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Abstract

Zero-shot relation extraction aims to identify001
novel relations which cannot be observed at002
the training stage. However, it still faces some003
challenges since the unseen relations of in-004
stances are similar or the input sentences have005
similar entities, the unseen relation representa-006
tions from different categories tend to overlap007
and lead to errors. In this paper, we propose008
a novel Relation Contrastive Learning frame-009
work (RCL) to mitigate above two types of010
similar problems: Similar Relations and Sim-011
ilar Entities. By jointly optimizing a con-012
trastive instance loss with a relation classifica-013
tion loss on seen relations, RCL can learn sub-014
tle difference between instances and achieve015
better separation between different relation cat-016
egories in the representation space simultane-017
ously. Especially in contrastive instance learn-018
ing, the dropout noise as data augmentation is019
adopted to amplify the semantic difference be-020
tween similar instances without breaking rela-021
tion representation, so as to promote model to022
learn more effective representations. Experi-023
ments conducted on two well-known datasets024
show that RCL can significantly outperform025
previous state-of-the-art methods. Moreover,026
if the seen relations are insufficient, RCL can027
also obtain comparable results with the model028
trained on the full training set, showing the ro-029
bustness of our approach1.030

1 Introduction031

Relation extraction is a fundamental problem in032

natural language processing, which aims to iden-033

tify the semantic relation between a pair of entities034

mentioned in the text. Recent progress in super-035

vised relation extraction has achieved great suc-036

cesses (Zeng et al., 2014; Zhou et al., 2016; Soares037

et al., 2019), but these approaches usually require038

large-scale labeled data. While in practice, human039

annotation is time-consuming and labor-intensive.040

1We will release our code after blind review.
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     : In 1978, he replaced Thomas Erdelyi in the 
Ramones, assuming the name Marky Ramone. 

     : The Doctor tries to restore the universe with 
the help of River and the alternative universe ve-
rsions of his companions Amy Pond(Karen Gillan) 
and Rory Williams(Arthur Darvill).

     : In May 2015, Vienna hosted the Eurovision 
Song Contest following Austria 's victory in the 
2014 contest.

     : Thus, the song was succeeded as Romanian 
repre-sentative at the 2002 Contest by Monica 
Anghel & Marcel Pavel with "Tell Me Why". 

Figure 1: Top: Overview of the proposed RCL at the
training and test stage. f(·) is a learnable projection
function that projects the input sentence Xi to its cor-
responding relation representation f(Xi). f(X̂i) is the
augmented view of f(Xi) and Z is the whole test set.
Bottom: Four examples at the test stage and their corre-
sponding relation representations are shown in the right
of Top. The entities are marked in orange.

To alleviate the human annotation efforts in relation 041

extraction, some recent studies use distant super- 042

vision to generate labeled data for training (Mintz 043

et al., 2009; Lin et al., 2016). However, in the 044

real-world setting, the relations of instances are 045

not always included in the training data, and ex- 046

isting supervised methods cannot well recognize 047

unobserved relations due to weak generalization 048

ability. 049

To address the aforementioned limitations, zero- 050

shot relation extraction has been proposed to ex- 051

tract relational facts where the target relations can- 052

not be observed at the training stage. The challenge 053

of zero-shot relation extraction models is how to 054

learn effective representations based on seen re- 055

lations at the training stage and well generalize 056

to unseen relations at the test stage. Two studies 057

(Levy et al., 2017; Obamuyide and Vlachos, 2018) 058

treat zero-shot relation extraction as a different task 059

(i.e., question answering and textual entailment), 060

but they both need human annotation auxiliary in- 061

1



formation for input, i.e., pre-defining question tem-062

plates and relation descriptions. ZS-BERT (Chen063

and Li, 2021) predicts unseen relations with at-064

tribute representation learning. Despite promising065

improvements on directly predicting unseen rela-066

tions, ZS-BERT still makes wrong predictions due067

to similar relations or similar entities. The same068

problem arises in supervised methods under the069

zero-shot settings.070

As shown in Figure 1, there are two types of simi-071

lar errors: Similar Relations and Similar Entities.072

For similar relations (seeZ1 andZ2), existing meth-073

ods predict wrongly results because the unseen re-074

lations possess similar semantics and data points075

belong to two relations in the representation space076

are overlapped. For similar entities (i.e., 2014 con-077

test and 2002 Contest), since entities are the context078

of relation and relation representations are derived079

from entities, the relation representations contain-080

ing similar entities are close (see f(Z3) and f(Z4))081

and baselines wrongly consider f(Z4) belongs to082

follows in the representation space, even if two083

unseen relations are not related. Recently, Instance-084

wise Contrastive Learning (Instance-CL) (He et al.,085

2020; Chen et al., 2020; Yan et al., 2021; Gao et al.,086

2021; Zhang et al., 2021) has achieved remarkable087

success in representation learning. Instance-CL is088

used to learn an effective representation by pulling089

together the instances from the same class, while090

pushing apart instances from different classes. In-091

spired by Instance-CL, we attempt to use Instance-092

CL on seen relations to learn the difference between093

similar relations and the divergence of relation rep-094

resentations derived from similar entities.095

In this paper, we propose a novel Relation096

Contrastive Learning framework (RCL) to solve097

the above-mentioned problems. Figure 1 depicts098

the overview of the proposed model, which consists099

of four steps: (i) The input for RCL is a batch of100

sentences containing the pair of target entities and101

each sentence is sent into input sentence encoder to102

generate the contextual sentence embeddings2. (ii)103

Taking the sentence embeddings as input, relation104

augmentation layer is designed to obtain the rela-105

tion representations f(Xi) and their corresponding106

augmented views f(X̂i). (iii) By jointly optimizing107

a contrastive loss and a relation classification loss108

on seen relations, RCL can learn subtle difference109

between instances and achieve better separation110

2The words, "embeddings", and "representations", are used
interchangeably throughout this paper.

between relations in the representation space simul- 111

taneously to obtain an effective projection function 112

f . (iv) With the learned f , the whole test set Z can 113

be projected for unseen relation representations in 114

the representation space and zero-shot prediction 115

is performed on unseen relation representations by 116

K-Means. 117

To summarize, the major contributions of our 118

work are as follows: (i) We propose a novel frame- 119

work based on contrastive learning for zero-shot re- 120

lation extraction. It effectively mitigates two types 121

of similar problems: similar relations and simi- 122

lar entities by learning representations jointly opti- 123

mized with contrastive loss and classification loss. 124

(ii) We explore various data augmentation strate- 125

gies in relation augmentation to minimize semantic 126

impact for contrastive instance learning and experi- 127

mental results show dropout noise as minimal data 128

augmentation can help RCL learn the difference 129

between similar instances better. (iii) We conduct 130

experiments on two well-known datasets. Exper- 131

imental results show that RCL can advance state- 132

of-the-art performance by a large margin. Besides, 133

even if the number of seen relations is insufficient, 134

RCL can also achieve comparable results with the 135

model trained on the full training set. 136

2 Related Work 137

Relation Extraction. Relation extraction aims at 138

extracting relation between entities within a given 139

sentence. Many relation extraction methods (Qian 140

et al., 2008; Zeng et al., 2014; Zhou et al., 2016) 141

are supervised model. Recently, some studies fo- 142

cus on pre-training language model (Devlin et al., 143

2019; Liu et al., 2019; Lan et al., 2020) because 144

of its powerful capability of semantic representa- 145

tion. Wu and He (2019) propose R-BERT that uses 146

BERT to extract relation features and incorporates 147

entity information to perform relation extraction. 148

Soares et al. (2019) propose a relation represen- 149

tation learning method based on BERT and have 150

shown promising results. However, these models 151

require labeled data. Unsupervised relation extrac- 152

tion (Yu et al., 2017; Saha et al., 2018; Stanovsky 153

et al., 2018) can discover semantic relation feature 154

from data without human annotations. One repre- 155

sentative work is Open relation extraction. Wu et al. 156

(2019) propose a novel model to learn a similarity 157

metric of relations from labeled data, and identify 158

unseen relations by transferring knowledge learned 159

from seen relations. While OpenRE method can 160
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Figure 2: Architecture of the RCL, which consists of three components, and the details are introduced in Section 3.
Note that relation augmentation layer contains data augmentation and a concat layer.

identify novel relation without annotations and ex-161

ternal resources, it cannot effectively discard irrel-162

evant information and severely suffers from the163

instability.164

Zero-shot Relation Extraction. Zero-shot rela-165

tion extraction aims to identify novel relation with-166

out training instances. Existing zero-shot relation167

extraction methods are few and most rely on human168

annotation auxiliary information for input. Levy169

et al. (2017) reduce zero-shot relation extraction170

to a question answering task. They use 10 pre-171

defining question templates to represent relations,172

and then train a reading comprehension model to173

infer which relation satisfies the given sentence174

and question. Obamuyide and Vlachos (2018) treat175

zero-shot relation extraction as a textual entailment176

task, which requires the model to input descrip-177

tions of relations. They train a textual entailment178

model to predict whether the input sentence con-179

taining two entities matches the description of a180

given relation, identifying novel relations by gen-181

eralizing from the descriptions of seen relations at182

the training stage to those of unseen relations at183

test time. Chen and Li (2021) propose ZS-BERT184

to tackle zero-shot relation extraction task with at-185

tribute representation learning. ZS-BERT learns186

the representations of relations based on their de-187

scriptions during the training time, and generates188

the prediction of unseen relation for new sentence189

by nearest neighbor search. However, ZS-BERT190

suffers from similar relation error and similar en-191

tity error, and it needs human annotation auxiliary192

information for input, i.e., relation descriptions. In193

this paper, we do not require any human annotation194

auxiliary information for input.195

Contrastive Learning. In the field of image and196

natural language processing, many recent successes197

are inspired by contrastive learning (He et al., 2020; 198

Chen et al., 2020; Yan et al., 2021; Gao et al., 2021). 199

Contrastive learning regards the input data and cor- 200

responding augmented views as an independent 201

class. The goal of contrastive learning is to pull 202

together representations from the same class, while 203

keeping representations from different classes away. 204

Therefore, the representations learned from con- 205

trastive learning are better separated and good for 206

clustering. Gao et al. (2021) propose a novel sen- 207

tence embeddings learning framework based on 208

contrastive learning to produce superior sentence 209

embeddings and show that dropout is an effective 210

data augmentation. SCCL (Zhang et al., 2021) 211

jointly optimizes a contrastive loss and a cluster- 212

ing loss to disperse overlap categories in the repre- 213

sentation space. Inspired by contrastive learning, 214

we leverage contrastive learning to help the model 215

learn an effective representation. 216

3 Proposed Model 217

3.1 Model Overview 218

As illustrated in Figure 2, the proposed model RCL 219

consists of three components: input sentence en- 220

coder, contrastive learning module and relation 221

classification module. Given a batch of sentences 222

containing two entities, the sentence representa- 223

tions are generated by input sentence encoder and 224

then are sent to relation classification module and 225

contrastive learning module. For contrastive learn- 226

ing module, the relation representations and their 227

corresponding augmented views generated by a 228

relation augmentation layer are used to perform 229

contrastive instance learning to learn difference 230

between instances. For relation classification mod- 231

ule, the relation representations generated by the 232
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concat layer are used to identify seen relations to233

achieve better separation between relations. We234

train RCL under a multi-task learning structure235

with contrastive learning module and relation clas-236

sification module to learn effective representations237

for unseen relations. At the test stage, we obtain the238

unseen relation representations by input sentence239

encoder and concat layer, and then send them into240

K-Means to predict the unseen relations.241

3.2 Input Sentence Encoder242

Input Sentence Encoder aims to generate the con-243

textual representation of each token. In this work,244

we assume entities contained in the sentence have245

been recognized before input. For a sentence246

Xi =
[
x1i , .., x

L
i

]
where two entities e1 and e2247

are mentioned, we use the ENTITY MARKERS248

(Soares et al., 2019) to augment Xi to better ex-249

tract relation features from context. Specifically,250

we introduce four special tokens to mark the begin-251

ning and the end of each entity mentioned in the252

sentence. The input token sequence Xi for input253

sentence encoder is as follows:254

Xi = [x1i , . . . , < e1 >, x
i
i, . . . , x

j−1
i , < /e1 >,

. . . , < e2 >, x
k
i , . . . , x

l−1
i , < /e2 >, . . . , x

L
i ]
(1)255

where < e1 >,< /e1 >,< e2 >,< /e2 > are256

four special tokens to mark the beginning and the257

end of each entity mentioned in the sentence, L is258

the length of sentence. Then we use BERT (Devlin259

et al., 2019) to obtain the sentence embeddings260

hi ∈ RL×d:261

hi = [h1
i , . . . ,h

<e1>
i , . . . ,h

</e1>
i ,

. . . ,h<e2>
i , . . . ,h

</e2>
i , . . . ,hL

i ]
(2)262

where d is the hidden dimension.263

3.3 Contrastive Learning Module264

Contrastive Learning Module aims at learning the265

difference between a batch of instances to better266

represent relations.267

Contrastive Instance Learning. After we ob-268

tained H = {h1, . . . ,hN} from N input sen-269

tences using input sentence encoder, relation aug-270

mentation layer is used to generate relation repre-271

sentations and their augmented views. More specif-272

ically, the relation augmentation layer consists of273

data augmentation and a concat layer. For each sen-274

tence embeddings hi, a transformation T (·) is ap-275

plied to generate its augmented view: ĥi = T (hi),276

where ĥi ∈ RL×d.277

After obtaining sentence embeddings hi and its 278

augmentation ĥi, we obtain relation representa- 279

tions and its augmentation by a concat layer. Specif- 280

ically, we use the token embeddings corresponding 281

to < e1 >,< e2 > positions as the entity represen- 282

tation and concatenate them to derive a contextual- 283

ized relation representation and its augmented view 284

ri, r̂i ∈ R2·d: 285

ri = h<e1>
i ⊕ h<e2>

i

r̂i = ĥ<e1>
i ⊕ ĥ<e2>

i

(3) 286

where ⊕ is the concatenation operator and ri, r̂i 287

are both fixed-length vector. 288

To better learn effective relation representations, 289

we optimizes a contrastive objective, which dis- 290

perses different relation of instances apart while 291

implicitly bringing the same relation of instances 292

together. Let R = {r1, . . . , rN} and R̂ = 293

{r̂1, . . . , r̂N} denote a mini-batch of relation rep- 294

resentations and its augmented views respectively. 295

We regard (ri, r̂i) as a positive pair and otherN−1 296

augmented views as negative instances. For a mini- 297

batch with N pairs, we follow the contrastive frame- 298

work in SimCSE (Gao et al., 2021) and take a cross- 299

entropy objective with in-batch negatives (Chen 300

et al., 2017) and the training objective for (ri, r̂i) 301

is: 302

`cli = − log
esim(ri ,̂ri)/τ∑N
j=1 e

sim(ri ,̂rj)/τ
(4) 303

where ri ∈ R, r̂i ∈ R̂, sim (r1, r2) is the cosine 304

similarity r>1 r2
‖r1‖·‖r2‖ ,and τ is a temperature hyper- 305

parameter. 306

Data Augmentation Strategies. To amplify the 307

semantic difference between similar instances with- 308

out breaking the semantic of relation representa- 309

tions, we explore five different data augmentations 310

T (·) for contrastive instance learning, including 311

feature cutoff (Shen et al., 2020), random mask 312

(Hinton et al., 2012), dropout (Gao et al., 2021), 313

composition of dropout and feature cutoff and com- 314

position of dropout and random mask. 315

Feature cutoff is a simple and efficient data aug- 316

mentation strategy to introduce minimal seman- 317

tic impact for relation instances. Specifically, we 318

randomly erase some feature dimensions in the 319

sentence embeddings produced by input sentence 320

encoder. 321

Random mask is proved its effectiveness as an 322

augmentation strategy (Yan et al., 2021). In our 323

experiments, we randomly drop elements in the 324

4



sentence embeddings by a specific probability and325

sets their values to zero.326

Dropout has been shown its effectiveness as min-327

imal data augmentation by SimCSE (Gao et al.,328

2021). Thus, similar to SimCSE, we augment sen-329

tence embeddings by feeding the same input sen-330

tence to BERT again.331

Composition of augmentations is an effective332

strategy in image domain (Chen et al., 2020).333

Based on dropout, we explore two strategies of334

composition of data augmentations. Composition335

of dropout and feature cutoff is a strategy that we336

first use dropout to obtain augmented view and then337

send it into feature cutoff to obtain the final aug-338

mented view. Similarly, composition of dropout339

and random mask is a strategy that dropout first and340

then random mask. We present the experimental341

results of these strategies and analyze their effects342

for contrastive learning in Section 4.4.343

3.4 Relation Classification Module344

Relation Classification Module aims to identify345

seen relations. With sentence embeddings hi from346

input sentence encoder, we obtain relation repre-347

sentation ri by the concat layer, following the way348

same as Equation (3). Let n denotes the number of349

seen relations and Ys denotes the set of seen rela-350

tions. By transforming the relation representation351

ri, along with a softmax layer, we generate the n-352

dimensional classification probability distribution353

of the i-th sample over seen relations:354

p (yi | Xi, θ) = softmax (W (tanh (ri)) + b)
(5)355

where Xi is the input sentence containing two en-356

tities, yi ∈ Ys is the seen relation, θ is the model357

parameter, W ∈ Rn×2·d, and b ∈ Rn. Note that358

we use the relation representation ri produced in-359

termediately for predicting unseen relations under360

the zero-shot settings instead of the probability dis-361

tribution. For each data point Xi, we use cross-362

entropy to calculate classification loss:363

`rci = CrossEntropy(p(yi | Xi, θ), ŷi) (6)364

where ŷi is the ground-truth label of the i-th sample.365

3.5 Train and Test366

At the training stage, We train the model with two367

objectives under the multi-task learning structure.368

The first is to minimize the distance between the re-369

lation representation and its augmented view, while370

keeping the relation representation distant from371

other augmented relation representations in a mini- 372

batch. The second objective is to bring high predic- 373

tion accuracy of seen relations. For a mini-batch of 374

input sentences, the training objective of RCL is as 375

follows: 376

LCL = − 1

N

N∑
i=1

`cli ,LRC = − 1

N

N∑
i=1

`rci

Ljoint = LRC + αLCL

(7) 377

where N is the number of input sentences, α is a 378

hyper-parameter to balance two objectives. 379

At the test stage, we send the new-coming sen- 380

tences into input sentence encoder and concat layer 381

to generate unseen relation representations, and the 382

prediction on unseen relations can be achieved by 383

K-Means. 384

4 Experiments 385

4.1 Datasets 386

Two datasets are used to evaluate our model: Se- 387

mEval2010 Task8 (Hendrickx et al., 2010) and 388

FewRel (Han et al., 2018). SemEval2010 Task8 389

has been widely used in relation extraction task, 390

which contains 9 relations and an Other relation. 391

There are 10,717 instances in the dataset and the 392

number of instances of each relation is not equal. 393

Each relation has direction in the dataset, but in 394

our experiments, we do not consider the direction 395

of 9 relations and not use the Other relation. For 396

each relation, we combine the instances of training 397

set with instances of test set to obtain overall in- 398

stances of each relation. FewRel is a public dataset 399

based on Wikipedia, and it contains 80 types of re- 400

lations, each with 700 instances. Although FewRel 401

is widely used in few-shot learning setting, it is 402

also suitable for zero-shot learning as long as we 403

disjoint the relation labels within training and test 404

data. 405

4.2 Evaluation Settings 406

Zero-shot Learning Settings. Let m denotes the 407

number of unseen relations, and Yu denotes the 408

set of unseen relations. We randomly select m 409

relations as unseen relations and the rest of rela- 410

tions n as seen relations. Note that Ys ∩ Yu = ∅. 411

Then we split the whole dataset into training and 412

test data. The training data only contains the in- 413

stances of seen relations, in contrast to test data 414

only with the instances of unseen relations. We 415

repeat experiments 5 times on SemEval2010 Task8 416
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and FewRel and then report the average results.417

As for implementation details for RCL, we imple-418

ment our model based on Transformers pack-419

age (Wolf et al., 2020). And we use an Adam420

optimizer (Kingma and Ba, 2014), in which the421

learning rate is 5e−5. Please refer to the Appendix422

for more implementation details.423

Evaluation Metrics. We follow the setting in424

the previous work (Simon et al., 2019) to convert425

pseudo labels predicted by clustering to relation426

labels. In each cluster, the relation label with the427

largest proportion among the cluster is assigned to428

all samples as the prediction label. For evaluation429

metrics, we adopt three commonly-used metrics430

(Wu et al., 2019; Hu et al., 2020; Zhang et al.,431

2021) to measure the effectiveness of clustering :432

B3 (Bagga and Baldwin, 1998), Normalized Mu-433

tual Information (NMI) and Adjusted Rand Index434

(ARI). For B3, B3 precision and recall correspond-435

ingly measure the correct rate of putting each sen-436

tence in its cluster or clustering all samples into a437

single class. Then B3 F1 is computed as the har-438

monic mean of the B3 precision and recall:439

B3precision = E
X,Y

P (g(X) = g(Y ) | c(X) = c(Y ))

B3recall = E
X,Y

P (c(X) = c(Y ) | g(X) = g(Y ))
440

NMI measures the information shared between the441

predicted label and the ground truth. When data442

are partitioned perfectly, the NMI score is 1, while443

it becomes 0 when prediction and ground truth are444

independent. ARI is a metric to measure the degree445

of agreement between the cluster and golden distri-446

bution, which ranges in [-1,1]. The more consistent447

two distributions, the higher the score.448

Baselines. We compare RCL to previous methods449

consisting of CNN (Zeng et al., 2014), Attention Bi-450

LSTM (Zhou et al., 2016), RSNs (Wu et al., 2019),451

MTB (Soares et al., 2019), ZS-BERT (Chen and452

Li, 2021). For CNN, Attention BiLSTM and MTB,453

these methods have great success in supervised rela-454

tion extraction (SRE) but fail to perform zero-shot455

prediction. Specifically, we consider two variations456

of MTB which only differ in the backbone (MTB-457

BERT and MTB-RoBERTa). For fair comparison458

and zero-shot prediction, we make the relation rep-459

resentation from encoder become the output of the460

SRE model, instead of originally outputting a prob-461

ability vector whose dimension is equal to the seen462

relations. The dimension of output vector is same463

as RCL. The K-Means is applied over output vector464

to generate zero-shot prediction. Although RSNs465

SemEval2010 Task8
Model P R F1 NMI ARI
CNN 38.37 38.49 38.42 17.06 15.43
Att-BiLSTM 41.46 41.79 41.6 21.45 19.97
Supervised RSN 33.14 47.06 38.41 11.98 10.96
MTB-BERT 45.1 46.35 45.71 28.12 23.69
MTB-RoBERTa 42.71 44.84 43.71 24.52 21.01
ZS-BERT 33.86 36.33 35.03 12.47 9.53
RCL w/o RC 50.31 54.87 52.45 34.55 28.97
RCL 68.1 67.95 68.02 55.91 54.71

Table 1: Experimental results(%) on SemEval2010
Task8 in terms of B3 precision, B3 recall, B3 F1, Nor-
malized Mutual Information, Adjusted Rand Index.

is a open relation extraction method, its Supervised 466

RSN model also meets the setting of zero-shot. 467

For ZS-BERT, the original relation descriptions are 468

used for FewRel and we collect the descriptions 469

of relations for SemEval2010 Task8 from open re- 470

sources. Then we use the sentence embeddings for 471

K-Means to predict unseen relations. Note that we 472

set the dimension of sentence embeddings same as 473

RCL for fair comparison. 474

4.3 Experimental Results 475

Results on SemEval2010 Task8. Table 1 show 476

the comparison results on SemEval2010 Task8. 477

RCL achieves the best performance, significantly 478

outperforming the previous state-of-the-art with 479

22.31% F1, 27.79% NMI and 31.02% ARI im- 480

provements. Due to the relations of SemEval2010 481

Task8 dataset with high similarity, baseline mod- 482

els severely suffer from similar errors and the per- 483

formances of baselines are poor. Another reason 484

why baselines perform poorly is that small num- 485

ber of seen relations and class imbalance are more 486

challenging for model. Moreover, SemEval2010 487

Task8 is much less related to the general domains 488

on which the transformers are pretrained. How- 489

ever, comparing with baselines, experimental re- 490

sults show RCL can effectively mitigates similar 491

problems and better use the general knowledge of 492

the pre-training language model. 493

Results on FewRel. For FewRel, the experimen- 494

tal results are shown in Table 2. From the results, 495

we observe that our model RCL outperforms exist- 496

ing baselines on FewRel when targeting at differ- 497

ent numbers of unseen relations m. Specifically, 498

RCL achieves an average of 2.87% F1, 1.98% NMI 499

and 2.98% ARI improvements compared to pre- 500

vious best results. Since relations on FewRel are 501

class balance and sufficient, MTB-BERT and MTB- 502

RoBERTa perform well among competing models 503
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FewRel
m=5 m=10 m=15 m=30 m=40 Avg.

Model F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI F1 NMI ARI
CNN 74.47 68.51 66.31 60.87 64.59 53.79 55.3 62.35 49.87 39.15 54.61 35.49 34.09 53.46 30.37 52.78 60.7 47.17
Att-BiLSTM 82.75 79.36 76.63 75.89 79.1 71.46 69.84 75.94 66.03 50.76 66.99 47.64 45.01 64.66 42.23 64.85 73.21 60.8
Supervised RSN 73.33 67.89 64.49 59.11 64.96 48.66 50.99 59.98 39.74 26.01 44.31 18.71 23.55 48.26 18.08 46.6 57.08 37.94
MTB-BERT 88.06 85.32 84.03 81.08 83.95 76.22 78.62 83.57 74.83 63.51 76.61 59.98 60.35 75.9 54.54 74.32 81.07 69.92
MTB-RoBERTa 90.14 87.12 86.7 82.39 84.77 78.03 79.78 84.35 76.82 62.98 75.91 58.83 60.58 75.99 55.08 75.17 81.63 71.15
ZS-BERT 74.51 69.24 66.96 70.63 74.1 65.23 63.33 70.7 59.24 46.43 61.66 42.94 45.68 64.43 42.68 60.12 68.03 55.41
RCL w/o RC 73.58 68.23 64.5 70.52 74.28 59.53 58.02 64.67 51.74 39.89 54.62 33.7 33.09 50.15 28.57 55.02 62.39 47.61
RCL 90.73 87.41 86.72 84.52 86.73 80.23 81.48 85.64 78.18 67.75 79.21 64.43 65.74 79.09 61.1 78.04 83.61 74.13

Table 2: Experimental results(%) produced by the baseline models and the proposed model RCL on FewRel dataset
in terms of B3 F-score, NMI, ARI. m is the number of unseen relations, and we vary m in [5, 10, 15, 30, 40] to
examine how performance is affected. RCL w/o RC means RCL without relation classification module.

but their performance is still lower than RCL. The504

reason is that their approaches cannot well deal505

with similar problems. ZS-BERT performs worse506

than most competing models because ZS-BERT507

severely relies on the unseen relation descriptions508

for prediction, while our approach can perform509

well without external resources. In addition, we510

find that the improvement of RCL gets larger when511

m is larger, especially when m = 40. It is obvious512

that it becomes more difficult for prediction since513

the number of unseen relations increases leading to514

more seriously similar problems.515

Ablation Study. To better validate our model, we516

conduct an ablation study on each module by cor-517

respondingly ablating one. Note that MTB-BERT518

is the version of RCL without contrastive learning519

module. From Table 1 and Table 2, we can see520

that combining these two modules can result in a521

noticeable performance gain over two datasets. Es-522

pecially in SemEval2010 Task8, RCL w/o RC out-523

performs existing baselines by all evaluation met-524

rics, which prove the effectiveness of contrastive525

learning. However, our proposed RCL signifi-526

cantly outperforms RCL w/o RC with 15.57% F1,527

21.36% NMI and 25.74% ARI improvements. It528

demonstrates that these two modules are comple-529

mentary on relation representation learning: con-530

trastive learning focuses on learning the difference531

between instances and implicitly obtaining some532

knowledge about the difference between relations533

while relation classification can explicitly learn the534

difference between relations by identifying the re-535

lations but cannot learn the difference between sim-536

ilar instances and suffers from similar problems.537

When the number of unseen relations increases on538

FewRel, RCL w/o RC performs worse than com-539

peting methods due to without effectively learning540

relation difference, which also shows that both two541

modules are important to the final model perfor-542

mance.543

SemEval2010 Task8 FewRel
Data augmentation F1 F1
None 58.14 86.95
Random Mask 60.25 87.42
Feature Cutoff 59.92 88.46
Dropout 68.02 90.73
Dropout+Random Mask 67.53 89.84
Dropout+Feature Cutoff 65.51 89.23

Table 3: Experimental results(%) with different data
augmentation strategies over two datasets in term of B3

F1 score. For FewRel, we report the results on m = 5.

4.4 Qualitative Analysis 544

Effect of Data Augmentations. To study the ef- 545

fect of data augmentations, we consider six dif- 546

ferent data augmentation strategies for contrastive 547

learning in our experiments, including None (i.e. 548

doing nothing), Random Mask, Feature Cutoff, 549

Dropout, Composition of Dropout and Feature Cut- 550

off (Dropout+Feature Cutoff) and Composition of 551

Dropout and Random Mask (Dropout+Random 552

Mask). 553

The results are shown in Table 3. We can make 554

the following observations: (a) Dropout is the 555

most effective strategy, outperforming all com- 556

peting strategies. It demonstrate that Dropout es- 557

sentially acts as minimal data augmentation (Gao 558

et al., 2021) and the noise produced by Dropout 559

can make model learn the difference between sim- 560

ilar instances better. (b) When compared with 561

None, Random Mask and Feature Cutoff also im- 562

prove performance across two datasets. Moreover, 563

Dropout+Random Mask and Dropout+Feature Cut- 564

off significantly outperform Random Mask and Fea- 565

ture Cutoff with roughly 6 and 2 points gain respec- 566

tively while Dropout still outperforms these two 567

composition of augmentations. It shows that differ- 568

ent from the image domain (Chen et al., 2020), 569

composition of augmentations is not always ef- 570

fective for the text domain. (c) We find that our 571

model can improve performance on two datasets 572
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Figure 3: Left: The results of RCL and MTB-BERT
with different numbers of seen relations. Right: The
performance of RCL with different fractions of unseen
instances available for training. The number of unseen
relations is set to 10 on FewRel.

even without any data augmentation (None), es-573

pecially for SemEval2010 Task8 (from 45.71 to574

58.14). This is because None tunes the represen-575

tation space by keeping each representation away576

from others, even if it has no effect on minimizing577

the distance between instance and its augmented578

view since the embeddings of augmented view are579

same with original instance. It also demonstrates580

that the effectiveness of the contrastive learning581

without external resources.582

Effect of Number of Seen Relations. In this sec-583

tion, we study the effect of the number of seen584

relations on FewRel which contains sufficient re-585

lations. In our experiment, we vary the number of586

seen relations n from 10 (insufficient) to 70 (suf-587

ficient) and consistently set the number of unseen588

relations m to 10. Experimental results are pre-589

sented in Figure 3. As the number of seen relations590

increases, RCL continuously outperforms MTB-591

BERT, which shows the effectiveness of our ap-592

proach. More specifically, when n is set to 10, RCL593

can achieve 90% F1 score of the model trained on594

the full seen relations. In addition, the performance595

of RCL declines more slighter and smoother than596

MTB-BERT when seen relations gradually become597

insufficient (from 30 to 10), showing the robustness598

of our approach.599

Capability under Few-shot Settings. In this sec-600

tion, we conduct the experiment of few-shot predic-601

tion by following the setting of Chen and Li (2021)602

to understand the capability of RCL. We move a603

small fraction of sentences of each unseen relation604

from test data to training data. Experimental re-605

sults are shown in Figure 3. As expected on two606

datasets, RCL achieves more F1 score improve-607

ment with more unseen relation instances available608

at the training stage. When the fraction is set to609

4%, RCL can achieve 90% F1 score on FewRel and610

80% F1 score on SemEval2010 Task8. It shows611

(a) MTB-BERT (b) RCL (ours)

Figure 4: t-SNE visualization of unseen relation rep-
resentations learned by MTB-BERT and RCL on Se-
mEval2010 Task8 dataset.

the capability of few-shot learning for RCL. 612

Visualization of Relation Representations. To 613

intuitively show how our approach helps to learn 614

better relation representations on seen relations, we 615

visual the representations of unseen relations by 616

using t-SNE (Van der Maaten and Hinton, 2008) to 617

reduce the dimension to 2. We randomly choose 618

4 relations as unseen relation from SemEval2010 619

Task8 and the visualization results are shown in 620

Figure 4. In each figure, relation instances are 621

colored according to their ground-truth labels. 622

As we can see from Figure 4(a), the data points 623

from MTB-BERT are mingled with different clus- 624

ters, especially for red points. The reason is these 625

instances possess similar relations or similar en- 626

tities and MTB-BERT has not learned the corre- 627

sponding knowledge to deal with similar problems. 628

However, as illustrate in Figure 4(b), RCL effec- 629

tively mitigates these two types of similar prob- 630

lems since our approach can learn the difference 631

between instances and the difference between seen 632

relations. It again exhibits the effectiveness of the 633

contrastive loss and multi-task learning structure. 634

We also provide a case study in the Appendix. 635

5 Conclusion 636

In this paper, we propose a jointly framework for 637

zero-shot relation extraction to mitigate two types 638

of similar errors: Similar Relations and Similar 639

Entities. Different from conventional zero-shot 640

relation extraction models which require external 641

resources for training and test, our model does not 642

require external resources. We demonstrate the ef- 643

fectiveness of our framework on two datasets, and 644

our method achieves new state-of-the-art perfor- 645

mance. Furthermore, we compare various data aug- 646

mentation strategies for contrastive learning and 647

provide fine-grained analysis for interpreting how 648

our approach works. 649

8



References650

Amit Bagga and Breck Baldwin. 1998. Entity-651
based cross-document coreferencing using the vec-652
tor space model. In 36th Annual Meeting of the653
Association for Computational Linguistics and 17th654
International Conference on Computational Linguis-655
tics, Volume 1, pages 79–85.656

Chih-Yao Chen and Cheng-Te Li. 2021. ZS-BERT:657
Towards zero-shot relation extraction with attribute658
representation learning. In Proceedings of the 2021659
Conference of the North American Chapter of the660
Association for Computational Linguistics: Human661
Language Technologies, pages 3470–3479, Online.662
Association for Computational Linguistics.663

Ting Chen, Simon Kornblith, Mohammad Norouzi,664
and Geoffrey Hinton. 2020. A simple framework for665
contrastive learning of visual representations. In In-666
ternational conference on machine learning, pages667
1597–1607. PMLR.668

Ting Chen, Yizhou Sun, Yue Shi, and Liangjie Hong.669
2017. On sampling strategies for neural network-670
based collaborative filtering. In Proceedings of the671
23rd ACM SIGKDD International Conference on672
Knowledge Discovery and Data Mining, pages 767–673
776.674

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and675
Kristina Toutanova. 2019. Bert: Pre-training of676
deep bidirectional transformers for language under-677
standing. In Proceedings of the 2019 Conference of678
the North American Chapter of the Association for679
Computational Linguistics: Human Language Tech-680
nologies, Volume 1 (Long and Short Papers), pages681
4171–4186.682

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.683
SimCSE: Simple contrastive learning of sentence684
embeddings. In Proceedings of the 2021 Conference685
on Empirical Methods in Natural Language Process-686
ing, pages 6894–6910, Online and Punta Cana, Do-687
minican Republic. Association for Computational688
Linguistics.689

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan690
Yao, Zhiyuan Liu, and Maosong Sun. 2018. Fewrel:691
A large-scale supervised few-shot relation classifica-692
tion dataset with state-of-the-art evaluation. In Pro-693
ceedings of the 2018 Conference on Empirical Meth-694
ods in Natural Language Processing, pages 4803–695
4809.696

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and697
Ross Girshick. 2020. Momentum contrast for unsu-698
pervised visual representation learning. In Proceed-699
ings of the IEEE/CVF Conference on Computer Vi-700
sion and Pattern Recognition, pages 9729–9738.701

Iris Hendrickx, Su Nam Kim, Zornitsa Kozareva,702
Preslav Nakov, Diarmuid Ó Séaghdha, Sebastian703
Padó, Marco Pennacchiotti, Lorenza Romano, and704
Stan Szpakowicz. 2010. Semeval-2010 task 8:705

Multi-way classification of semantic relations be- 706
tween pairs of nominals. In Proceedings of the 707
5th International Workshop on Semantic Evaluation, 708
pages 33–38. 709

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, 710
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. 711
Improving neural networks by preventing co- 712
adaptation of feature detectors. arXiv preprint 713
arXiv:1207.0580. 714

Xuming Hu, Lijie Wen, Yusong Xu, Chenwei Zhang, 715
and S Yu Philip. 2020. Selfore: Self-supervised re- 716
lational feature learning for open relation extraction. 717
In Proceedings of the 2020 Conference on Empirical 718
Methods in Natural Language Processing (EMNLP), 719
pages 3673–3682. 720

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 721
method for stochastic optimization. arXiv preprint 722
arXiv:1412.6980. 723

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 724
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 725
2020. Albert: A lite bert for self-supervised learning 726
of language representations. In International Con- 727
ference on Learning Representations. 728

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke 729
Zettlemoyer. 2017. Zero-shot relation extraction via 730
reading comprehension. In Proceedings of the 21st 731
Conference on Computational Natural Language 732
Learning (CoNLL 2017), pages 333–342, Vancou- 733
ver, Canada. Association for Computational Linguis- 734
tics. 735

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, 736
and Maosong Sun. 2016. Neural relation extraction 737
with selective attention over instances. In Proceed- 738
ings of the 54th Annual Meeting of the Association 739
for Computational Linguistics (Volume 1: Long Pa- 740
pers), pages 2124–2133, Berlin, Germany. Associa- 741
tion for Computational Linguistics. 742

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 743
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 744
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 745
Roberta: A robustly optimized bert pretraining ap- 746
proach. arXiv preprint arXiv:1907.11692. 747

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju- 748
rafsky. 2009. Distant supervision for relation ex- 749
traction without labeled data. In Proceedings of 750
the Joint Conference of the 47th Annual Meeting of 751
the ACL and the 4th International Joint Conference 752
on Natural Language Processing of the AFNLP, 753
pages 1003–1011, Suntec, Singapore. Association 754
for Computational Linguistics. 755

Abiola Obamuyide and Andreas Vlachos. 2018. Zero- 756
shot relation classification as textual entailment. In 757
Proceedings of the First Workshop on Fact Extrac- 758
tion and VERification (FEVER), pages 72–78, Brus- 759
sels, Belgium. Association for Computational Lin- 760
guistics. 761

9

https://doi.org/10.18653/v1/2021.naacl-main.272
https://doi.org/10.18653/v1/2021.naacl-main.272
https://doi.org/10.18653/v1/2021.naacl-main.272
https://doi.org/10.18653/v1/2021.naacl-main.272
https://doi.org/10.18653/v1/2021.naacl-main.272
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/P16-1200
https://doi.org/10.18653/v1/P16-1200
https://doi.org/10.18653/v1/P16-1200
https://aclanthology.org/P09-1113
https://aclanthology.org/P09-1113
https://aclanthology.org/P09-1113
https://doi.org/10.18653/v1/W18-5511
https://doi.org/10.18653/v1/W18-5511
https://doi.org/10.18653/v1/W18-5511


Longhua Qian, Guodong Zhou, Fang Kong, Qiaom-762
ing Zhu, and Peide Qian. 2008. Exploiting con-763
stituent dependencies for tree kernel-based seman-764
tic relation extraction. In Proceedings of the 22nd765
International Conference on Computational Linguis-766
tics (Coling 2008), pages 697–704, Manchester, UK.767
Coling 2008 Organizing Committee.768

Swarnadeep Saha et al. 2018. Open information extrac-769
tion from conjunctive sentences. In Proceedings of770
the 27th International Conference on Computational771
Linguistics, pages 2288–2299.772

David Sculley. 2010. Web-scale k-means clustering. In773
Proceedings of the 19th international conference on774
World wide web, pages 1177–1178.775

Dinghan Shen, Mingzhi Zheng, Yelong Shen, Yanru776
Qu, and Weizhu Chen. 2020. A simple but tough-777
to-beat data augmentation approach for natural lan-778
guage understanding and generation. arXiv preprint779
arXiv:2009.13818.780

Étienne Simon, Vincent Guigue, and Benjamin Pi-781
wowarski. 2019. Unsupervised information extrac-782
tion: Regularizing discriminative approaches with783
relation distribution losses. In Proceedings of the784
57th Annual Meeting of the Association for Com-785
putational Linguistics, pages 1378–1387, Florence,786
Italy. Association for Computational Linguistics.787

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey788
Ling, and Tom Kwiatkowski. 2019. Matching the789
blanks: Distributional similarity for relation learn-790
ing. In Proceedings of the 57th Annual Meeting791
of the Association for Computational Linguistics,792
pages 2895–2905.793

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,794
and Ido Dagan. 2018. Supervised open information795
extraction. In Proceedings of the 2018 Conference796
of the North American Chapter of the Association797
for Computational Linguistics: Human Language798
Technologies, Volume 1 (Long Papers), pages 885–799
895, New Orleans, Louisiana. Association for Com-800
putational Linguistics.801

Laurens Van der Maaten and Geoffrey Hinton. 2008.802
Visualizing data using t-sne. Journal of machine803
learning research, 9(11).804

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien805
Chaumond, Clement Delangue, Anthony Moi, Pier-806
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-807
icz, Joe Davison, Sam Shleifer, Patrick von Platen,808
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,809
Teven Le Scao, Sylvain Gugger, Mariama Drame,810
Quentin Lhoest, and Alexander Rush. 2020. Trans-811
formers: State-of-the-art natural language process-812
ing. In Proceedings of the 2020 Conference on Em-813
pirical Methods in Natural Language Processing:814
System Demonstrations, pages 38–45, Online. Asso-815
ciation for Computational Linguistics.816

Ruidong Wu, Yuan Yao, Xu Han, Ruobing Xie, 817
Zhiyuan Liu, Fen Lin, Leyu Lin, and Maosong Sun. 818
2019. Open relation extraction: Relational knowl- 819
edge transfer from supervised data to unsupervised 820
data. In Proceedings of the 2019 Conference on 821
Empirical Methods in Natural Language Processing 822
and the 9th International Joint Conference on Natu- 823
ral Language Processing (EMNLP-IJCNLP), pages 824
219–228, Hong Kong, China. Association for Com- 825
putational Linguistics. 826

Shanchan Wu and Yifan He. 2019. Enriching pre- 827
trained language model with entity information for 828
relation classification. In Proceedings of the 28th 829
ACM international conference on information and 830
knowledge management, pages 2361–2364. 831

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, 832
Wei Wu, and Weiran Xu. 2021. ConSERT: A con- 833
trastive framework for self-supervised sentence rep- 834
resentation transfer. In Proceedings of the 59th An- 835
nual Meeting of the Association for Computational 836
Linguistics and the 11th International Joint Confer- 837
ence on Natural Language Processing (Volume 1: 838
Long Papers), pages 5065–5075, Online. Associa- 839
tion for Computational Linguistics. 840

Dian Yu, Lifu Huang, and Heng Ji. 2017. Open re- 841
lation extraction and grounding. In Proceedings of 842
the Eighth International Joint Conference on Natu- 843
ral Language Processing (Volume 1: Long Papers), 844
pages 854–864, Taipei, Taiwan. Asian Federation of 845
Natural Language Processing. 846

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, 847
and Jun Zhao. 2014. Relation classification via con- 848
volutional deep neural network. In Proceedings of 849
COLING 2014, the 25th International Conference 850
on Computational Linguistics: Technical Papers, 851
pages 2335–2344, Dublin, Ireland. Dublin City Uni- 852
versity and Association for Computational Linguis- 853
tics. 854

Dejiao Zhang, Feng Nan, Xiaokai Wei, Shang-Wen Li, 855
Henghui Zhu, Kathleen McKeown, Ramesh Nallap- 856
ati, Andrew O. Arnold, and Bing Xiang. 2021. Sup- 857
porting clustering with contrastive learning. In Pro- 858
ceedings of the 2021 Conference of the North Amer- 859
ican Chapter of the Association for Computational 860
Linguistics: Human Language Technologies, pages 861
5419–5430, Online. Association for Computational 862
Linguistics. 863

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. 864
1996. Birch: an efficient data clustering method 865
for very large databases. ACM sigmod record, 866
25(2):103–114. 867

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li, 868
Hongwei Hao, and Bo Xu. 2016. Attention-based 869
bidirectional long short-term memory networks for 870
relation classification. In Proceedings of the 54th 871
Annual Meeting of the Association for Computa- 872
tional Linguistics (Volume 2: Short Papers), pages 873
207–212, Berlin, Germany. Association for Compu- 874
tational Linguistics. 875

10

https://aclanthology.org/C08-1088
https://aclanthology.org/C08-1088
https://aclanthology.org/C08-1088
https://aclanthology.org/C08-1088
https://aclanthology.org/C08-1088
https://doi.org/10.18653/v1/P19-1133
https://doi.org/10.18653/v1/P19-1133
https://doi.org/10.18653/v1/P19-1133
https://doi.org/10.18653/v1/P19-1133
https://doi.org/10.18653/v1/P19-1133
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/D19-1021
https://doi.org/10.18653/v1/D19-1021
https://doi.org/10.18653/v1/D19-1021
https://doi.org/10.18653/v1/D19-1021
https://doi.org/10.18653/v1/D19-1021
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://aclanthology.org/I17-1086
https://aclanthology.org/I17-1086
https://aclanthology.org/I17-1086
https://aclanthology.org/C14-1220
https://aclanthology.org/C14-1220
https://aclanthology.org/C14-1220
https://doi.org/10.18653/v1/2021.naacl-main.427
https://doi.org/10.18653/v1/2021.naacl-main.427
https://doi.org/10.18653/v1/2021.naacl-main.427
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034
https://doi.org/10.18653/v1/P16-2034


A Statistics of Datasets876

The statistics of SemEval2010 Task8 and FewRel877

are shown in Table 4. For SemEval2010 Task8, we878

use 9 relations except the Other relaiton. Because879

of small number of relations, class imbalance and880

relations with high similarity, the experiment on881

SemEval2010 Task8 is more challenging and close882

to real world setting. For FewRel, we use the train883

and valid split but not test split, because the test884

split is not publicly available.885

#Instances #Entities #Relations Avg.Len.

SemEval2010 Task8 10,717 7,984 10 18.84
FewRel 56,000 72,954 80 24.95

Table 4: Statistics of two datasets. "Avg.Len." means
the average length of sentences.

B Implementation Details886

We implement RCL based on Transformers887

package (Wolf et al., 2020), where we use Bert-888

base-uncased as backbone. We set the maximum889

input length to 96 for SemEval2010 Task8 and 80890

for FewRel. The epoch is set to 6 for training and891

we use an Adam optimizer (Kingma and Ba, 2014)892

with a batch size of 32. The learning rate is set to893

5e− 5 and the weight decay is set to 0.1. Same as894

SimCSE (Gao et al., 2021), the dropout probability895

of data augmentation is set to 0.1. The temperature896

τ is set to 0.05 across two datasets and we set α897

to 0.4 and 0.6 on SemEval2010 Task8 and FewRel898

respectively. The hidden size of fully-connected899

layer is set to 1536.900

C More Ablation Studies901

The effects of hyper-parameters are shown in Ta-902

ble 5 and Table 6. For hyper-parameter α, we vary903

α in the list of [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] and find904

RCL can achieve the best performance when α is905

set to 0.4 on SemEval2010 Task8 or 0.6 on Fewrel.906

For temperature hyper-parameter τ , we vary τ in907

the list of [0.001, 0.01, 0.05, 0.1, 1.0] and find908

τ = 0.05 can achieve the best performance across909

two datasets.910

α 0.0 0.2 0.4 0.6 0.8 1.0

SemEval2010 Task8 45.71 65.45 68.02 67.08 66.00 64.46
FewRel 81.08 82.32 82.94 84.52 83.35 83.11

Table 5: Experimental results(%) with different α in
term of B3 F1 score. For FewRel, we report the results
on the unseen relation number m = 10.

τ 0.001 0.01 0.05 0.1 1.0

SemEval2010 Task8 44.99 47.18 68.02 61.85 42.23
FewRel 82.23 83.51 84.52 83.11 77.29

Table 6: Experimental results(%) with different tem-
peratures over two datasets in term of B3 F1 score. For
FewRel, we report the results on the unseen relation
number m = 10.

D Different Clustering methods for 911

Zero-shot Prediction 912

Figure 5 shows the results of different cluster- 913

ing methods for RCL, including Mini-Batch K- 914

Means (Sculley, 2010), Gaussian Mixture Model 915

(GMM), Hierarchical Agglomerative Clustering 916

(HAC), Birch (Zhang et al., 1996), K-Means. 917

We can find that the performance of K-Means 918

is much better than other clustering methods on 919

two datasets. Moreover, Mini-Batch K-Means still 920

outperforms MTB-BERT on SemEval2010 Task8, 921

even its performance is worse than other clustering 922

methods, showing the effectiveness of our model. 923
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Datasets

0

10

20

30

40

50

60

70

80

90

100

F1
 sc

or
e

Mini-Batch K-Means
GMM
HAC
Birch
K-Means

Figure 5: Different clustering methods for our pro-
posed RCL model on two datasets. For FewRel, the
number of unseen relations is set to 10.

E Case Study 924

To intuitively show how RCL helps to solve two 925

types of similar problems (similar relations and 926

similar entities), we conduct some case studies on 927

two datasets. As shown in Figure 6, it is clear to see 928

that RCL effectively solves these two problems un- 929

der the multi-task learning structure. Specifically, 930

RCL can better represent two sentences which have 931

similar relations or similar entities, and then make 932

their euclidean distance closer to the cluster corre- 933

sponding to their ground truth. 934
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SemEval
2010 
Task8

Sentence Label Cluster Center
Euclidean Distance

ZS-BERT MTB-BERT RCL

Similar
Relations

The envelope contained an important 
intelligence discovery of the war. Content-Container

Member-Collection 12.08 9.92 8.55

Content-Container 12.18 12.42 8.36

The kitchen holds patient drinks and snacks. Content-Container
Member-Collection 10.41 8.68 8.52

Content-Container 11.71 10.66 8.41

Similar
Entities

Group1: China has tested Barack Obama early 
in his presidency, with a flotilla of naval vessels
surrounding and harassing a US spy ship in the 
South China Sea. 

Member-Collection

Member-Collection 11.59 7.02 6.83

Instrument-Agency 11.83 12.41 8.30

Group1: Until 1864 vessels in the service of 
certain UK public offices defaced the Red 
Ensign with the badge of their office. 

Instrument-Agency
Member-Collection 11.84 8.62 8.20

Instrument-Agency 13.74 11.02 7.70

Group2: The puppy was inside a sealed 
garbage bag lying in vomit and near death. Content-Container

Content-Container 9.65 7.83 7.00

Entity-Origin 16.97 13.69 8.93

Group2: The puppy was born in a barn where 
Layla made a soft, bed out of hay in an empty 
horse stall. 

Entity-Origin
Content-Container 13.49 9.29 10.14

Entity-Origin 15.49 11.78 9.37

FewRel Sentence Label Cluster Center
Euclidean Distance

ZS-BERT MTB-BERT RCL

Similar
Relations

The Doctor tries to restore the universe with the 
help of River and the alternative universe versions 
of his companions Amy Pond (Karen Gillan) and 
Rory Williams (Arthur Darvill).

part_of
member_of 16.55 26.13 28.76

part_of 17.90 26.42 26.06

Later in the game, she joins Snake in rescuing Dr 
Marv, but dies when Jaeger (as Gray Fox in Metal 
Gear D) destroys the bridge she is on. 

part_of
member_of 16.10 25.63 31.34

part_of 16.85 26.10 27.19

Similar
Entities

Group1: In May 2015, Vienna hosted the 
Eurovision Song Contest following Austria's victory 
in the 2014 contest. 

follows
follows 13.57 7.52 11.41

part_of 16.11 26.01 26.01

Group1: Thus, the song was succeeded as 
Romanian representative at the 2002 Contest by 
Monica Anghel & Marcel Pavel with "Tell Me Why". 

part_of
follows 14.89 25.46 28.22

part_of 18.11 26.54 27.78

Group2: On 1 September 1939, the Second World 
War began with the German Invasion of Poland, 
and two days later the United Kingdom declared 
war on Germany. 

part_of
part_of 15.16 22.98 21.81

follows 18.64 30.77 28.90

Group2: During the War of 1812, Rolette, like 
many other French-Canadian Fur Traders in the Old 
Northwest, was an active supporter of the British 
Empire against the United States.

follows
part_of 15.15 24.63 25.00

follows 18.13 25.28 23.54

Figure 6: Case study of similar relations and similar entities on two datasets. "Euclidean Distance" is the euclidean
distance between the relation representation of input sentence and the cluster center of the relation. The target
entities of input sentence are marked in orange.
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