization performance on most PGM regimes.74

2



• Visualization results on the rule representations indicate that the learned representations75

can be automatically clustered with respect to the rule categories. Deep analysis shows that76

we can identify some features in the discrete representations for a specific reasoning rule,77

validating that the representations are interpretable and instance-invariant. By virtue of these78

characteristics, we could further explore the composition of the abstract rules in future work.79

2 Related Work80

RPM problems are firstly investigated in the cognitive science community to better understand81

intelligence, and many computational models are proposed to address this test since 1990s. Carpenter82

et al. [2] develop a production system that takes hand-coded textual descriptions of problems as input83

and predicts the answer. In addition, Lovett et al. [17] combine spatial representations with analogical84

comparison via structure-mapping to solve the PRM problems. Overall, these cognitive models85

mainly adopt hand-craft or symbolic representations for the rules and images, and solve specific86

problem sets1 with only a limited number of hand-craft instances in cognitive science [17, 19, 20].87

Recently, RPM problems have gained a lot of attention in the AI field to explore abstract reasoning88

capability. The Procedurally Generating Matrices (PGM) dataset [5] together with the Relational89

and Analogical Visual rEasoNing (RAVEN) dataset [7] expands the size of RPM instances through90

automatic generation algorithms, serving as the benchmark datasets for deep learning network to91

study abstract reasoning. However, Hu et al. [8] found severe defects (a short cut for predictions)92

existing in the RAVEN dataset and create an unbiased version called I-RAVEN dataset to solve it.93

Therefore, we evaluate our method on the PGM and I-RAVEN datasets rather than RAVEN.94

Based on the above datasets, various end-to-end approaches have been proposed to study the abstract95

reasoning ability. The typical architectures in computer vision, that simply use CNN as visual feature96

extractor followed by MLP [3] or LSTM [5, 21] to process the features from all the image panels,97

are shown to lack the reasoning ability and struggle in the RPM test. To improve the reasoning98

capacity, Relation Network [22] is equipped and extended in many models, including Wild Relation99

Network [5], Multi-scale Relation Network [23], Multi-Layer Relation Network [13].100

Although the above models obtain elegant performance on the RAVEN and I-RAVEN datasets, they101

still fail to achieve satisfactory generalization results on the PGM dataset, reflecting the overfitting102

issue of these reasoning models. Auxiliary training with additional labels [24, 11, 15] is there-103

fore utilized to develop representations that are more amenable to generalization by informing the104

meta-targets which encode relevant relations and attributes. However, it requires additional prior105

information, which is not a general way to address the reasoning problem.106

3 Methodology107

3.1 Problem formulation108

Raven’s Progressive Matrices (RPM) is a well-known IQ test [1, 18] to measure the reasoning ability109

of humans. The RPM test is conducted on a 3×3 matrix where the rows or columns comply with an110

identical rule. Subjects are presented with an incomplete matrix where an entry on the third row is111

missing, and are asked to select a candidate answer from the choice set to complete the matrix.112

Formally speaking, a RPM problem contains 16 image panels X = {xi}16i=1 divided into 8 context113

images Xc = {xi}8i=1 and 8 candidate answer images Xa = {xi}16i=9. The 8 context images are114

placed in a 3× 3 matrix with the last element blank. For each particular data point, the three rows in115

the matrix implicitly share the identical abstract rule. Given the X , the machine is asked to select a116

candidate answer image from Xa to best complete the matrix (i.e. adhering to the underlying abstract117

rule in context images). The correct answer is denoted by x∗, where x∗ ∈ Xa.118

3.2 The ARII model119

We introduce a novel framework with internal inferences to solve RPM problems. In particular,120

our model consists of three modules: the rule encoder, the reasoner, and the internal inferrer. The121

1Standard Progressive Matrices [18] contains 60 problems
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rule encoder induces the rule representation from the context matrix. The inferrer performs internal122

inferences to regularize the rule representations to be robust and instance invariant. The reasoner123

draws the reasoning conclusion based on the rule representations. The rest of this section elaborates124

on these components and the training process.125

3.3 Rule encoder126

To tackle this reasoning problem, an ideal reasoning process is to figure out the underlying rule based127

on the given context images. To achieve this, we aim to learn the rule representations r using an128

effective encoder. In principle, the rule can be extracted from particular row of images. But the above129

extraction has the potential to make mistakes since a single row of images may satisfy multiple rules.130

Therefore, to guarantee the adequate information for rule extraction, we propose to encode the first131

two rows of images to represent the underlying rule, given by132

r1&2 = RuleEnc({xi}6i=1), (1)
where r1&2 stands for the representation of the rule underlying the first two rows in the given matrix.133

xi is the i-th image panel in a PRM problem and the first to the sixth image panels constitute the first134

two rows of the matrix. Rule-Enc stands for the rule encoder in the ARII model. In the rest of this135

section, we first obtain the image encodings and then build the rule representations based on the the136

encodings of the involved images.137

Image encodings. As each row contains three separated images, we adopt convolutional neural138

network (CNN) blocks to get the feature map (f ) for each image separately.139

fi = CNN(xi), i = 1, 2. . . , 6. (2)
Once we get the feature map, we further fuse the features of different positions in the feature map.140

Intuitively, the rule of RPM is highly correlated with visuospatial ability [25] and usually lies in the141

same position of different panels. Therefore, we first divide the feature map into multiple groups;142

each group can be considered to contain information from a certain position. Then we apply a fully143

connected layer (FC) to each group to further extract group features, and concatenate the group144

features into output features, computed by145

zi = ImageEnc(xi) = ||Kz

k [FC(fk
i )], i = 1, 2. . . , 6, (3)

where || stands for the concatenation operation of the vectors. fk
i is k-th group features after splitting146

original fi into Kz groups. Similar to the scattering transformation in SCL [10], the group features147

{fk
i } are divided evenly from the feature map fi. Finally, the Kz new groups of the features are148

concatenated (denoted by ||Kz

k ) to obtain the i-th image encodings zi.149

Continuous rule representations. Next, the rule encoder fuses the image encodings and extracts the150

rule representations. Similar to the processing of images, we extract the relation corresponding to the151

different positions of the six image encodings as Fig 2. Specifically, the encodings of six images are152

first divided into Kr groups independently. The groups at the same location in six image encodings153

are combined together and fed into a fully connected layer to further extract the relation feature.154

Finally, the multiple relation features are merged to form rule features as follows:155

rc = ||Kr

k [FC(||6i=1z
k
i )], (4)

where zk
i is the k-th group of the i-th image encodings zi. ||6i=1z

k
i means six k-th group features156

from embeddings are concatenated, and fed into a fully connected layer (FC) to get the k-th relation157

features. We further merge the Kr relation features and obtain the continuous rule representations rc.158

Discrete rule representations. Note that the above rule representations rc are continuous variables,159

and are dependent on the specific instances. In this work, we suppose that the underlying rules should160

be independent of the specific instances and can be reused in different problems which share the same161

rules. Based on this assumption, the discrete and finite representations are more suitable to describe162

abstract rules.163

Therefore, we propose to discretize the latent representations of the rules via vector quantisation (VQ)164

[16]. In particular, the rule encoder maintains a discrete codebook E ∈ RKe×D. Ke is the number of165

the discrete code, and D is the dimensionality of each discrete code Ek. We measure the L2 distance166

between the continuous representation rc and code vectors in the codebook. For each vector rlc in167

rc ∈ RKr×D, where Kr is the number of the continuous vector and D is the dimensionality of each168

continuous vector rlc, the code vector that yields the minimum distance is taken to obtain the discrete169
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Figure 2: The architecture of ARII.

rule representation ql. The detailed computations are170

ql = Ek, where k = argmin
j∈{1,...,Ke}

∥rlc − Ej∥2, (5)

where ql is the closest quantized vector for the continuous vector rlc. Via vector quantisation, we can171

find the closest code for the given continuous rule representations, i.e.,172

r1&2 = RuleEnc({xi}61) = ||Kr

l=1[ql]. (6)
To make the above vector quantisation work, we need to train both the neural networks and the173

codebook in the rule encoder towards the minimum of the distance between the continuous and174

discrete representations. The objective function of vector quantisation for a particular data point is175

J vq(Xc) = ||rc − tru(r1&2)||22 + ||tru(rc)− r1&2||22, (7)
where tru(·) performs the gradient truncation during forward computation. In this way, we can derive176

the discrete rule representations, which is expected to be interpretable and instance-invariant.177

3.4 Reasoner178

The reasoner is to draw conclusions (i.e., the selection of answer images) based on the extracted rule179

and the specific context (i.e., the images on the third row). That is, the reasoner applies the extracted180

rule to the third row and figure out which candidate answer could best complete the missing entry.181

According to this standard, we therefore extract the rule that the third row implicates. Since we have182

8 candidate answer images (i.e., Xa), there are 8 rules for the third row with the different answer183

images in the missing entry. However, the rule encoder is designed to take two rows of images as184

inputs and yield the rule representations. Therefore, we combine the third row with the first row to185

derive the rule that these two rows implicitly share, computed by186

rj1&3 = RuleEnc({xi|i = 1, 2, 3, 7, 8, j}), j = 9, . . . , 16 (8)

where rj1&3 denotes the rule representations of the rule underlying the first and the third row when the187

third row is completed with the j-th answer image. Similarly, we can obtain the rule representations188

of the rule underlying the second and third row, given by189

rj2&3 = RuleEnc({xi|i = 4, 5, 6, 7, 8, j}), j = 9, . . . , 16 (9)
Based on the derived rule representations for the third row, the reasoner next measures the similarity190

between these rule representations and the reference rule (i.e., r1&2) and selects the most similar one191

as the prediction. In particular, the reasoner measures the similarity of two rules by calculating the192

inner product of the corresponding representations. For example, the similarity between the rule r1&3193

and the reference rule is calculated by194

sim(rj1&3, r1&2) =
er

j
1&3·r1&2∑16

i=9 e
rj
1&3·r1&2

, j = 9, . . . , 16, (10)
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where sim(·) is the similarity function of two rule representations. Similarly, the reasoner derives the195

similarity between the rule r2&3 and the reference rule by196

sim(rj2&3, r1&2) =
er

j
2&3·r1&2∑16

i=9 e
rj
2&3·r1&2

, j = 9, . . . , 16. (11)

Based on the similarities between individual rules, the reasoner then predicts the candidate answer y.197

y = max
j∈{9,...,16}

1

2
[sim(rj1&3, r1&2) + sim(rj2&3, r1&2)]. (12)

For the optimization of the reasoner, we adopt the cross entropy loss to guide the reasoner make198

select the correct answer images, given by199

J re(X) = −1

2
[log sim(r∗1&3, r1&2) + log sim(r∗2&3, r1&2)] (13)

3.5 Internal inferences200

Human usually apply an abstract rule to different instances for several times to deepen the under-201

standing of the rule. We mimic this cognitive process by performing internal inferences based on the202

rule representations. In the internal inference, we introduce another reasoner to address the reasoning203

task on the two rows of images when the rule representations are available. In this way, our method204

ARII could also better “understand” the rule and have more robust rule representations.205

In particular, the first and second rows are used in internal inference process. We first extract the rule206

representations r1&2 of these rows and then randomly mask one of the six images {xi}6i=1 by a white207

blank image. We coin the blank image as x̂m, where m is the index of the masked images. Thus, the208

masked two rows can be expressed by209

Im = {xi|i ∈ {1, 2, 3, 4, 5, 6}\m} ∪ {x̂m} (14)
where {1, 2, 3, 4, 5, 6}\m stands for a set excluding the index m and we insert blank image x̂m in210

the original m-th position. Next, we introduce another neural network named inferrer that takes the211

rule representations and the encodings of the images in the masked two rows as inputs, and predicts212

the masked image.213

x̃m = Inferrer(ImageEnc(Im), r1&2), (15)
where Inferrer is another CNN model. x̃m stands for the predicted image for the incomplete rows,214

and ImageEnc(Im) derives the encoding of Im by Equation 2 and 3. To avoid using additional data215

in our internal inference, we formulate the above prediction as to the generation process. That is to216

say, the inferrer aims to generate the masked image xm at the pixel level.217

In addition, we repeat the above internal inferences for 6 times by masking each image to learn more218

robust rule representations. We adopt mean squared error (MSE) as the objective function to optimize219

the inferrer as well as the rule encoder. In this way, we obtain the overall objective function J if by220

collecting the predictions of these internal inference processes, given by221

J if(Xc) =
1

6

6∑
m=1

||xm − x̃m)||22 (16)

3.6 Optimization of ARII222

As introduced in the section on problem formulation, the major goal of our method ARII is to select a223

candidate answer image for the incomplete matrix as accurately as possible (as shown in Equation 13).224

In the meanwhile, we assume the rule representations are discrete and can be reused in internal225

inferences. That is, apart from the major goal, we have two additional objectives, i.e., the objective of226

the vector quantisation process and the objective of the internal inferences. Therefore, we combine227

these three objectives together for the optimization of the individual components of ARII, given by228

J =
∑
X∈D

λreJ re(X) + λvqJ vq(Xc) + λifJ if(Xc), (17)

where the context images Xc is parts of the given data point X and D is the dataset. λre, λvq and λif229

are the three hyper-parameters that coordinates the importance of the components in ARII.230
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Table 1: Test accuracy of individual models on I-RAVEN.
Test Accuracy (%)

Model Average Center 2×2 Grid 3×3 Grid L-R U-D O-IC O-IG

LSTM [7] 12.5 12.3 13.3 12.8 12.7 10.3 12.9 13.1
WReN [5] 17.8 23.3 18.1 17.4 16.5 15.2 16.8 17.3
CNN+MLP [5] 12.9 12.9 13.2 12.7 11.5 13.5 12.9 13.7
Resnet-18 [7] 14.5 20.8 12.9 14.3 13.2 13.4 13.8 12.9
LEN [15] 28.4 42.5 21.1 19.9 27.6 28.1 32.9 27.0
CoPINet [9] 38.6 50.4 30.9 28.5 40.0 40.8 42.7 36.9
SCL [10] 85.4 99.8 72.4 64.2 99.5 99.4 98.6 64.2
Ours 91.1 98.9 88.2 78.9 97.8 90.3 98.7 85.1

4 Experiment231

4.1 Datasets232

PGM. Each matrix in PGM is governed by abstract rules, which are sampled from a rule set233

R = {[s, o, a] : s ∈ S, o ∈ O, a ∈ A}, where S, O, A are primitive sets of relations, objects and234

attributes, respectively. S = {progression, XOR, OR, AND, consistent union}, O = {shape, line},235

A = {size, type, color, position, number}. There are eight regimes in PGM. The easiest one is236

called neutral where the training and test set are sampled from the same distribution, and the237

others are generalization regimes where the training and test data differ in the pre-defined ways.238

The generalization regimes consists of seven variants: interpolation, extrapolation, held-out triples239

(H.O.Triples), held-out attribute pairs (H.O.A.P.), held-out pairs of triples (H.O.T.P.), held-out shape-240

colour (H.O.S-C) and held-out line-type (H.O.L-T). More details can be found in Barrett et al. [5].241

RAVEN and I-RAVEN. The RAVEN and I-RAVEN datasets are extensions to PGM. They share242

an identical set of attributes but differ in the following attributes: progression, constant, union and243

arithmetic. I-RAVEN is adapted from RAVEN dataset for its biased answer sets which may lead to a244

shortcut solution that only candidate answers can yield accurate answers [8].245

4.2 Competing methods246

We compare our model with several state-of-the-art models, including CNN + LSTM [5], ResNet-247

based [26] image classifier, Wild ResNet [5], Wild Relation Network (WReN) [5], Contrastive248

Perceptual Inference network (CoPINet) [9], Logic Embedding Network (LEN) [15], Scattering249

Compositional Learner (SCL) [10], Stratified Rule-Aware Network (SRAN) [8], Multi-scale Relation250

Network (MRNet) [23], and Multi-Layer Relation Network (MLRN) [13]. Note that our model is251

trained end to end and needs solely the ground truth answer label without auxiliary information. We252

report the result of the baseline models without auxiliary loss for fair comparison.253

4.3 Experiment setup254

In ARII, the convolutional block used in rule encoder is 4-layer CNN with kernel size 3 and channels255

of {16, 16, 32, 32}. The group number Kz for extracting image encodings is 10. The number of256

codes Kr in the rule representation is set to 80. The dimensions of the codebook E are Ke = 512 and257

D = 5. The inferrer is another CNN block (3-layer CNN with kernel size 3 and channels {64, 32, 1})258

with upsampling techniques. During training, the weights in the objective function {λre, λvq, λif} are259

sampled from either {1, 1, 1} or {0.1, 0.1, 0.8}.260

In our experiments, we first evaluate the models’ reasoning ability I-RAVEN since it is easier than261

PGM. Then we the measure generalization capacity of reasoning on each regimes of PGM. For262

model training, we use single training setting [10], where the model is trained and tested on each263

configuration or regime separately. Since the rules in PGM exist in either rows or columns, we264

transpose the context matrix of all problems in PGM and add them for training and testing to fit our265

row-wise setting of rule encoder.266

4.4 Results267

Table 1 shows the test performance of individual models on I-RAVEN dataset. We observe that the268

typical architectures in computer vision, that simply uses CNN as visual feature extractor followed269
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Table 2: Test accuracy of different models on PGM
Test Accuracy (%)

Model Neutral Interpolation H.O.A.P. H.O.T.P. H.O.Triples H.O.L-T H.O.S-C Extrapolation

CNN MLP [5] 33.0 - - - - - - -
CNN LSTM [5] 35.8 - - - - - - -
ResNet-50 [5] 42.0 - - - - - - -
Wild-ResNet [5] 48.0 - - - - - - -
CoPINet [9] 56.4 - - - - - - -
WReN β = 0 [5] 62.6 64.4 27.2 41.9 19.0 14.4 12.5 17.2
VAE-WReN [27] 64.2 - 36.8 43.6 24.6 - - -
MXGNet β = 0 [11] 66.7 65.4 33.6 43.3 19.9 16.7 16.6 18.9
LEN β = 0 [15] 68.1 - - - - - - -
DCNet [12] 68.6 59.7 - - - - - 17.8
T-LEN β = 0 [15] 70.3 - - - - - - -
SRAN [8] 71.3 - - - - - - -
Rel-Base [28] 85.5 - - - - - - 22.1
SCL [10] 88.9 - - - - - - -
MRNet [23] 93.4 68.1 38.4 55.3 25.9 30.1 16.9 19.2
MLRN [13] 98.0 57.8 - - - - - 14.9
Ours 88.0 71.6 61.6 58.6 30.5 20.1 15.4 31.6

Table 3: Ablation study on two regimes in PGM
Regime w/o discretization w/o internal inference w/o both ARII

Interpolation 60.3 42.4 38.5 71.6
H.O.A.P 42.7 32.2 32.6 61.6

by MLP or LSTM, fail to yield satisfactory reasoning results. More advanced models for abstract270

reasoning such as LEN and SCL significantly improve the performance. In particular, the previously271

state-of-the-art model SCL achieves nearly 100% accuracy on the configurations of Center, L-R, U-D,272

and O-IC, but SCL could not make similar success on the other configurations. We conjecture that273

the reasoning complexity of these four configurations are relative low and easy. As for our method,274

ARII performs similarly to SCL on the above four configurations but largely outperforms it on the275

other three more difficult configurations, leading to a notably higher average score on I-RAVEN.276

In addition, Table 2 presents the performance on the PGM dataset. For the neutral regime, our model277

achieves decent result that is better than majority of baseline models, although it does not outperform278

state-of-the-art models such as MRNet and MLRN. Note that MLRN achieves near perfect accuracy279

in the neutral regime due to the sophisticated design which could not applied to other problems. For280

example MLRN draw on magnitude encoding to describe the intensities of the grayscale images.281

More importantly, neutral regime is not our main focus of metric, since it could hardly indicate the282

reasoning ability and generalization towards real intelligence.283

PGM also allows us to investigate the generalization capacity of the models under various regimes.284

We observe from Table 2 that although MLRN achieves superior performance on neutral, it is285

prone to overfitting and performs poorly on the interpolation and extrapolation regimes, clearly286

indicating MLRN is overfitted to the neutral setting. On the contrary, the proposed internal inference287

in ARII severs as the regularities of the rule representations, making the rule representations robust288

and instance-invariant. As a result, our model outperforms all other methods on five of the seven289

generalization regimes (except for Held-out shape-colour and Held-out line-type) in PGM dataset.290

In particular, the accuracy of ARII increases by a sizable margin over the baselines in the Held-out291

Attribute Pairs and Extrapolation regimes (above 20% and nearly 10% respectively), further validating292

the superior general ability of abstract reasoning.293

4.5 Ablation study294

We analyze ARII in more detail to validate the effectiveness of the proposed components on two295

regimes in the PGM dataset (Table 3). In the interpolation regime, we first evaluate the effectiveness296

of discrete representation. The result of ARII without discretization decreases largely by around297

10%, which shows the discrete representation plays its role in generalization of abstract reasoning.298

The performance is also largely declined by around 30% when the internal inference is removed,299

suggesting that the internal inference is indeed vital to learn a more robust rule representation for300

abstract reasoning. Similar results can be found in H.O.A.P. regime.301
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Figure 3: Visualization of rule embeddings extracted rule encoder.
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Figure 4: The selected frequency of code in the representations of the rules.

4.6 Visualization of rule representations302

Then, we try to validate whether ARII has learned the instance-invariant representations. We first303

obtain all the rule representations in the test set of the interpolation regime of PGM, and use the304

representations derived from the problems which contain only a single rule (i.e., a triple {[s, o, a]}).305

The rule representations are projected to 2D space by t-distributed stochastic neighbor embedding306

(t-SNE) [29] in Fig 3. We observe that the rule representations are clustered according to individual307

rule triples. Note that these clusters for each rule are formed without supervision of the rule labels.308

And the representations are extracted from the generalization test set and has a different distribution309

from the training set. The clustered representations show that these rule representations are universal310

and independent to the specific instances, even to the out-of-distribution brand new instances.311

Taking one step further, we investigate whether the discrete rule representation is interpretable. In312

particular, we want to see the composition of the representations for each specific rule. Here, we take313

the rules related to the line object and the color attribute (totally five rules, i.e., [s ∈ S, line, color],314

denoted by the [·,line, color] rules) as an example. We first collect the rule representations from all315

the instances governed by these rules, which are sampled from the codebook E. Then we calculate316

the selected frequencies of the codes and visualize their distributions. Figure 4 (a-e) shows that all the317

five rules share the same codes E358 and E181 in their top-3 codes, indicating that the codes E358 and318

E181 are very relevant to the [·,line, color] rules. In addition, these codes are also specific to these319

rules, since they rarely appear in the dissimilar rules such as the rule [progression, shape, size] (Fig 4320

(f)). These results reveal that the rule representations learned by ARII are moderately interpretable.321

5 Conclusion322

In this work, we propose a novel architecture ARII that learns robust rule representations for abstract323

reasoning via internal inferences. Experiments on benchmark datasets (I-RAVEN and PGM) show324

that ARII outperforms previous state-of-the-art methods without using auxiliary annotations on the325

majority of the reasoning tasks. Moreover, the rule representations of ARII present meaningful and326

interpretable characteristics, facilitating the exploration of the composition of the rules in future work.327
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