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Abstract

Monte-Carlo Tree Search (MCTS) has achieved remarkable success in the game1

of Go. However, most success of MCTS is in games where actions are discrete.2

For automous driving, the vehicle action such as throttle and steering angle is3

continuous. To fill the gap, we propose an MCTS algorithm for continuous actions,4

and used it specially for a track-following scenerio. We compared MCTS with a5

standard Model Predictive Controller (MPC) on the Udacity simulator. Using the6

same cost function and system model, this MCTS algorithm achieves a much lower7

cost than MPC. MCTS drives with an adaptive speed, as well as exhibits a braking8

behavior in sharp turns. MPC drives a nearly constant speed regardless of the curvy9

track.10

1 Introduction11

Autonomous driving aims to make cars safer. Nearly 1.3 million people die in road crashes each12

year, on average 3,287 deaths a day. Road crashes cost USD $518 billion globally, costing individual13

countries from 1-2% of their annual GDP. 1 So far there are three major avenues for autonomous driv-14

ing. The classical approach extracts perception and localization results from sensors, summarizing15

into geometry relationship of the car with its environment. Based on the geometry representation16

of the world, a controller is built. This approach is so far the most popular and widely adopted by17

industrial leaders such as Google, Uber and Baidu. The learning-from-demonstration approach,18

started from the simple full-connected neural networks [Pomerleau, 1989] in the old days to recent19

deep convolution layers by NVIDIA [Bojarski et al., 2016], regresses the steer angle given the20

camera view. This approach leads to a simpler architecture for autonomous driving. The affordance21

approach[Chen et al., 2015] predicts relevant geometry features (called “affordances”) from images.22

Based on the predicted features, a controller can be developed. This approach bears some similarity23

to Palovian control in which animals map predictions of events into behaviors[Modayil and Sutton,24

2014].25

Besides these exciting progress, it is interesting to bring reinforcement learning to autonomous26

driving. Reinforcement learning achieved remarkable success in Atari games [Mnih et al., 2015] and27

Go [Silver et al., 2016]. Recently, Mobileye proposed an interesting architecture for autonomous28

vehicles. Similar to the classical approach, their achitecture also has two layers. In particular, their29

high-level path planning is implemented using a recurrent neural network over the trajectory of the30

car [Shalev-Shwartz et al., 2016]. The low-level control is a model-based approach that learns a31

model for the state transition in response to the car’s action. Mobileye’s efforts stand for extending32

model-based reinforcement learning [Sutton et al., 2008, Yao and Szepesvári, 2012, Grünewälder33

et al., 2012] to autonomous driving. Modeling the state that the car sees next turns out to be very34

1http://asirt.org/initiatives/informing-road-users/road-safety-facts/road-crash-statistics
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important for cars although there has not been convincing applications published yet. However,35

considerable progress was made in video prediction [Zeng et al., 2017, Oh et al., 2015], which can36

be possibly used on cars. The reward function is also a fundamental issue to bring reinforcement37

learning to autonomous driving. In games, the reward signal is noise free since win or loss signals38

can be observed as a delayed but groundtruth reward. Although how to learn a reward function for39

autonomous driving is still an open problem, Hadfield-Menell et al. explored teaching a car to align40

with a human driver with his reward function. Brechtel et al. modeled the car’s environment using an41

Markov Decision Process (MDP) in which the state space is equidistant cells of the coordinates on the42

road, and the transition probabilities are approximated using a Dynamic Bayesian Networks. Their43

empirical studies show that the car can coordinate well when to overtake according to oncoming traffic.44

Exploring in a driving environment is challenging because such exploration (normally practiced in45

reinforcement learning without constraint) must be safty guaranteed. Recently, Mnih et al. proposed46

an asynchronous reinforcement learning framework that lets a number of learning agents run in47

parallel aiming to explore different parts of the environment. Their algorithm on a simulated driving48

environment achieved near to a human driver with only 12 hours of training. It is interesting to see49

whether this new framework can solve the specific exploration constraint in autonomous driving.50

In this paper, we study Monte-Carlo Tree Search (MCTS) for an autonous driving setting. MCTS is51

especially advantageous for large and complex decision making problems, as demonstrated in the52

competition of AlphoGo against Mr. Lee Sedol 2. MCTS is well practised and relatively easy to53

implement. All the top Go programs have used MCTS for a decade, e.g., [Coulom, 2007, Silver,54

2009, Enzenberger et al., 2010]. So far the success of MCTS is largely in board games where actions55

are discrete. However, in autonomous driving a car’s actions like throttle, braking and steer angles are56

all continuous. We consider a simple motion planning setting where a car has been given a trajectory57

to follow, and its goal is to drive within track boundary. Note in our problem, motion planing is by no58

means to be realistic. Practical motion planning also considering avoiding obstacle, e.g., [Kuwata59

et al., 2008]. We aim to have an environment that renders a simple cost function and vehicle model60

under which comparing the performance of MCTS and MPC is easy.61

2 Background62

The classical approach is so far the most practiced and mature. A two-level architecture for au-63

tonomous vehicle is often used: path planning at a high level and vehicle control (with a target path64

and speed) at a low level [Paden et al., 2016, Berntorp, 2017]. There are a spectrum of methods for65

each of the problems. For example, Rapid-exploring Random Trees finds feasible tracjectories for66

robots with high degress with freedom [Lavalle, 1998, Kuwata et al., 2008]. MPC is classical control67

method [Garcia et al., 1989], and has been used for motion planning in a short time horizon [Paden68

et al., 2016, Kim et al., 2014, Omar et al., 1998, Yim and Oh, 2004, Raffo et al., 2009, Ng et al., 2003,69

Bakker et al., 1987, Kong et al., 2015, Rajamani, 2011, Besselmann and Morari, 2009, Levinson70

et al., 2011, Urmson et al., 2007]. MPC is a major research field on its own and this section provides71

the application context of MPC for autonomous driving, especially lane following.72

2.1 The Model and the Problem73

The car’s dynamics is represented by a practical model, often referred to as the Kinematic model.74

In this model, two car wheels connected by a rigid link. The state of the car is given by [x, y, ψ, v],75

where x, y are the x-y coordinates of the car, ψ and v are the orientation and speed of the car. The76

model can be expressed by,77

ẋ = vcos(ψ)

ẏ = vsin(ψ)

ψ̇ =
a[steer]v

Lf

v̇ = a[throttle], (1)

where Lf is the distance between the two front wheels. This is descretized using Euler method in78

practice. In our problem, at each time step, an agent (MPC or MCTS) receives a number of reference79

2https://deepmind.com/research/alphago/
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coordinate points. These points are often provided by a high-level trajectory planner. The agent80

is also given the a distance measures δ, the distance of the car’s center to the track axis; an angle81

deviation measure, ω, the difference between the car’s heading angle (ψ) and the track axis direction.82

In practice, both δ and ω are computed by first regressing a polynomial line from the reference points.83

The goal of the agents is to drive close a target speed v∗ within the track. Specificially at each time84

step k, the agent selects an action a. Afterwards it receives a cost signal that is computed from the85

following equation:86

r(sk, a) = wtrδk+1(a)
2 + wangωk+1(a)

2 + wv(vk+1(a)− v∗)2 + wsta[steer]2 + wthra[throttle]2

+ wsteerd(a[steer]− ak−1[steer])2 + wthrotd(a[throttle]− ak−1[throttle])2 (2)

2.2 Model Predictive Controller87

MPC assumes the knowledge of the cost function in equation 2. It defines a cost function that88

considers N steps ahead. This cost function is essentially the undiscounted, N-step truncated return.89

MPC produces a sequence of N actions to maximize the return90

a0:N−1 = arg max
a0:N−1

R = arg max
a0:N−1

N−1∑
t=0

r(s̃t, a),

where s̃0 was set to the current state sk. Common practice of MPC is to use the interior point91

optimizer [Paden et al., 2016].92

2.3 Monte-Carlo Tree Search93

MCTS is a special policy search algorithm. Comparing to other reinforcement learning methods,94

policy search algorithms can find global optima [Valko et al., 2013, Munos, 2014]. MCTS algorithms95

are designed for descrete actions. For example, the “pure” MCTS algorithm works by playing a96

number of random games to the end; and the moves that achieves the best game scores are chosen. In97

the Upper Confidence Tree (UCT) algorithm [Kocsis and Szepesvári, 2006], the actions are treated98

as the arms in a multi-armed bandit problem and the frequency of actions is used to measure the99

knowledge of the actions according to which the exploration term in selecting the action is determined.100

Practice and theory of MCTS for continuous actions is largely a gap. A number of recent advances101

aims to generalize across actions. In particular, [Couetoux et al., 2011, Yee et al., 2016] explored102

generalizing in actions from already exploited actions. HOOT replaces the UCB algorithm in UCT103

with a continuous action slection procedure [Mansley et al., 2011]. In this short paper, we aimed to104

first extend pure MCTS for autonomous driving.105

3 A New MCTS Algorithm106

Algorithm 1 shows an extension of the descrete-action Pure MCTS to continuous actions. This107

MCTS algorithm generates a number of paths expanded from continuous actions. In expanding the108

subtrees from a state, we enforce the continuity in the actions going down a tree. The inpiration of109

the algorithm is that in driving the actions do not change abruptively. This small trick reduces the110

search space significantly.111

4 Experiments112

In the experiment, we used the Udacity simulator 3. The simulator is developed by Unity to support113

self-driving car development. Both algorithms used the same model in equation 1 and the same114

cost function in equation 2. Simulation for both algorithms was run with lookahead depth of 8.115

The weights for the reward function are, wtr = 10.0, wang = 50.0, wv = 1.0, wst = 10.0, wthr =116

3000.0, wsteerd = 10.0, wthrotd = 3000.0.117

For both MPC and MCTS, only the first action a0 was used although N actions were produced at a118

single time step. In the experiment, the target speed was set to 70 km/h.119

3https://github.com/udacity/self-driving-car-sim
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input :An action model A and a return function that considers N steps of future rewards.
output :A policy that maximizes the return function.
Initialize the state s0 and the action a0.
for t = 0, 1, . . . do

Observe state st
Receive a number of reference points, and fit a polynomial line
/* Search over Np paths*/
for p = 0, . . . , Np do

Set s̃0 = st, a
′ = at /* each path starts with the current state and action */

Set R(p) = 0
/* planning into future N steps */
for k = 0,. . . , N do

Sample a from a distribution u(a′)
Predict the next state, s̃k+1 = A(s̃k, a)
Compute the reward r according to s̃k+1, a, a′, and deviation from the reference line
Update R(p) = γR(p) + r
Set a′ = a

end
end
Select the best path (with highest return R)
Set at to the first action in the best path.
Take action at

end
Algorithm 1: Continuity-preserved (Monte-Carlo) Tree Search.

As shown in Figure 1 (left plot), MCTS achieved a much smaller cost than MPC. The cost function is120

a linear combination of seven cost components. MCTS achieved both a smaller velecity cost and a121

smaller trackPos cost (deviation from the track center) as shown in the second plot. The third plot in122

Figure 1 shows the velocity on the track.123

MCTS’s speed is more adaptive due to that the track has quite a few sharp turns. MPC, on the other124

hand, drives at a nearly constant speed. In particular, after the beginning acceleration period, MPC125

drove between 57.8 km/h and 58.6 km/h with an average speed of 58.4 km/h. MCTS drove between126

42.8 km/h and 67.5 km/h, averaging at 62.3 km/h. Interestingly, MCTS shows braking behavior127

(continually negative throttles) ahead of sharp turns (Figure 2) although it was never explictly trained128

to do so. In contrast, MPC never braked. For MCTS, 10000 paths were generated with random129

samples of action (both steer angle and throttle). In generating the actions, uniform samples in the130

small range of last steer angle and last throttle were independently drawn.131

We produced a video of MCTS driving:132

https://youtu.be/YP7qPJSJAVU133

MPC driving:134

https://youtu.be/SLl50wMenyY135
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Figure 1: MCTS vs. MPC. The left plot shows the total cost over the next 8 time steps of the two
algorithms. The middle plot shows the cost of the velocity component and the trackPos (distance to
the center of the lane) component in the same run as the left plot. The right plot shows the velocity
on the track, which shows that (a) MCTS accelerates faster in the beginning (the ascending curves
from bottom), (b) MCTS drives closer to the target speed (70 km/h) than MPC most of the time. and
(c) MCTS’s control is more adaptive to curvature in the track. In particular, at sharp turns we see
speed dip in the orange line while MPC drives at almost a constant speed (58 km/h).

Figure 2: MCTS braking in front of a sharp turn in Udacity Simulator. MPC never shows braking
behavior in the experiment.
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