Superposing Many Tickets into One:
A Performance Booster for Sparse Neural Network Training

Abstract

Recent works on sparse neural network training
(sparse training) have shown that a compelling
trade-off between performance and efficiency can
be achieved by training intrinsically sparse neu-
ral networks from scratch. Existing sparse train-
ing methods usually strive to find the best sparse
subnetwork possible in one single run, without in-
volving any expensive dense or pre-training steps.
For instance, dynamic sparse training (DST), as
one of the most prominent directions, is capable
of reaching a competitive performance of dense
training by iteratively evolving the sparse topology
during the course of training. In this paper, we ar-
gue that it is better to allocate the limited resources
to create multiple low-loss sparse subnetworks and
superpose them into a stronger one, instead of al-
locating all resources entirely to find an individual
subnetwork. To achieve this, two desiderata are
required: (1) efficiently producing many low-loss
subnetworks, the so-called cheap tickets, within
one training process limited to the standard training
time used in dense training; (2) effectively super-
posing these cheap tickets into one stronger subnet-
work without going over the constrained parameter
budget. To corroborate our conjecture, we present
a novel sparse training approach, termed Sup-
tickets, which can satisfy the above two desider-
ata concurrently in a single sparse-to-sparse train-
ing process. Across various modern architectures
on CIFAR-10/100 and ImageNet, we show that
Sup-tickets integrates seamlessly with the existing
sparse training methods and demonstrates consis-
tent performance improvement.

1 INTRODUCTION

Over the past years, large-scale deep learning models with
billions, even trillions of parameters have improved the

So 3%

7
3%%0 \Ultimateticket
7 N
0 0 ¢
Whrpﬁckeﬁ
L L

T T T T
90% Training Time Cycle 1 Cycle 2 Cycle 3

Learning Rate

Training Time
T onmections —%- pruned connections

,,,,, O cheapticket O superposed ficket Oultamate ficket
Figure 1: The schematic view of Sup-tickets. Multiple sub-
networks (cheap tickets) are efficiently produced within the
last 10% of the training time and are superposed into one
single subnetwork with boosting performance while main-
taining the target sparsity. We term the “ultimate ticket” as
the final subnetwork used for inference.

state-of-the-art in nearly every downstream task [Shoeybi
et al.l 2019] Brown et al.| 2020, |Radford et al., 2021} [Fe+
dus et al.,[2021]]. The compelling results achieved by these
large-scale models motivate researchers to pursue increas-
ingly gigantic models without thinking too much about the
limited resources of our planet. Fortunately, many prior tech-
niques for neural network acceleration have already been
proposed, which can effectively trim down the memory re-
quirements and computational costs while retaining high
accuracy [Mozer and Smolensky, |1989, Han et al., 2015|
Gale et al.,[2019, Molchanov et al., 2017].

Among them, sparse neural network training [Mocanu et al.,
2018, [Evci et al.| 2020, [Bellec et al.l [2018]] stands out and
receives growing attention recently due to its high efficiency
in both the training and inference phases. Instead of in-
heriting well-performing sparse networks from a trained
dense network, sparse training approaches typically start
from a randomly initialized sparse network and only require

Submitted to the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022). To be used for reviewing only.



training a subset of the corresponding dense network. Since
this sparse-to-sparse training process does not involve any
dense or pre-training steps, the memory requirements and
the floating-point operations (FLOPs) are only a fraction of
the traditional dense training. Nonetheless, naively training
a sparse neural network from scratch leads to poor solutions
in general compared with training a dense network [Evci
et al.|[2019]. Dynamic sparse training (DST) [Mocanu et al |
2018] significantly improves the trainability of sparse net-
works by dynamically exploring new connectivities dur-
ing training, while maintaining the fixed parameter count.
Compared with methods that train with the fixed sparse
connectivity [Mocanu et al., 2016, Lee et al., 2018]], DST
substantially improves the expressibility of sparse networks,
and thus leads to better generalization performance [Liu
et al.,|2021c|]. However, the accuracy of extremely sparse
subnetworks (e.g., at sparsityﬂ 95% or 90%) usually remains
below the full dense training under a regular training epoch
number [Evci et al.|[2020, [Liu et al.,[2021a]]. Enabling sparse
training at extreme sparsities to match or even surpass the
performance of dense training under a typical amount of
training epochs will significantly benefit sparse training in
practice.

Increasingly more evidence on sparse training [Liu et al.,
2022a]] and dense training [[Garipov et al.| |2018], [Draxler]
et al.| 2018| [Fort and Jastrzebski, [2019] reveal that many
independent local optima exist in different low-loss basins
of the loss landscape. Inspired by these observations, we go
one step further to pursue an approach that can boost the
performance of sparse training by leveraging these widely-
existing low-loss basins. Specifically, we propose Superpos-
ing Tickets, or briefly Sup-tickets, which could produce
many subnetworks (cheap tickets) in one single run and
then superposes all of them into one at the same sparsity.
Doing so allows us to leverage the knowledge from various
well-performing cheap tickets, while still maintaining the
training and inference efficiency of sparse training. Overall,
we summarize our contributions below:

* We propose Sup-tickets, a novel sparse training ap-
proach that produces and superposes many cheap yet
well-performing subnetworks (cheap tickets) during
one sparse-to-sparse training run. The ultimate super-
posed subnetwork achieves stronger results in predic-
tive accuracy and uncertainty estimation while main-
taining the target sparsity.

* Sup-tickets is a general and versatile performance
booster for sparse training, which seamlessly integrates
with other state-of-the-art sparse training methods. We
conduct extensive experiments to evaluate our method.
Across various popular architectures on CIFAR-10/100
and ImageNet, Sup-tickets improves the performance

!The term sparsity refers to the proportion of the neural net-
work’s weights that are zero-valued.

of various sparse training methods without extending
the training time.

* More impressively, in conjunction with the advanced
sparse training methods — GraNet [Liu et al.| [2021al,
Sup-tickets boosts the performance of sparse training
over the dense training on CIFAR-10/100 at extreme
sparsity levels around 90% ~ 95%, enhancing the great
potentials of sparse training in practice.

2 RELATED WORK

Sparse neural network training is a thriving topic. It aims
to train initial sparse neural networks from scratch and
chase competitive performance with their dense counter-
parts, while using only a fraction of resources of the latter.
According to whether the sparse connectivity dynamically
changes or not during training, sparse training usually can
be divided into static sparse training (SST) and dynamic
sparse training (DST).

Static sparse training represents a class of methods that
train initial sparse neural networks with a fixed sparse con-
nectivity pattern throughout training. While the sparse con-
nectivity is static, the choices of the particular layer-wise
sparsity (i.e., sparsity level of every single layer) can be
diverse. The most naive approach is sparsifying each layer
uniformly, i.e., uniform sparsity [Gale et al.,[2019]). Mocanu
et al.[[2016] proposed a non-uniform sparsity method that
can be applied in Restricted Boltzmann Machines (RBMs)
and achieves better performance than dense RBMs. Some
works explore the expander graph to train sparse CNNs and
show comparable performance against the corresponding
dense CNNs [Prabhu et al., 2018|, [Kepner and Robinett,
2019]. Inspired by the graph theory, Erdds-Rényi (ER) [Mo{
canu et al.,|2018]] and its CNNs variant Erdds-Rényi-Kernel
(ERK) [Evci et al.,|2020]] allocates lower sparsity to smaller
layers, avoiding the layer collapse problem [Tanaka et al.,
2020] and achieving stronger results than the uniform spar-
sity in general.

Dynamic sparse training, namely, trains initial sparse neu-
ral networks while dynamically adjusting the sparse connec-
tivity pattern during training. DST was first introduced in
Sparse Evolutionary Training (SET) [Mocanu et al., 2018]]
which initializes the sparse connectivity with a ER topology
and periodically explores the parameter space via a prune-
and-grow scheme during training. Following SET, weights
redistribution is introduced to search for better layer-wise
sparsity ratios while training [Mostafa and Wang| 2019,
Dettmers and Zettlemoyer, 2019]. The mainly-used prun-
ing criterion of existing DST methods is magnitude prun-
ing. The criterion used for weight regrowing varies from
method to method. Gradient-based regrowth e.g., momen-
tum [Dettmers and Zettlemoyer, 2019|] and gradient [Evci
et al., 2020]], shows strong results in image classification,
whereas random regrowth outperforms the former in lan-



guage modeling [Dietrich et al., 2021]. Follow-up works
improve the accuracy by relaxing the constrained memory
footprint [Jayakumar et al., 2020, Yuan et al.| 2021 [Liu
et al.|[2021a]. Very recently, [Liu et al.|[2022a] proposed an
efficient ensemble framework for sparse training— FreeT-
ickets. By directly ensembling the predictions of individual
subnetworks, FreeTickets surpass the generalization perfor-
mance of the naive dense ensemble. Nevertheless, FreeTick-
ets requires extending the training time to obtain multiple
cheap subnetworks and performing multiple forward passes
for inference, contrary to our pursuit of efficient training.

3 METHODOLOGY

In this section, we introduce a new approach for sparse train-
ing, which could combines the benefits of multiple cheap
tickets, without extra training time and multiple forward
passes for inference[/Garipov et al., 2018} |Liu et al., [2022a].
We first introduce the basic training scheme of sparse train-
ing in Section [3.1] and then describe our proposed Sup-
tickets approach in detail in Section 3.2}

3.1 PRIOR SPARSE TRAINING ART

Following |Liu et al| [2021c| [2022al], we denote a sparse
neural network as f(x; 05). O refers to a subset of the full

network parameters 6 at a sparsity level of (1 — ‘I%‘}L“ ),
where || - ||o is the £p-norm. Sparse training typically ini-

tializes the network in a random fashion where the con-
nections between two adjacent layers are sparsely and
randomly connected, based on a pre-defined uniform or
non-uniform layer-wise sparsity rati(ﬂ In the i.i.d. classifi-
cation setting with data {(z;,v;)}}L;, the goal of sparse
training is to solve the following optimization problem:
0, = arg ming_ Zi\}:l L(f(z:;0s),y;), where L is the loss
function.

SST keeps the sparse connectivity of the sparse network
fixed after initialization. DST, on the other hand, dynami-
cally adjusts the sparse connectivity via parameter explo-
ration during training while sticking to a fixed sparsity level.
The most widely used method for parameter exploration is
the prune-and-grow scheme, i.e., pruning p% the least im-
portant parameters from the current subnetwork followed by
a fraction p% of weight growing. Formally, the parameter
exploration can be written as the following two steps:

6. = (6., p), (1
0, =0, UP(0;z0:, p) 2)

where ¥ and & are the specific pruning and growing crite-
rion respectively. The choices of W and @ differ from sparse
training method to another. Besides the sparse structures,

2See|Liu et al.|[2022b]] for the most common types of sparse
initialization.

in the most sparse training literature [Dettmers and Zettle{
moyer, 2019, Evci et al., 2020, Mostata and Wang, 2019,
Liu et al.,2021a], it is usually a safe choice to keep the other
training configurations, such as optimizers, hyperparame-
ters, and learning rate schedules, the same as the normal
dense training. At the end of the training, sparse training can
converge to a well-performing sparse subnetwork whose
memory requirements, training, and inference FLOPs are
only a fraction of the dense training.

3.2 SUP-TICKETS

Existing sparse training methods allocate all the limited
resources to find the best sparse neural network possible.
While low-loss subnetworks widely exist in the loss land-
scape of sparse neural network optimization [Liu et al.
2021b]}, no prior works have ever explored how to find and
leverage these handy cheap tickets to boost the performance
of sparse training without extending training steps. In this
section, we present Sub-tickets to close this research gap, as
illustrated in Figure[I}

To achieve the above-mentioned ultimate goal, we need to
satisfy the following two desiderata in one sparse-to-sparse
training run:

1. Creating cheap tickets: Creating multiple cheap but
well-performing subnetworks with one single run un-
der a regular training time. We name such efficiently
produced subnetworks as “cheap tickets”.

2. Superposing tickets: Superposing these subnetworks
into one subnetwork at the same sparsity to avoid per-
forming multiple forward passes for the prediction. We
term the “ultimate ticket” as the final subnetwork used
for inference.

These two desiderata strictly follow the sparsity constraint
of sparse training and thus maintain the training/inference
efficiency of sparse training.

3.2.1 Creating Cheap Tickets

During the last 10% of the training time, we cyclically ex-
plore the current sparse connectivity and restart the learn-
ing rate to visit multiple low-loss sub-space basins. More
concretely, in each cycle, we first significantly change the
connectivity of the current subnetwork by performing the
parameter exploration once with Eq.[I] & [2] For simplic-
ity, we inherit the pruning and growing methods used in
the sparse training methods that Sup-tickets combines with.
After parameter exploration, we leverage the cyclical learn-
ing rate to force the current subnetwork to escape the local
minima. Inspired by |Garipov et al.|[2018], |Izmailov et al.
[2018]], we adopt the learning rate schedule scheme as:

L (1 =2t(@)ay + 2t(i)ag 0<t(@) <2
o= { (o et ) e d i O



Algorithm 1 Sup-tickets

Require: Network f(x; 0), superposed subnetwork 55, target sparsity S, training time 7', cycle length C', learning rate «,
pruning criterion ¥, growing criterion ®, pruning rate for parameter exploration p.

1: f(x;05) « f(x;60;9)
2: fori <+ 1to1 do
3 ifi < 90%T then

4: f(x;05) < SparseTraining(f(x;0y))
5:  else
6: a <+ afi)
7: f(x;05) < SparseTraining(f(x;05); o)
8  if mod(i — 90%T,C) = 0 then
9: t <« (i—90%T)/C

10: gl (Do o

11: 5Z — MagnitudePruning(gz)

12 0. «— V(8, p)

13: 0+ 0. U ®(0i¢0_,, p)

14: end if

15:  endif

16: end for _

17: Return 6,

>Sparsely initialize the network
>Normal sparse training for the first 90% of T
>Creating and superposing cheap tickets in the last 10% of T

>Calculate the cyclical learning rate using Eq.

>Number of the created cheap tickets
> Ticket superposing using Eq.

>Prune the superposed ticket to the target sparsity S
>Parameter exploration using Eq. and Eq.

>The ultimate ticket for test

where a(7) is the cyclical learning rate ranging from a4 to
i3 1 1s the training iteration for one mini-batch data; ¢(i) =
&(mod(i — 1,C) + 1); C is the cycle length. We modify
the cyclical learning rate schedule used in SWA [[zmailov
et al., 2018] to prevent the aggressive rise of the learning
rate. Specifically, we adopt the triangle-like schedule as
shown in Figure [2}bottom. In such a way, the learning rate
could seamlessly transition from the normal training stage
to the superposing stage. At the end of each cycle, we can
obtain one cheap ticket from the current basin with diverse
and meaningful representation.

SWA

Sa

o

o

=

2 ar O 0 0
0 1C 2C 3C

Sup - tickets

] .

[

o

C

Sarf ¢ o] o] o)
0 1C 2C 3C

Figure 2: Top: cyclical learning rate schedule of |Garipov
et al.| [2018]]. Bottom: cyclical learning rate schedule of
Sup-tickets. Cheap tickets are collected at the end of each
learning rate schedule cycle (green circles in the figure).

The combination of cyclical learning rate schedule and pa-
rameter exploration is also used in FreeTickets [Liu et al.,
2022a]], but we have several distinctions to make it compiled

with the requirements of sparse training. The cycle duration
of FreeTickets is set as 100 epochs to guarantee the consis-
tent strong performance of each subnetwork as they try to
achieve comparable performance with the dense ensemble.
However, such a long duration of cycle conflicts with the
goal of sparse training. In particular, we reduce the cycle
duration to 2 epochs for ImageNet, 8 epochs for CIFAR-
10/100 and only use the final 10% of the training time to
generate cheap tickets. In this case, the overall training time
is the same as training a single sparse network.

3.2.2 Superposing Tickets

Superposing multiple sparse networks is more complex than
superposing multiple dense networks [[Cheung et al.,[2019|
Izmailov et al. 2018]]. Naively selecting all the weights
that are activated in all cheap tickets will significantly in-
crease the parameter count, as different subnetworks have
different connectivities. To solve this task, we propose
to perform weight averaging followed by weight pruning.
More concretely, assuming we collect M cheap tickets
{61,062, ...,0M at the end of training, we consider the fol-

S
lowing three ways to average them.

Connection Independent Averaging (CIA). The ultimate
subnetwork averaged by CIA is given as: Oy = ﬁ Z?L 0;,
where M is the total number of cheap tickets. CIA simply
averages weights across all the cheap tickets without con-
sidering whether the connection is activated or not in each
cheap ticket. CIA tends to preserve the connections that are
activated in the majority of the cheap tickets whereas the
ones that are occasionally activated in one or two cheap
tickets are likely to have small magnitude after averaging



ResNet-50 (CIFAR-100)

79.0

Accuracy (%)
~ ~ ~
N ® ®
w o w

~
N
=)

76.5

Sparsity=90%

Sparsity=80%

Sparsity=95%

s CAA == CIMA (B=0.9) mmm CIMA (B=0.8)

== CIMA (B=0.5)

VGG-16 (CIFAR-100)

Accuracy (%)
~
=

69

Sparsity=80%

68

Sparsity=95% Sparsity=90%

mms CIMA (B=0.2) mmm CIMA (B=0.1) mm CIA

Figure 3: Comparisons of various averaging methods. We combine CIA, CAA, and CIMA with RigL and report the test
accuracy of the ultimate tickets. For CIMA, we vary the exponential decay rates 8 € [0.9,0.8,0.5,0.2,0.1].

by M, unless they have extremely large values.

Connection Aware Averaging (CAA). The ultimate subnet-
work averaged by CAA is given as: 8, = m SN el
where N(k, j) is the number of times the connection 0(k, )
is activated across all the cheap tickets; & is the k" neuron
in the previous layer and j is the j* neuron in this layer.
Thus, we have N(k,j) < M. Compared with CIA, CAA
pays more attention to the occasionally activated connec-
tions that are only existing in the minority of cheap tickets.

Connection Independent Moving Averaging (CIMA).
Motivated by the widely-used moving average tech-
nique [Rumelhart et al.}[1986} [Kingma and Ba, 2014} [Karras|

2017]l, we sequentially apply the popular moving av-
erages over the cheap tickets obtained at each cycle. The

averaged subnetwork over the first ¢ cheap tickets is given
~t ~t—1

as: @, = 36, + (1 — B)6. B controls the exponential

decay rates. Larger 8 will put more emphasis on the cheap

tickets collected in the early time.

Note that the sparsity of the averaged subnetwork is likely
larger than the target sparsity level. To maintain the same
sparsity as the original subnetwork, we utilize magnitude
weight pruning to remove the weights with the smallest
magnitude after every averaging step.

3.3 MEMORY AND COMPUTATION OVERHEAD

Instead of saving M individual cheap tickets and average
them, we apply a similar operation as used in CIMA to save
the extra memory required by CIA and CAA during training.
The averaged subnetwork over the first ¢ cheap tickets is
given as:
~t—1 "
¥ (t — 1) ) gs + 03

o, = - @)

This operation allows us to accomplish the average operation
by maintaining only one extra copy of the averaged weights,
instead of saving M subnetworks.

Moreover, as we mentioned, we use the final 10% of the
training time to create cheap tickets, and thus the training
time of Sub-tickets is the same as the standard sparse train-
ing. Since we only need to perform Eq.[dfor (M — 1) times,
the extra computation cost of averaging is negligible com-
pared with the total training costs. Overall, we can conclude
that the training cost of Sub-tickets is approximately the
same as training a single sparse network.

4 EXPERIMENTS

Sub-tickets is a universal idea that can be straightforwardly
applied to any types of sparse training methods. To ver-
ify the effectiveness of Sup-tickets, we apply it to various
sparse training methods, including 3 DST methods: SET,
RigL [2020], and GraNet 20214]; one
SST method: ERK 2020]; and one pruning at
initialization approach: SNIP 2018].

4.1 EXPERIMENTAL SETUPS

The experiments are conducted across various architectures
on three popular datasets CIFAR-10/100 and ImageNet. For

CIFAR-10/100, we choose models VGG-16 [Simonyan and|
[2014]), Wide ResNet28-10 [Zagoruyko and Ko}

[2016] and ResNet-50 [2016]. The models
are trained for 250 epochs, optimized by momentum SGD
with a learning rate of 0.1, which decayed by 10x at the half
and three-quarters of the training stage. The cycle length is
chosen as 8 epochs, so that we can obtain 3 cheap tickets
in 24 epochs. The model used for ImageNet is ResNet-50,
which is trained for 100 epochs, optimized by momentum
SGD with a learning rate of 0.1 decaying by 10x at 30, 60,
and 85 epoch. The cycle length of ImageNet is 2 epochs, so
we obtain 4 cheap tickets in the last 8 epochs. The imple-
mentation details are reported in Appendix [B]




Table 1: Test accuracy (%) of sparse VGG-16 on CIFAR-10/100. All the results are averaged from three random runs. In
each setting, the best results are marked in bold.

Dataset CIFAR-10 CIFAR-100

VGG-16 (Dense) 93.91£0.26 - - 73.61+0.45 - -
Sparsity 95% 90% 80% 95% 90% 80%
SET [Mocanu et al.|2018]  92.96+0.18 93.544+0.23 93.56+0.04 70.10+0.33  71.50+0.23  72.384+0.08
SET+Sup-tickets (ours) 93.224+0.09 93.63+0.05 93.80+0.13 71.18+0.29 71.99+0.27 73.02+0.32
RigL [Evci et al.| 2020] 92.70+0.08 93.48£0.16 93.60+0.14 70.65+0.16 72.20+0.09 72.63+0.23
RiglL+Sup-tickets (ours) 93.20+0.13 93.81+0.11 93.85+0.25 71.31+0.21 72.57+0.29 73.61+0.11
GraNet [Liu et al.|[2021a]  93.874+0.19 93.83+0.30 93.77+0.18 72.91+0.39 73.48+0.17 73.36+0.14
GraNet+Sup-tickets (ours) 94.10+0.06 94.13+0.12 94.244+0.05 73.61+0.24 73.87+0.26 73.951+0.30

Table 2: Test accuracy (%) of sparse ResNet-50 on CIFAR-10/100. All the results are averaged from three runs. In each
setting, the best results are marked in bold.

Dataset CIFAR-10 CIFAR-100

ResNet-50 (Dense) 94.884+0.11 - - 78.001+0.40 - -
Sparsity 95% 90% 80% 95% 90% 80%
SNIP [Lee et al.|2018] 94.01+£0.28 94.81+0.36 94.91+0.16 41.25+1.10 68.79+1.16 75.294+1.28
SNIP+Sup-tickets (ours) 94.33+0.09 95.05+0.22 95.21+0.09 65.56+1.15 76.34+0.27 77.43+0.53
ERK [Evci et al.|[2020] 93.44+0.22 94.414+0.13 94.854+0.21 74.49+0.30 76.36+0.22 77.41+0.08
ERK+Sup-tickets (ours) 93.92+0.04 94.80+0.06 95.11+0.27 75.75+0.28 76.82+0.08 77.85+0.42
SET [Mocanu et al.|2018] 94.494+0.11 94.73+£0.27 94.74+0.17 76.59+0.54 77.794+0.27 78.454+0.50
SET+Sup-tickets (ours) 94.81+0.05 94.87+0.03 94.90+0.27 76.68+0.38 77.89+0.45 78.35+0.18
RigL [Evci et al.|[2020] 94.59+0.19 94.704+0.17 94.704+0.07 76.96+0.39 77.95+0.36 78.19+0.51
RigL+Sup-tickets (ours) 94.65+0.11 94.82+0.13 94.81+0.15 77.58+0.47 78.52+0.39 78.69+0.30
GraNet [Liu et al.|[2021a] 94.704+0.23 94.95+£0.09 94.86+0.24 77.47+0.22 78.254+0.51 78.80+0.46
GraNet+Sup-tickets (ours) 94.89+0.15 95.08+0.08 94.94+0.03 77.70+0.47 78.37+0.53 78.95+0.33

Table 3: Test accuracy (%) of sparse ResNet-50 on ImageNet. The training FLOPs of sparse training methods are normalized
with the FLOPs used to train a dense dense model. In each setting, the best results are marked in bold.

Method Top-1 FLOPs FLOPs TOP-1 FLOPs FLOPs
Accuracy (Train) (Test) Accuracy (Train) (Test)
ResNet-50 (Dense) 76.840.09 1x (3.2e18) 1x(8.2¢9) 76.8+0.09 1x (3.2e18) 1x (8.2¢9)
Sparsity 80% 90%
Static sparse training (ERK) 72.1+0.04 0.42x 0.42x 67.7+0.12 0.24 x 0.24 x
Small-Dense 72.1+0.06 0.23x 0.23 % 67.24+0.12 0.10x 0.10x
SNIP [Lee et al.| [2018] 72.0+0.06 0.23x 0.23x 67.2+0.12 0.10x 0.10x
SET [Mocanu et al.|[2018] 72.940.39 0.23x 0.23x 69.61+0.23 0.10x 0.10x
DSR [Mostafa and Wang|[2019] 73.3 0.40x 0.40x 71.6 0.30x 0.30x
SNES [Dettmers and Zettlemoyer|[2019]  75.2+0.11 0.61x 0.42x 72.940.06 0.50x 0.24 x
RigL [Evci et al.| [2020] 75.1+0.05 0.42x 0.42x 73.0+0.04 0.25x% 0.24 x
RigL+Sup-tickets (ours) 76.0 0.42x 0.42x 74.0 0.25x% 0.24 x
GraNet [Liu et al.|[2021a] 75.9 0.37x 0.35x% 74.4 0.25x 0.20x
GraNet+Sup-tickets (ours) 76.2 0.37x 0.35x 74.6 0.25x% 0.20x




4.2 COMPARISONS AMONG CIA, CAA, AND
CIMA

We first conduct a comparison among CIA, CAA, and CIMA
on CIFAR-100 and report the results in Figure 3] We can
see that CIA consistently outperforms the other two meth-
ods at various sparsity levels. CAA is the worst-performing
method, especially at the extreme sparsity 95%. With tuned
B = 0.8, CIMA can approach the performance achieved by
CIA. The better performance achieved by CIA over CAA in-
dicates that the occasionally activated connections are likely
unimportant. CIA pays more attention to the connections
that exist in the majority of the cheap tickets, which can
eliminate the unimportant connections that are activated
occasionally. Therefore, due to the superior performance
consistently achieved by CIA, we choose CIA as our aver-
aging method in the following sections.

4.3 EVALUATION OF SUP-TICKETS

CIFAR-10/100. In this section, we provide an experimental
comparison of Sup-tickets to a variety of sparse training
techniques. The results of CIFAR-10/100 with VGG-16 and
ResNet-50 are shown in Table[I] & 2] respectively, and the
results of Wide ResNet28-10 are shared in Appendix [A]
due to the limited space. Overall, we clearly see that our
approach could benefit sparse training across all studied
architectures. Simple as it looks, Sup-tickets improves the
performance of various dynamic sparse training methods in
63 out of 66 cases. It seems Sup-tickets performs better with
VGG-16 than the other two architectures, with up to 0.5%
and 1.08% accuracy increase on CIFAR-10 and CIFAR-100,
respectively. We also find that the performance improvement
on CIFAR-100 is larger than the one on CIFAR-10, which
makes sense since CIFAR-100 is less saturated and thus has
a larger improvement space. More importantly, our approach
combined with the state-of-the-art DST method — GraNet,
outperforms the dense networks with only about 5% at most
10% parameters with all architectures, as reported in Table[d]
All these results highlight that Sup-tickets is a strong and
universal performance booster for sparse training.

Table 4: Performance comparison between GraNet+Sup-tickets
and dense network. Results that are better than the corresponding
dense networks are marked in bold. WRN28-10 refers to Wide
ResNet28-10. GraNet+Sup-tickets outperforms dense network in

most cases.

Dataset Network Dense GraNet+Sup-tickets
95% sparsity  90% sparsity ~ 80% sparsity
VGG-16 93.91+0.26  94.10+0.06  94.13+0.12  94.24+0.05
CIFAR-10 ResNet-50  94.88+0.11  94.89+0.15  95.084+0.08  94.94+0.03
WRN28-10  96.00+0.13  96.03+0.11  96.13+0.07  96.08+0.04
VGG-16 73.61+£045 73.61+0.24  73.87+0.26  73.95+0.30
CIFAR-100  ResNet-50  78.00+£0.40  77.70+£0.47  78.374+0.53  78.95+0.33
WRN28-10  81.09+0.19  80.65+0.06  81.20+0.09  81.42+0.18

ImageNet. For ImageNet, we apply Sup-tickets to RigL and

GraNet and compare them with the existing sparse training
methods. The results are reported the in Table[3] Again, we
improve the performance of GraNet and RigL at both 80%
sparsity and 90% sparsity without an extra parameter budget.
Especially on RigL, our approach improves the test accuracy
by 0.9% and 1.0% at sparsity 80% and 90%, respectively.
Besides, we compare the Sup-tickets with the naive deep
ensemble method and show the results in Appendix [E]

Examining the results, we note that Sup-tickets improve
both SST and DST in all settings with a small operation
modification of those algorithms. In all settings, a large
array of other techniques are outperformed.

S EXTENSIVE ANALYSIS

Cyclical Length. Here, we study how the cyclical length C
affects the Sup-tickets’ performances. For all experiments,
we still take the last 10% of the training time for the genera-
tion of the cheap tickets, while altering the cyclical length
as 2,4, 8, and 12 epochs. The cheap ticket count then varies
accordingly. The results are shown in Table[5] In general, the
intermediate lengths (i.e., C' = 4 or C' = 8) tend to achieve
better accuracy than the extreme small or large lengths (i.e.,
C = 2 or C' = 12). The results are expected since small
lengths can not guarantee the high quality (high accuracy)
of each cheap ticket, whereas large lengths naturally de-
crease the number of the collected tickets. Consequently,
we use C' = 8 as the default setting in the main experiment

section [4.3]

Table 5: Test accuracy (%) on CIFAR-100 of Sup-tickets
combined with RigL. under different cyclical lengths. The
best results are marked in bold.

Cyclical
length (epochs) 95% 90% 80%
VGG-16
71.354+0.14  72.89+0.41
71.424+0.19  73.00+0.20
71.314+0.21  72.574+0.29
71.2740.06  72.69+0.43
ResNet-50
77.584+0.22 78.48+0.45
77.33+0.26  78.524+0.36

77.584+0.47 78.521+0.39
77.17£0.42  78.39+0.43

Pruning ratio

73.65+0.20
73.6240.40
73.614+0.11
73.454+0.06

— 00 £

[oNoNoNe!
LI U [
S

78.5040.32
78.624+0.34
78.69+0.30
78.484+0.38

—_ 00 B N

[oNoNoNe!
L U [
[}

Number of Cheap Tickets. To study the effect of the cheap
ticket count on ultimate ticket’s performance, we alter the
cheap ticket count with 2, 4, and 7, and fix the cyclical length
as 8 epochs. The overall training time is set as 250 epochs.
Under this setting, the time used for ticket generation is not
fixed as 10%, but it changes according to the cheap ticket
count. We report the results in Figure [5}left. It could be seen
that our approach achieves the best performance under four
tickets, not the largest nor the smallest ticket count, appar-



VGG-16 (CIFAR-10)

ResNet-50 (CIFAR-10)

VGG-16 (CIFAR-100)

ResNet-50 (CIFAR-100)

Q
~ o el
2 .Qb‘b‘ 0'03\6
(% Q
8oty Ot
Mo o
070 — — N P —
Q o 950/0 900/" 660 o Q- 9\50 o 90°/0 i5()“/o
Sparsity Sparsity
VGG-16 (CIFAR-10) ResNet-50 (CIFAR-10)
N\ 13
: 0290 0'116
5 O e® 0'1\0
0-’1' 0.’7'
r4 ,1:‘6 /- o
O o
o gk o0’ gk o5k o0 g%k
Sparsity Sparsity

—~<— RigL+Sup-tickets

5

~? &
Q.9 oY

~? &
N >

> o \
Q'VQ Q’},
o gk o0 20% o5k Q0P o0%

Sparsity Sparsity
VGG-16 (CIFAR-100) ResNet-50 (CIFAR-100)

,-éb qcb
» 0‘,\

P &)
N N ©

')),L Q9 \
N o) &

,19 J 09 ———
e 95(’/6 900/0 %00/0 950/0 900/0 800 o

Sparsity Sparsity
RigL

Figure 4: Comparison between RigL and Rigl.+Sup-tickets in terms of ECE and NLL.

ently since creating too many cheap tickets will reduce the
time of the normal sparse training phase, and thus yielding
cheap tickets with poor performance. We further prove this
in Figure }right. On the other hand, 2 cheap tickets are
too few to boost the performance. Figure[5]also illustrates
the effectiveness of Sup-tickets, where the superposed sub-
networks outperform the individual subnetworks by a large
margin.

§81'0 81.0
805 80.5
< 80.0 80.0
5795 79.5
2 79.0 79.0
78.5 78.5
950/0 900/0 600/0 950/0 900/‘J %00/3
Sparsity Sparsity

2 cheap tickets 4 cheap tickets —8— 7 cheap tickets

Figure 5: Impacts of the cheap tickets count. Experi-
ments are conducted with Wide ResNet28-10 trained with
RigL+Sup-tickets on CIFAR-100. Left: test accuracy of the
ultimate tickets. Reft: the mean accuracy of the individual

cheap tickets used to build the ultimate tickets.

Batch Normalization. When there are batch normalization
(BN) layers [loffe and Szegedy, 2015] in the model, tradi-
tional weight averaging approaches [Garipov et al., 2018|
[zmailov et al.,[2018]] usually run one additional pass over
the data to calculate the mean and standard deviation of these
layers. Differently, we retrieve these statistics by simply av-
eraging the mean and standard deviation of the BN layers
in all cheap tickets without extra forward pass. To avoid
extra memory occupation during implementation, similar to
the weights averaging operation in Eq. 4} we calculate the

~t
superposed ticket’s BN statistics 6}, across the first ¢ cheap

At gt .
tickets using %, where 6}, is the mean and
standard deviation from ¢*" cheap ticket’s BN layers. The
comparison between test accuracy under these two strategies

is reported in Appendix [C|

Uncertainty Estimation. In the security-critical scenarios,
e.g., self-driving, medical treatment, classifiers should not
only be accurate but also indicate when they are likely to
be incorrect [Guo et al.| 2017]]. We further evaluate the per-
formance of our approach on uncertainty estimation. We
choose two widely-used metrics, expected calibration er-
ror (ECE) [[Guo et al.| [2017] and negative log-likelihood
(NLL) [Quinonero-Candela et al.l 2005]] to enable uncer-
tainty comparisons among different methods. We apply Sup-
tickets to RiglL and compare it with the vanilla RigL. in
Figure 4] As observed, in addition to the improvement of
accuracy, Sup-tickets also achieves stronger uncertainty esti-
mation performance over RigL, and such improvement can
likely generalize to other sparse training methods.

6 CONCLUSION

In this paper, we presented a novel sparse training approach,
Sup-tickets, which effectively produces many cheap sub-
networks (tickets) during training and superposes them into
one stronger ultimate subnetwork. Sup-tickets is easily com-
bined with existing techniques, agnostic to model archi-
tectures, datasets, and is able to boost the sparse training
performance with only a negligible amount of extra FLOPs.
Across various scenarios, consistent performance improve-
ment is obtained by Sup-tickets in terms of accuracy as
well as uncertainty estimation, under the same training time
used by the standard sparse training methods. It is impres-
sive to see that sup-tickets outperforms the corresponding
dense networks on CIFAR-10/100 even in extremely sparse
situations when collaborating with GraNet.

There are many potential directions to be explored in the
future. For example, even if Sup-tickets enable sparse neural
networks to match or outperform their dense counterparts
in terms of test accuracy, do they learn the same represen-
tation as the latter learn? Besides, we hope the superior
performance achieved by Sup-tickets could inspire more
researchers to invest in developing hardware accelerators
that have better support for sparse training.



References

Guillaume Bellec, David Kappel, Wolfgang Maass, and
Robert Legenstein. Deep rewiring: Training very sparse
deep networks. In International Conference on Learning

Representations, 2018. URL https://openreview.

net/forum?id=BJ wNO1C-|

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared D Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel
Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei. Lan-
guage models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, edi-
tors, Advances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates, Inc.,
2020.

Brian Cheung, Alex Terekhov, Yubei Chen, Pulkit Agrawal,
and Bruno Olshausen. Superposition of many models
into one. arXiv preprint arXiv:1902.05522, 2019.

Tim Dettmers and Luke Zettlemoyer. Sparse networks from
scratch: Faster training without losing performance. arXiv
preprint arXiv:1907.04840, 2019.

Anastasia Dietrich, Frithjof Gressmann, Douglas Orr, Ivan
Chelombiev, Daniel Justus, and Carlo Luschi. Towards
structured dynamic sparse pre-training of bert. arXiv
preprint arXiv:2108.06277, 2021.

Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and
Fred Hamprecht. Essentially no barriers in neural network
energy landscape. In International conference on machine
learning, pages 1309—1318. PMLR, 2018.

Utku Evci, Fabian Pedregosa, Aidan Gomez, and Erich
Elsen. The difficulty of training sparse neural networks.
arXiv preprint arXiv:1906.10732, 2019.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Cas-
tro, and Erich Elsen. Rigging the lottery: Making all
tickets winners. In International Conference on Machine
Learning, pages 2943-2952. PMLR, 2020.

William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961, 2021.

Stanislav Fort and Stanislaw Jastrzebski. Large scale struc-
ture of neural network loss landscapes. Advances in
Neural Information Processing Systems, 32:6709-6717,
2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state
of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry
Vetrov, and Andrew Gordon Wilson. Loss surfaces, mode
connectivity, and fast ensembling of dnns. In Proceedings
of the 32nd International Conference on Neural Informa-
tion Processing Systems, pages 8803-8812, 2018.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.
On calibration of modern neural networks. In Interna-
tional Conference on Machine Learning, pages 1321—
1330. PMLR, 2017.

Song Han, Huizi Mao, and William J Dally. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. International
Conference on Learning Representations, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. arXiv preprint arXiv:1704.00109,
2017.

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International conference on machine
learning, pages 448—456. PMLR, 2015.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry
Vetrov, and Andrew Gordon Wilson. Averaging weights
leads to wider optima and better generalization. arXiv
preprint arXiv:1803.05407, 2018.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon
Osindero, and Erich Elsen. Top-kast: Top-k always sparse
training. Advances in Neural Information Processing
Systems, 33:20744-20754, 2020.

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehti-
nen. Progressive growing of gans for improved quality,
stability, and variation. arXiv preprint arXiv:1710.10196,
2017.

Jeremy Kepner and Ryan Robinett. Radix-net: Structured
sparse matrices for deep neural networks. In 2019 IEEE
International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 268-274. IEEE, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.


https://openreview.net/forum?id=BJ_wN01C-
https://openreview.net/forum?id=BJ_wN01C-

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on connec-
tion sensitivity. International Conference on Learning
Representations, 2018.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atash-
gahi, Lu Yin, Huanyu Kou, Li Shen, Mykola Pech-
enizkiy, Zhangyang Wang, and Decebal Constantin Mo-
canu. Sparse training via boosting pruning plasticity with
neuroregeneration. Advances in Neural Information Pro-
cessing Systems., 2021a.

Shiwei Liu, Decebal Constantin Mocanu, Amarsagar
Reddy Ramapuram Matavalam, Yulong Pei, and Mykola
Pechenizkiy. Sparse evolutionary deep learning with over
one million artificial neurons on commodity hardware.
Neural Computing and Applications, 33(7):2589-2604,
2021b.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and
Mykola Pechenizkiy. Do we actually need dense over-
parameterization? in-time over-parameterization in sparse
training. In Proceedings of the 39th International Con-
ference on Machine Learning, pages 6989—-7000. PMLR,
2021c.

Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan
Chen, Ghada Sokar, Elena Mocanu, Mykola Pechenizkiy,
Zhangyang Wang, and Decebal Constantin Mocanu.
Deep ensembling with no overhead for either training
or testing: The all-round blessings of dynamic sparsity. In
International Conference on Learning Representations,
2022a. URL https://openreview.net/forum?
1d=RLtgsopzjl-.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Dece-
bal Constantin Mocanu, Zhangyang Wang, and Mykola
Pechenizkiy. The unreasonable effectiveness of random
pruning: Return of the most naive baseline for sparse
training. In International Conference on Learning Rep-

resentations, 2022b. URL https://openreview.

net/forum?1d=VBzJ_3tz-tl

Decebal Constantin Mocanu, Elena Mocanu, Phuong H.
Nguyen, Madeleine Gibescu, and Antonio Liotta. A topo-
logical insight into restricted boltzmann machines. Ma-
chine Learning, 104(2):243-270, Sep 2016.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone,
Phuong H Nguyen, Madeleine Gibescu, and Antonio Li-
otta. Scalable training of artificial neural networks with
adaptive sparse connectivity inspired by network science.
arXiv:1707.04780. Nature communications., 9(1):2383,
2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov.
Variational dropout sparsifies deep neural networks. In
International Conference on Machine Learning, pages
2498-2507. PMLR, 2017.

10

Hesham Mostafa and Xin Wang. Parameter efficient training
of deep convolutional neural networks by dynamic sparse
reparameterization. International Conference on Machine
Learning, 2019.

Michael C Mozer and Paul Smolensky. Using relevance to
reduce network size automatically. Connection Science,
1(1):3-16, 1989.

Ameya Prabhu, Girish Varma, and Anoop Namboodiri.
Deep expander networks: Efficient deep networks from
graph theory. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 20-35, 2018.

Joaquin Quinonero-Candela, Carl Edward Rasmussen,
Fabian Sinz, Olivier Bousquet, and Bernhard Scholkopf.
Evaluating predictive uncertainty challenge. In Machine
Learning Challenges Workshop, pages 1-27. Springer,
2005.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. arXiv preprint arXiv:2103.00020,
2021.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating
errors. nature, 323(6088):533-536, 1986.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick
LeGresley, Jared Casper, and Bryan Catanzaro. Megatron-
Im: Training multi-billion parameter language models us-
ing model parallelism. arXiv preprint arXiv:1909.08053,
2019.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
International Conference on Learning Representations,
2014.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and
Surya Ganguli. Pruning neural networks without any data
by iteratively conserving synaptic flow. Advances in Neu-
ral Information Processing Systems. arXiv:2006.05467,
2020.

Geng Yuan, Xiaolong Ma, Wei Niu, Zhengang Li, Zhenglun
Kong, Ning Liu, Yifan Gong, Zheng Zhan, Chaoyang
He, Qing Jin, et al. Mest: Accurate and fast memory-
economic sparse training framework on the edge. Ad-
vances in Neural Information Processing Systems, 34,

2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. In BMVC, 2016.


https://openreview.net/forum?id=RLtqs6pzj1-
https://openreview.net/forum?id=RLtqs6pzj1-
https://openreview.net/forum?id=VBZJ_3tz-t
https://openreview.net/forum?id=VBZJ_3tz-t

A  EXPERIMENTAL RESULTS OF WIDE RESNET28-10 ON CIFAR-10/100

Table 6: Test accuracy (%) of sparse Wide ResNet28-10 on CIFAR-10/100. All the results are averaged from three random
runs. In each setting, the best results are marked in bold.

Dataset CIFAR-10 CIFAR-100

Wide ResNet28-10 (Dense) 96.00+0.13 - - 81.09+0.19 - -
Sparsity 95% 90% 80% 95% 90% 80%
SET [Mocanu et al.|[2018] 95.63£0.08 95.85+0.02 95.924+0.25 79.36+0.14 80.44+0.18 80.60+£0.07
SET+Sup-tickets (ours) 95.53+£0.11 95.91+£0.14 95.93+0.10 79.66+0.18 80.65+0.04 80.91-£0.20
RigL [Evci et al.|[2020] 95.70+£0.07 95.96£0.12 96.12+0.05 79.41+0.24 80.45+0.45 80.92+0.20
RigL+Sup-tickets (ours) 95.90+£0.11 95.98+0.06 96.15+0.08 80.00+0.15 80.72+0.22 81.16+0.09

GraNet [Liu et al.|[2021a] 95.95+0.08 96.02+0.01  96.09+0.07 80.43+0.17 80.97+0.16 81.31£0.09
GraNet+Sup-tickets (ours) 96.03+£0.11  96.13+0.07 96.084+0.04 80.65+0.06 81.20+£0.09 81.42+0.18

B IMPLEMENTATION DETAILS OF SUP-TICKETS

In this appendix, we report the implementation details for Sup-tickets, including: total training epochs (T-epochs), epochs
of normal sparse training (N-epochs), epochs of cheap tickets generation (C-epochs), length of per cyclical learning rate
schedule (C), learning rate (LR), batch size (BS), learning rate drop (LR Drop), the lowest learning rate of cyclical learning
rate schedule (LR-«), the largest learning rate of cyclical learning rate schedule (LR-as), weight decay (WD), produced
tickets count (Ticket Count), SGD momentum (Momentum), sparse initialization (Sparse Init), etc.

B.1 IMPLEMENTATION DETAILS FOR CIFAR-10/100

Table 7: Implementation hyperparameters of Sup-tickets on CIFAR-10/100

Model T-epochs N-epochs C-epochs C BS LR LRDrop, Epochs LR-as LR-a; Ticket Count Optimizer WD Momentum Sparse Init
VGG-16 250 226 24 8 128 0.1  10x,[113,169]  0.001  0.005 3 SGD 0.9 Se-4 ERK
ResNet-50 250 226 24 8 128 0.1 10x, [113,169]  0.001  0.005 3 SGD 0.9 Se-4 ERK
Wide ResNet28-10 250 226 24 8 128 0.1  10x,[113,169]  0.001  0.005 3 SGD 0.9 Se-4 ERK

B.2 IMPLEMENTATION DETAILS FOR IMAGENET

Table 8: Implementation hyperparameters of Sup-tickets on ImageNet

Model T-epochs N-epochs C-epochs C BS LR LR Drop, Epochs LR-as LR-a; Ticket Count Optimizer WD Momentum Sparse Init
ResNet-50 100 92 8 2 64 0.1 10x,[30,60,85] 0.0001 0.0005 4 SGD 0.9 le-4 ERK

11



C COMPARISON BETWEEN DIFFERENT BATCH NORMALIZATION UPDATING
STRATEGIES.

In this section, we compare the test accuracy between two batch normalization updating strategies: (1) using additional
running pass over the training data; (2) retrieving the statistic by averaging across each cheap ticket (ours). From Table [9]
and Table we find that there is no obvious difference in test accuracy between these two methods. However, our method
could save extra computation resources without the additional running pass.

Table 9: Test accuracy (%) of different batch normalization updating strategies for ResNet 50 on ImageNet. BU stands for
batch normalization updating using additional running pass over the data. AV means averaging across each cheap ticket
(ours). In each setting, the best results are marked in bold.

Dataset ImageNet
Sparsity 90% 80%

RigL+Sup-tickets (AV) 74.044  75.966
RigL+Sup-tickets (BU) 74.083 75.925

GraNet+Sup-tickets (AV)  74.554  76.168
GraNet+Sup-tickets (BU) 74.560 76.109

Table 10: Test accuracy (%) of different batch normalization updating strategies on CIFAR-10/100. BU stands for batch
normalization updating using additional running pass over the data. AV means averaging across each cheap ticket (ours). In
each setting, the best results are marked in bold.

Dataset CIFAR-10 CIFAR-100

Sparsity 95% 90% 80% 95% 90% 80%
VGG-16 (Dense) 93.91£0.26 - - 73.61+0.45 - -
SET+Sup-tickets (AV) 93.22£0.09 93.63+0.05 93.80+0.13  71.18+0.29 71.99+0.27 73.02+0.32
SET+Sup-tickets (BU) 93.224£0.12  93.624+0.01 93.80+£0.01 71.30+0.26 71.96+0.19 73.044-0.31
RigL+Sup-tickets (AV) 93.20£0.13  93.814+0.11 93.85+£0.25 71.31+0.21 72.57£0.29 73.61+0.11
RigL+Sup-tickets (BU) 93.24+0.11 93.86+0.15 93.88+0.28 71.36+0.16 72.60+0.27 73.68+0.16

GraNet+Sup-tickets (AV) 94.10£0.06 94.13+0.12 94.24+0.05 73.61+0.24 73.87+0.26 73.95+0.30
GraNet+Sup-tickets (BU) 94.14+£0.06 94.10+0.14  94.25+0.07 73.71+0.21 73.79+0.21 74.03+0.27

Wide ResNet28-10 (Dense)  96.00+0.13 - - 81.09+0.19 - -

SET+Sup-tickets (AV) 95.53£0.11 959140.14 95.92+0.10 79.66+0.18  80.65+0.04 80.91+0.20
SET+Sup-tickets (BU) 95.59+£0.11 95.984+0.08 95.97+0.06 79.36+0.35 80.47£0.05 80.7440.21
RigL+Sup-tickets (AV) 95.90+£0.11 95.984+0.06 96.15+0.08 80.00+0.15 80.72+0.22 81.16+0.09
RigL+Sup-tickets (BU) 95.88+£0.10 95.974+0.04 96.17+0.11 79.76+0.23  80.52+0.20 81.1340.15

GraNet+Sup-tickets (AV) 96.03+£0.11  96.13+0.07 96.08+0.04 80.65+0.06 81.20+0.09 81.42+0.18
GraNet+Sup-tickets (BU) 96.01£0.07 96.19+0.08 96.14+0.09 80.73+0.04 81.17+0.13 81.394+0.21

ResNet-50 (Dense) 94.88+0.11 - - 78.00£0.40 - -
SNIP+Sup-tickets (AV) 94.33£0.09 95.054+0.22 95.21+0.09 65.56+1.15 76.34+0.27 77.43+0.53
SNIP+Sup-tickets (BU) 94.39£0.06 95.10+0.12 95.30+0.02 65.51+0.83  76.62+0.23 77.35+0.62
ERK+Sup-tickets (AV) 93.9240.04 94.80+0.06 95.11£0.27 75.75+0.28 76.82+0.08 77.85+0.42
ERK+Sup-tickets (BU) 93.99+£0.08 94.874+0.04 95.18+0.27 76.02+0.22 77.01+0.17 77.80+0.54
SET+Sup-tickets (AV) 94.81£0.05 94.874+0.03 94.90+0.27 76.68+0.38 77.89+0.45 78.3540.18
SET+Sup-tickets (BU) 94.85+£0.03 94.97+0.05 94.86+0.20 76.54+0.41 77.93+0.50 78.38+0.18
RigL+Sup-tickets (AV) 94.65+0.11 94.824+0.13 94.81+0.15  77.58+0.47 78.52+0.39 78.69+0.30
RigL+Sup-tickets (BU) 94.64£0.13  94.894+0.09 94.79+0.17 77.544+0.53 78.43£0.40 78.531+0.31

GraNet+Sup-tickets (AV) 94.89£0.15 95.0840.08 94.94+0.03 77.70+0.47 78.37+0.53 78.95+0.33
GraNet+Sup-tickets (BU) 94.91£0.19 95.16+0.14 95.09+0.03 77.82+0.60 78.63+£0.64 78.07+0.32

12



D LAYER-WISE SPARSITY OF RESNET-50 ON IMAGENET

Table [TT] summarizes the final sparsity budgets for 90% sparse ResNet-50 on ImageNet-1K obtained by various methods.
Backbone represents the sparsity budgets for all the CNN layers without the last fully-connected layer.

Table 11: ResNet-50 Learnt Budgets and Backbone Sparsities at Sparsity 90%

. Fully Dense  Fully Dense Sparsity (%)

Metric Params FLOPs . : : .

’ ’ GraNet+Sup-tickets  GraNet RigL+Sup-tickets RigL
Overall 25502912 8178569216 89.99 89.98 90.23 90.00
Backbone 23454912 8174272512 89.89 90.65 92.47 90.00
Layer 1 - convl 9408 118013952 37.40 38.22 57.26 58.32
Layer 2 - layer1.0.convl 4096 236027904 40.55 41.70 14.58 9.40
Layer 3 - layerl.0.conv2 36864 231211008 64.88 65.05 82.13 82.40
Layer 4 - layer1.0.conv3 16384 102760448 64.69 65.09 17.13 16.41
Layer 5 - layerl.0.downsample.0 16384 102760448 74.75 74.99 29.10 24.25
Layer 6 - layerl.1.convl 16384 102760448 66.33 66.75 19.72 19.02
Layer 7 - layerl.1.conv2 36864 231211008 62.25 62.62 82.05 82.44
Layer 8 - layerl.1.conv3 16384 102760448 57.99 58.57 4.79 4.07
Layer 9 - layerl.2.convl 16384 102760448 60.15 60.60 4.85 4.19
Layer 10 - layerl.2.conv2 36864 231211008 57.15 57.45 81.73 82.06
Layer 11 - layer1.2.conv3 16384 102760448 57.10 57.47 5.13 3.88
Layer 12 - layer2.0.convl 32768 205520896 49.90 50.42 41.61 42.37
Layer 13 - layer2.0.conv2 147456 231211008 69.44 69.49 91.09 91.25
Layer 14 - layer2.0.conv3 65536 102760448 60.42 60.74 51.43 51.98
Layer 15 - layer2.0.downsample.0 131072 205520896 87.23 87.26 71.36 71.27
Layer 16 - layer2.1.conv1 65536 102760448 84.79 84.91 52.47 52.40
Layer 17 - layer2.1.conv2 147456 231211008 83.03 83.07 91.25 91.34
Layer 18 - layer2.1.conv3 65536 102760448 70.03 70.25 52.06 52.43
Layer 19 - layer2.2.convl 65536 102760448 79.47 79.61 52.07 52.25
Layer 20 - layer2.2.conv2 147456 231211008 81.78 81.82 91.28 91.38
Layer 21 - layer2.2.conv3 65536 102760448 73.76 73.92 51.76 51.95
Layer 22 - layer2.3.conv1 65536 102760448 74.82 74.97 51.92 52.24
Layer 23 - layer2.3.conv2 147456 231211008 82.78 82.81 91.22 91.33
Layer 24 - layer2.3.conv3 65536 102760448 76.61 76.73 51.86 52.01
Layer 25 - layer3.0.convl 131072 205520896 60.53 60.81 70.98 71.39
Layer 26 - layer3.0.conv2 589824 231211008 83.45 83.41 95.66 95.72
Layer 27 - layer3.0.conv3 262144 102760448 69.56 69.73 75.77 76.06
Layer 28 - layer3.0.downsample.0 524288 205520896 95.24 95.21 85.79 85.64
Layer 29 - layer3.1.convl 262144 102760448 91.19 91.22 76.02 76.03
Layer 30 - layer3.1.conv2 589824 231211008 92.86 92.87 95.68 95.73
Layer 31 - layer3.1.conv3 262144 102760448 80.70 80.81 75.76 75.95
Layer 32 - layer3.2.conv1 262144 102760448 90.34 90.40 76.09 76.18
Layer 33 - layer3.2.conv2 589824 231211008 93.22 93.24 95.68 95.73
Layer 34 - layer3.2.conv3 262144 102760448 83.42 83.47 76.06 76.21
Layer 35 - layer3.3.convl 262144 102760448 89.12 89.17 76.14 76.23
Layer 36 - layer3.3.conv2 589824 231211008 93.20 93.21 95.67 95.71
Layer 37 - layer3.3.conv3 262144 102760448 86.26 86.30 76.13 76.24
Layer 38 - layer3.4.conv1 262144 102760448 88.64 88.70 75.85 75.97
Layer 39 - layer3.4.conv2 589824 231211008 94.50 94.51 95.65 95.69
Layer 40 - layer3.4.conv3 262144 102760448 87.05 87.09 75.94 76.05
Layer 41 - layer3.5.convl 262144 102760448 87.10 87.15 7591 76.07
Layer 42 - layer3.5.conv2 589824 231211008 95.13 95.14 95.69 95.72
Layer 43 - layer3.5.conv3 262144 102760448 88.91 88.95 76.06 76.14
Layer 44 - layer4.0.conv1 524288 205520896 72.04 72.13 85.54 85.67
Layer 45 - layer4.0.conv2 2359296 231211008 93.56 93.53 97.84 97.86
Layer 46 - layer4.0.conv3 1048576 51380224 82.00 82.01 88.01 88.09
Layer 47 - layer4.0.downsample.0 2097152 205520896 99.25 99.24 92.96 92.84
Layer 48 - layer4.1.convl 1048576 102760448 95.73 95.74 88.02 88.07
Layer 49 - layer4.1.conv2 2359296 231211008 97.39 97.39 97.86 97.87
Layer 50 - layer4.1.conv3 1048576 102760448 91.08 91.07 88.10 88.12
Layer 51 - layer4.2.conv1 1048576 205520896 87.68 87.70 87.99 88.04
Layer 52 - layer4.2.conv2 2359296 231211008 97.02 97.01 97.86 97.86
Layer 53 - layer4.2.conv3 1048576 102760448 84.54 84.50 88.07 88.07
Layer 54 - fc 2048000 4096000 82.70 82.54 92.78 92.74

13



E COMPARISON WITH NAIVE DEEP ENSEMBLE ON IMANGENET

This appendix compares our approach with the naive deep ensemble method on ImageNet. For deep ensemble, we use the
same procedure to generate cheap tickets as in Sup-tickets; but instead of averaging their weights and connection topology,
we save all the cheap tickets in memory and average their softmax outputs at inference stage [Huang et al.,[2017, |Garipov
et al.,2018].

The results are reported in Table[T2] We find that Sup-tickets could achieve nearly similar performance to the deep ensemble
method with just one model.

Table 12: Test accuracy (%) of Sup-tickets and naive deep ensemble (DE) for ResNet-50 on ImageNet. In each setting, the
best results are marked in bold.

Dataset ImageNet
Sparsity 90% 80%
Rigl+Sup-tickets(Ours) 74.044  75.966
RiglL+DE 74.074 76.022
GraNet+Sup-tickets(Ours)  74.554  76.168
GraNet+DE 74.614 76.198

14



	Introduction
	Related Work
	Methodology
	Prior Sparse Training Art
	Sup-tickets
	Creating Cheap Tickets
	Superposing Tickets

	Memory and Computation Overhead

	Experiments
	Experimental Setups
	Comparisons among CIA, CAA, and CIMA
	Evaluation of Sup-tickets

	Extensive Analysis
	Conclusion
	Experimental Results of Wide ResNet28-10 on CIFAR-10/100
	Implementation Details of Sup-Tickets
	Implementation Details for CIFAR-10/100
	Implementation Details for ImageNet

	Comparison between different batch normalization updating strategies.
	Layer-wise Sparsity of ResNet-50 on ImageNet
	Comparison with naive deep ensemble on ImangeNet 

