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ABSTRACT

Quantum machine learning methods have the potential to facilitate learning us-
ing extremely large datasets. While the availability of data for training machine
learning models is steadily increasing, oftentimes it is much easier to collect fea-
ture vectors that to obtain the corresponding labels. One of the approaches for ad-
dressing this issue is to use semi-supervised learning, which leverages not only the
labeled samples, but also unlabeled feature vectors. Here, we present a quantum
machine learning algorithm for training Semi-Supervised Kernel Support Vector
Machines. The algorithm uses recent advances in quantum sample-based Hamilto-
nian simulation to extend the existing Quantum LS-SVM algorithm to handle the
semi-supervised term in the loss, while maintaining the same quantum speedup as
the Quantum LS-SVM.

1 INTRODUCTION

Data sets used for training machine learning models are becoming increasingly large, leading to
continued interest in fast methods for solving large-scale classification problems. One of the ap-
proaches being explored is training the predictive model using a quantum algorithm that has access
to the training set stored in quantum-accessible memory. In parallel to research on efficient architec-
tures for quantum memory (Blencowe, 2010), work on quantum machine learning algorithms and
on quantum learning theory is under way (see for example Refs. (Biamonte et al., 2017; Dunjko
& Briegel, 2018; Schuld & Petruccione, 2018) and (Arunachalam & de Wolf, 2017) for review).
An early example of this approach is Quantum LS-SVM (Rebentrost et al., 2014a), which achieves
exponential speedup compared to classical LS-SVM algorithm. Quantum LS-SVM uses quadratic
least-squares loss and squared-L2 regularizer, and the optimization problem can be solved using
the seminal HHL (Harrow et al., 2009) algorithm for solving quantum linear systems of equations.
While progress has been made in quantum algorithms for supervised learning, it has been recently
advocated that the focus should shift to unsupervised and semi-supervised setting (Perdomo-Ortiz
et al., 2018).

In many domains, the most laborious part of assembling a training set is the collection of sample
labels. Thus, in many scenarios, in addition to the labeled training set of size m we have access to
many more feature vectors with missing labels. One way of utilizing these additional data points
to improve the classification model is through semi-supervised learning. In semi-supervised learn-
ing, we are given l observations x1, ..., xl drawn from the marginal distribution p(x), where the m
(m � l) first data points come with labels y1, ..., ym drawn from conditional distribution p(y|x).
Semi-supervised learning algorithms exploit the underlying distribution of the data for to improve
classification accuracy on unseen samples.

Here, we introduce a quantum algorithm for semi-supervised training of a kernel support vector ma-
chine classification model. We start with the existing Quantum LS-SVM (Rebentrost et al., 2014a),
and use techniques from sample-based Hamiltonian simulation (Kimmel et al., 2017) to add a semi-
supervised term based on Laplacian SVM (Melacci & Belkin, 2011). As is standard in quantum
machine learning (Li et al., 2019), the algorithm accesses training points and the adjacency matrix
of the graph connecting samples via a quantum oracle. We show that, with respect to the oracle,
the proposed algorithm achieves the same quantum speedup as LS-SVM, that is, adding the semi-
supervised term does not lead to increased computational complexity.
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2 PRELIMINARIES

2.1 SEMI-SUPERVISED KERNEL MACHINES

Reproducing Kernel Hilbert Spaces Binary classification models take the form of a function h :
X → R from some Hilbert space of functionsH. ConsiderL2(X), the space of all square-integrable
functions X → R. In L2, closeness in norm does not imply everywhere pointwise closeness of
two functions. Difference between f(x) and g(x) can be arbitrary large for x ∈ S ⊂ X even if
||f − g||H = 0, as long as S has measure of 0.

Not all classes of functions exhibit this problem. Consider a family of Dirac evaluation functionals
H → R, indexed by t ∈ X , and defined for Hilbert spaces of functions as Ft[h] = h(t). A linear
functional F : H → R is bounded if ∃M ∈ R : ∀h ∈ H |F [h]| ≤ M ||h||H. Consider a
space H in which evaluation functionals for all t ∈ X are bounded. Then, for any f, g ∈ H, small
||f − g||H implies small |f(t) − g(t)|, everywhere on X . Riesz representation theorem guarantees
that for each bounded evaluation functional Ft, there exists a unique function Kt ∈ H such that
Ft[h] = h(t) = 〈Kt, h〉H. Function Kt : X → R is called the representer of t ∈ X . Any
space of functions in which every evaluation operator Ft is bounded, and thus has a corresponding
representer Kt, is called a Reproducing Kernel Hilbert Space (RKHS). In RKHS, by symmetry of
inner product, Kt(s) = 〈Kt,Ks〉H = Ks(t). We can thus define a function K : X ×X → R with
values K(s, t) = Ks(t), such that ∀x, y ∈ X ∃Kx,Ky ∈ H : 〈Kx,Ky〉H = K(x, y).

Any symmetric and positive definite function K : X ×X → R (that is, a function that fulfills the
Mercer condition,

∫
X

∫
X
c(x)A(x, y)c(y)dxdy ≥ 0 ∀c ∈ H ) is called a reproducing kernel. A

reproducing kernel gives rise to functions Kt : X → R defined by fixing t and defining Kt(x) =
K(t, x). We can construct an inner product space as the span of functionsKt : X → R for all t ∈ X ,
with the inner product defined through representers as 〈f, g〉H =

∑n
j=1

∑n′

j=1 cjc
′
jK(tj , t

′
j). The

Moore-Aronszajn theorem states that the space defined this way can be completed, the resulting
RKHS space is unique, and K is the reproducing kernel in that space.

Discrete-topology Gradients of Functions in RKHS A simple way of measuring local variability
of a function X → R is through its gradient; for example, functions with Lipschitz-continuous
gradient cannot change too rapidly. In manifold learning, instead of analyzing gradient using the
topology of X , some other topology is used. In particular, in Laplacian SVM and related methods,
a discrete topology of a graph G connecting training points in X is used.

For a given undirected graph G with a set of m vertices, V , and a set of n edges, E, let us define
a Hilbert space HV of functions h : V → R with inner product 〈f, g〉V =

∑
v∈V f(v)g(v), and

a Hilbert space HE of functions ψ : E → R with inner product 〈ψ, φ〉E =
∑
e∈E ψ(e)φ(e) =∑

u∼v ψ([u, v])φ([u, v]). We can define a linear operator∇ : HV → HE such that:

∇h([u, v]) =
√
Gu,vh(u)−

√
Gu,vh(v) = −∇h([v, u]).

The operator ∇ can be seen as a discrete counterpart to gradient of a function – given a function
h over vertices, for a given point u in the domain of h, ∇ over different vertices v gives us a set
values showing the change of h over all directions from u, that is, all edges incident to it. We define
graph equivalent of divergence, a linear operator div : HE → HV such that −div is the adjoint
of ∇, that is, 〈∇[h], ψ〉E = 〈h,−div[ψ]〉V . Finally, we define graph Laplacian, a linear operator
∆ : HV → HV

∆[h] = −1

2
div[∇[h]] = Dvh(v)−

∑
u∼v

Gu,vh(u).

The graph Laplacian operator ∆ is self-adjoint and positive semi-definite, and the squared norm of
the graph gradient can be captured through it as

1

2
||∇h||2E = 〈∆[h], h〉V =

1

2

∑
u∼v

Gu,v(h̄u − h̄v)2 = h̄TLh̄,

where ∆[h] can be seen as ∆[h] = Lh̄, a multiplication of vector of function values over vertices,
h̄, by combinatorial graph Laplacian matrix L such that L[i, j] = Dj −Gi,j .
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Semi-Supervised Least-Squares Kernel Support Vector Machines Consider a problem where
we are aiming to find predictors h(x) : X → R that are functions from a RKHS defined by a kernel
K. In Semi-Supervised LS SVMs in RKHS, we are looking for a function h ∈ H that minimizes

min
h∈H,b∈R

γ

2

l∑
i=1

(yi − (h(xi) + b))
2

+
1

2
||h||2H +

1

2
||∇h||2E ,

where γ is a user define constant allowing for adjusting the regularization strength. The Representer
Theorem states that ifH is RKHS defined by kernel K : X×X → R, then the solution minimizing
the problem above is achieved for a function h that uses only the representers of the training points,
that is, a function of the form h(x) =

∑m
j=1 cjKxj

(x) =
∑m
j=1 cjK(xj , x). Thus, we can translate

the problem from RKHS into a constrained quadratic optimization problem over finite, real vectors

min
c,ξ,b

γ

2

m∑
i=1

ξ2
i +

1

2
cTKc+

1

2
cTKLKc s.t. 1− yi

b+

m∑
j=1

cjK[i, j]

 = ξi

where l ≤ m is the number of training points with labels (these are grouped at the beginning of the
training set), and h̄ = Kc, since function h is defined using representers Kxi . The semi-supervised
term, the squared norm of the graph gradient of h, 1/2||∇h||2E , penalizes large changes of function
h over edges of graph G. In defining the kernel K and the Laplacian L and in the two regularization
terms we use all m samples. On the other hand, in calculating the empirical quadratic loss we only
use the first l samples.

The solution to the Semi-Supervised LS SVMs is given by solving the following (m+ 1)× (m+ 1)
system of linear equations [

0 1T
1 K +KLK + γ−11

] [
b
α

]
=

[
0
y

]
, (1)

where y = (y1, ..., ym)T , 1 = (1, ..., 1)T , 1 is identity matrix, K is kernel matrix, L is the graph
Laplacian matrix.

2.2 QUANTUM COMPUTING AND QUANTUM LS-SVM

Quantum computers are devices which perform computing according to the laws of quantum me-
chanics, a mathematical framework for describing physical theories, in language of linear algebra.

Quantum Systems Any isolated, closed quantum physical system can be fully described by a
unit-norm vector in a complex Hilbert space appropriate for that system; in quantum computing,
the space is always finite-dimensional, Cd. In quantum mechanics and quantum computing, Dirac
notation for linear algebra is commonly used. In Dirac notation, a vector x ∈ Cd and its complex
conjugate xT , which represents a functional Cd → R, are denoted by |x〉 (called ket) and 〈x| (called
bra), respectively. We call {|ei〉}di=1 the computational basis, where |ei〉 = (0, ..., 1, ...0)T with
exactly one 1 entry in the i-th position. Any |v〉 = (v1, ..., vd)

T can be written as |v〉 =
∑d
i=1 vi|ei〉;

coefficient vi ∈ C are called probability amplitudes. Any unit vector |x〉 ∈ Cd describes a d-level
quantum state. Such a system is called a pure state. An inner product of |x1〉, |x2〉 ∈ Cd is written
as 〈x1|x2〉. A two-level quantum state |ψ〉 = α|0〉 + β|1〉, where |0〉 = (1, 0)T , |1〉 = (0, 1)T and
α, β ∈ C, |α|2 + |β|2, is called a quantum bit, or qubit for short. When both α and β are nonzero,
we say |ψ〉 is in a superposition of the computational basis |0〉 and |1〉; the two superposition states

|+〉 =
1√
2

(|0〉+ |1〉) and |−〉 =
1√
2

(|0〉 − |1〉) are very common in quantum computing.

A composite quantum state of two distinct quantum systems |x1〉 ∈ Cd1 and |x2〉 ∈ Cd2 is described
as tensor product of quantum states |x1〉 ⊗ |x2〉 ∈ Cd1 ⊗ Cd2 . Thus, a state of an n-qubit system is
a vector in the tensor product space

(
C2
)⊗n

= C2 ⊗ C2 ⊗ ...⊗ C2, and is written as
∑2n−1
i=0 αi|i〉,

where i is expressed using its binary representation; for example for n = 4, we have |2〉 = |0010〉 =
|0〉 ⊗ |0〉 ⊗ |1〉 ⊗ |0〉.
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Transforming and Measuring Quantum States Quantum operations manipulate quantum states
in order to obtain some desired final state. Two types of manipulation of a quantum system are
allowed by laws of physics: unitary operators and measurements. Quantum measurement, if done
in the computational basis, stochastically transforms the state of the system into one of the compu-

tational basis states, based on squared magnitudes of probability amplitudes; that is,
1√
2

(|0〉+ |1〉)

will result in |0〉 and |1〉 with equal chance. Unitary operators are deterministic, invertible, norm-
preserving linear transforms. A unitary operator U models a transformation of a quantum state |u〉
to |v〉 = U|u〉. Note that U|u1〉 + U|u2〉 = U (|u1〉+ |u2〉), applying a unitary to a superposition
of states has the same effect as applying it separately to element of the superposition. In quan-
tum circuit model unitary transformations are referred to as quantum gates – for example, one of
the most common gates, the single-qubit Hadamard gate, is a unitary operator represented in the
computational basis by the matrix

H :=
1√
2

(
1 1
1 −1

)
. (2)

Note that H|0〉 = |+〉 and H|1〉 = |−〉.

Quantum Input Model Quantum computation typically starts from all qubits in |0〉 state. To
perform computation, access to input data is needed. In quantum computing, input is typically given
by a unitary operator that transforms the initial state into the desired input state for the computation
– such unitaries are commonly referred to as oracles, and the computational complexity of quantum
algorithms is typically measured with access to an oracle as the unit. For problems involving large
amounts of input data, such as for quantum machine learning algorithms, an oracle that abstracts
random access memory is often assumed. Quantum random access memory (qRAM) uses logN
qubits to address any quantum superposition of N memory cell which may contains either quantum
or classical information. For example, qRAM allows accessing classical data entries xji in quantum
superposition by a transformation

1
√
mp

m∑
i=1

p∑
j=1

|i, j〉|0...0〉 qRAM−−−→ 1
√
mp

m∑
i=1

p∑
j=1

|i, j〉|xji 〉,

where |xji 〉 is a binary representation up to a given precision. Several approaches for creating quan-
tum RAM are being considered (Giovannetti et al., 2008; Arunachalam et al., 2015; Biamonte et al.,
2017), but it is still an open challenge, and subtle differences in qRAM architecture may erase any
gains in computational complexity of a quantum algorithm Aaronson (2015).

Quantum Linear Systems of Equations An algorithm that forms basis of our proposed method
is the HHL (Harrow et al., 2009) algorithm for quantum matrix inversion and for solving quantum
linear systems of equations. Given an input matrix A ∈ Cn×n and a vector b ∈ Cn, the goal of
linear system of equations problem is finding x ∈ Cn such that Ax = b. When A is Hermitian and
full rank, the unique solution is x = A−1b. HHL algorithm introduced an analogous problem in
quantum setting: assuming an efficient algorithm for preparing b as a quantum state b =

∑n
i=1 bi|i〉

using dlog ne+ 1 qubits, the algorithm applies quantum subroutines of phase estimation, controlled
rotation, and inverse of phase estimation to obtain the state

|x〉 =
A−1|b〉
‖A−1|b〉 ‖

. (3)

A key step in the HHL algorithm is Hamiltonian simulation, that is, the application of the unitary
e−iAt. Thus for any expected speed-up, one need to enact e−iA efficiently.

Density Operators Density operator formalism is an alternative formulation for quantum me-
chanics that allows probabilistic mixtures of pure states, more generally referred to as mixed states.
A mixed state that describes an ensemble {pi, |ψ〉i} is written as

ρ =

k∑
i=1

pi|ψi〉〈ψi|, (4)
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where
∑k
i=1 pi = 1 forms a probability distribution and ρ is called density operator, which in a

finite-dimensional system, in computational basis, is a semi-definite positive matrix with Tr(ρ) = 1.

A unitary operator U maps a quantum state expressed as a density operator ρ to UρU†, where U† is
the complex conjugate of the operator U .

Partial Trace of Composite Quantum System Consider a two-part quantum system in a state
described by tensor product of two density operators ρ ⊗ σ. A partial trace, tracing out the second
part of the quantum system, is defined as the linear operator that leaves the first part of the system in
a state tr2 (ρ⊗ σ) = ρ tr (σ), where tr (σ) is the trace of the matrix σ.

To obtain density matrix K, quantum LS-SVM (Rebentrost et al., 2014b) relies on partial trace,
and on a quantum oracle that can convert, in superposition, each data point {xi}mi=1, xi ∈ Rp to a
quantum state |xi〉 = 1

‖ xi ‖
∑p
t=1(xi)t|t〉, where (xi)t refers to the tth feature value in data point

xi and assuming the oracle is given ‖xi ‖ and yi . Vector of the labels is given in the same fashion
as |y〉 = 1

‖ y ‖
∑m
i=1 yi|i〉. For preparation the normalized Kernel matrix K ′ = 1

tr(K)K where
K = XTX , we need to prepare a quantum state combining all data points in quantum superposition
|X〉 = 1√∑m

i=1‖ xi ‖2
∑m
i=1 |i〉⊗‖xi ‖ |xi〉. The normalized Kernel matrix is obtained by discarding

the training set state,

K ′ = tr2(|X〉〈X|) =
1∑m

i=1 ‖xi ‖
2

m∑
i,j=1

‖xi ‖ ‖xj ‖ 〈xi|xj〉|i〉〈j|. (5)

The approach used above to construct density matrix corresponding to linear kernel matrix can be
extended to polynomial kernels (Rebentrost et al., 2014b).

Density Operator Exponentiation In quantum machine learning, including in the method pro-
posed here, matrix A for the Hamiltonian simulation within the HHL algorithm is based on data.
For example, A can be the kernel matrix K captured in the quantum system as a density matrix.
Then, one need to be able to efficiently compute e−iK∆t, where K is scaled by the trace of kernel
matrix. Since K is not sparse, a strategy similar to (Lloyd et al., 2014) is adapted for the exponenti-
ation of a non-sparse Hamiltonian:

tr1

{
e−iS∆t(ρ⊗ σ)eiS∆t

}
= σ − i∆t[ρ, σ] +O

(
∆t2

)
≈ e−iρ∆tσeiρ∆t, (6)

where S =
∑
i,j |i〉〈j| ⊗ |j〉〈i| is the swap operator and the facts tr1 {S(ρ⊗ σ)} = ρσ and

tr1 {(ρ⊗ σ)S} = σρ are used.

Quantum LS SVM Quantum LS-SVM (Rebentrost et al., 2014b) uses partial trace to construct
density operator corresponding to the kernel matrixK. Once the kernel matrixK becomes available
as a density operator, the quantum LS SVM proceeds by applying the HHL algorithm for solving
the system of linear equations associated with LS-LSVM, using the density operator exponentiation
with the density matrix that encodes the kernel matrix K .

3 QUANTUM SEMI-SUPERVISED LEAST SQUARE SVM

Semi-Supervised Least Square SVM involves solving the following system of linear equations[
b
α

]
=

[
0 1T
1 K +KLK + γ−11

]−1 [
0
y

]
. (7)

The linear system differs from the one in LS SVM in that instead of K, we have K + KLK.
While this difference is of little significance for classical solvers, in quantum systems we cannot just
multiply and then add the matrices and then apply quantum LS-SVM – we are limited by the unitary
nature of quantum transformations.

In order to obtain the solution to the quantum Semi-Supervised Least Square SVM, we will use the
following steps. First, we will read in the graph information to obtain scaled graph Laplacian matrix
as a density operator. Next, we will use polynomial Hermitian exponentiation for computing the
matrix inverse (K +KLK)−1.
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3.1 QUANTUM INPUT MODEL FOR THE GRAPH LAPLACIAN

In the semi-supervised model used here, we assume that we have information on the similarity of
the training samples, in a form of graph G that uses n edges to connect similar training samples,
represented as m vertices. We assume that for each sample, G contains its k most similar other
samples, that is, the degree of each vertex is d. To have the graph available as a quantum density
operator, we observe that the graph Laplacian L is the Gram matrix of the rows of the m× n graph
incidence matrix GI , L = GIG

T
I . We assume oracle access to the graph adjacency list, allowing us

to construct, in superposition, states corresponding to rows of the graph incidence matrix GI

|vi〉 =
1√
d

n∑
t=1

GI [i, t]|t〉.

That is, state |vi〉 has probability amplitude 1√
d

for each edge |t〉 incident with vertex i, and null
probability amplitude for all other edges. In superposition, we prepare a quantum state combining
rows of the incidence matrix for all vertices, to obtain

|GI〉 =
1√
md

m∑
i=1

|i〉 ⊗ |vi〉

The graph Laplacian matrix L, composed of inner products of the rows of GI , is obtained by dis-
carding the second part of the system,

L = Tr2(|GI〉〈GI |) =
1

md

m∑
i,j=1

|i〉〈j| ⊗ d〈vi|vj〉 =
1

m

m∑
i,j=1

〈vi|vj〉|i〉〈j|. (8)

3.2 POLYNOMIAL HERMITIAN EXPONENTIATION FOR SEMI SUPERVISED LEARNING

For computing the matrix inverse (K + KLK)−1 on a quantum computer that runs our quan-
tum machine algorithm and HHL algorithm as a subroutine, we need to efficiently compute
e−i(K+KLK)∆tσei(K+KLK)∆t. For this purpose we adapt the generalized LMR technique for
simulating Hermitian polynomials proposed in (Kimmel et al., 2017) to the specific case of
e−i(K+KLK)∆tσei(K+KLK)∆t. Simulation of e−iK∆t follows from the original LMR algorithm,
and therefore we focus here only on KLK. The final dynamics (K +KLK)−1 can be obtained by
sampling from the two output states for −e−iKLK∆t and e−iK∆t.

Let D(H) denote the space of density operators associated with state space H . Let K†,K, L ∈
D(HA) be the density operators associated with the kernel matrix and the Laplacian, respectively.
We will need two separate systems with the kernel matrix K, to distinguish between them we will
denote the first as K† and the second as K; since K is real and symmetric, these are indeed equal.
Let σAB ∈ D(HA ⊗ HB) be some arbitrary quantum state. Let H = 1

2K
†LK + 1

2KLK
†. We

show using n = O
(
t2/δ

)
samples from the states {K†, L,K} a quantum algorithm can transform

σAB into σ̃AB such that
1

2

∥∥(e−iHt ⊗ 1B

)
σAB

(
eiHt ⊗ 1B

)
− σ̃AB

∥∥
1
≤ O(δ). (9)

We first need to produce a state of the the form of ρ′ = |0〉〈0| ⊗ ρ′′ + |1〉〈1| ⊗ ρ′′′ such that
Tr(ρ′′+ ρ′′′) = 1 and H = ρ′′− ρ′′′, and then apply Lemma 8 from (Kimmel et al., 2017). Figure
1 shows a quantum circuit for creating ρ′.

The analysis of the steps preformed by the circuit depicted in Fig. 1 is as follows. Let S3 be
the cyclic permutation of three copies of HA that operates as S3|j1, j2, j3〉 = |j3, j1, j2〉, i.e a in
operator form it can be written as

S3 :=

dimHA∑
j1,j2,j3=1

|j3〉 〈j1| ⊗ |j1〉 〈j2| ⊗ |j2〉 〈j3 |

The input state to the circuit depicted in Fig. 1 is

|+〉〈+| ⊗K† ⊗ L⊗K.
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Figure 1: Subcircuit for creating |0〉〈0| ⊗ ρ′′+ |1〉〈1| ⊗ ρ′′′.

Applying S3 on K†, L,K gives

I =
1

2
[|0〉〈0| ⊗K† ⊗ L⊗K + |0〉〈1| ⊗

(
K† ⊗ L⊗K

)
S3

+ |1〉〈0| ⊗ S3

(
K† ⊗ L⊗K

)
+ |1〉〈1| ⊗ S3

(
K† ⊗ L⊗K

)
S3].

After discarding the third and second register sequentially, we get

II = Tr2 [Tr3(I)] = |0〉〈0| ⊗ 1

2
K† + |0〉〈1| ⊗ 1

2
K†LK + |1〉〈0| ⊗ 1

2
KLK† + |1〉〈1| ⊗ 1

2
K,

where the last line obtained from

Tr2

[
Tr3

[(
K† ⊗ L⊗K

)
S3

]]
= K†LK,

Tr2

[
Tr3

[
S3(K† ⊗ L⊗K)

]]
= KLK†,

T r2

[
Tr3

[
S3(K† ⊗ L⊗K)S3

]]
= K.

After applying a Hadamard gate on the first qubit, we get

III = H ⊗ 1(II)H ⊗ 1 =

1

2
(|0〉〈0|+ |0〉〈1|+ |1〉〈0|+ |1〉〈1|)⊗ 1

2
K† +

1

2
(|0〉〈0| − |0〉〈1|+ |1〉〈0| − |1〉〈1|)⊗ 1

2
K†LK

+
1

2
(|0〉〈0|+ |0〉〈1| − |1〉〈0| − |1〉〈1|)⊗ 1

2
KLK† +

1

2
(|0〉〈0| − |0〉〈1| − |1〉〈0|+ |1〉〈1|)⊗ 1

2
K

= |0〉〈0| ⊗ 1

2

(
1

2
K† +

1

2
K†LK +

1

2
KLK† +

1

2
K

)
+ |0〉〈1| ⊗ 1

2

(
1

2
K† − 1

2
K†LK +

1

2
KLK† − 1

2
K

)
+ |1〉〈0| ⊗ 1

2

(
1

2
K† +

1

2
K†LK − 1

2
KLK† − 1

2
K

)
+ |1〉〈1| ⊗ 1

2

(
1

2
K† − 1

2
K†LK − 1

2
KLK† +

1

2
K

)
.

The last step is applying a measurement on Z-basis on the first register,

IV = |0〉〈0| ⊗ 1

2

(
1

2
K† +

1

2
K†LK +

1

2
KLK† +

1

2
K

)
+ |1〉〈1| ⊗ 1

2

(
1

2
K† − 1

2
K†LK − 1

2
KLK† +

1

2
K

)
We can see that by defining ρ′′ = 1

2

(
1
2K
† + 1

2K
†LK + 1

2KLK
† + 1

2K
)

and ρ′′′ =
1
2

(
1
2K
† − 1

2K
†LK − 1

2KLK
† + 1

2K
)

the final state is in the form of ρ′ = |0〉〈0|⊗ρ′′+|1〉〈1|⊗ρ′′′
where Tr(ρ′′+ ρ′′′) = 1, and we obtain ρ′′− ρ′′′ = 1

2K
†LK + 1

2KLK
† = H .

Having the output state ρ′ in hand we can use the modification of LMR introduced in (Kimmel et al.,
2017) and simulate e−iHtσeiHt :

Tr1

[
Tr3

[
e−iS

′∆
(ρ′ ⊗ σ) eiS

′∆
]]

= σ − i[H,σ] +O(∆2) = e−iHtσeiHt +O(∆2),
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where S′ := |0〉〈0| ⊗ S + |1〉〈1| ⊗ (−S) is a controlled partial swap in the forward and backward
direction in time. In other words e−iS

′∆
= |0〉〈0|⊗e−iS∆ + |1〉〈1|⊗eiS∆. Therefore with one copy

of ρ′, we obtain the simulation of e−iH∆ up to error O(∆2). If we choose the time slice ∆ = δ/t
and repeating the above procedure for t2/δ times, we are able to simulate e−iHt up to error O(δ)
using n = O(t2/δ) copies of ρ′.

3.3 QUANTUM SEMI-SUPERVISED LS SVM ALGORITHM AND ITS COMPLEXITY

Algorithm 1 Quantum Semi-Supervised LS-SVM
Input: The datapoint set {x1, ...xl, ...xm} with the first l data points labeled and the rest unlabeled,

y = (y1, ..., yl) and the graph G
Output: The classifier |α, b〉 = A−1|y〉

1: Quantum data preparation. Encode classical data points into quantum data points using quan-
tum oracles Ox : {x1, ...xl, ...xu} 7→ |X〉 = 1√∑m

i=1‖ xi ‖2
∑m
i=1 |i〉 ⊗ ‖xi ‖ and Ox : y 7→ |y〉.

2: Quantum Laplacian preparation. Prepare quantum density matrix using oracle access to G.
3: Matrix inversion. Compute the matrix inversion |α, b〉 = A−1|y〉 via HHL algorithm. A

quantum circuit for the HHL algorithm has three main steps:
4: Phase estimation, including efficient Hamiltonian simulation involving KLK (Section 3.2)
5: Controlled rotation
6: Uncomputing
7: Classification. Based on Swap test algorithm, same as in Quantum LS SVM.

The quantum LS-SVM in (Rebentrost et al., 2014b) offers exponential speedup O(logmp) over
the classical time complexity for solving SVM as a quadratic problem, which requires time
O(log(ε−1)poly(p,m)), where ε is the desired error. The exponential speedup in p occurs as the
result of fast quantum computing of kernel matrix, and relies on the existence of efficient oracle ac-
cess to data. The speedup on m is due to applying quantum matrix inversion for solving LS-SVM,
which is inherently due to fast algorithm for exponentiation of a resulting non-sparse matrix. Our
algorithm introduces two additional steps: preparing the Laplacian density matrix, and Hamiltonian
simulation for KLK. The first step involves oracle access to a sparse graph adjacency list represen-
tation, which is at least as efficient as the oracle access to non-sparse data points. The Hamiltonian
simulation involves simulating a sparse conditional partial swap operator, which results an efficient
strategy for applying e−iKLK∆t in time Õ(log(m)∆t), where the notation Õ hides more slowly
growing factors in the simulation (Berry et al., 2007).

3.4 COMPARISON WITH ALTERNATIVE APPROACHES

Considerable effort has been devoted into designing fast classical algorithms for training SVMs. The
decomposition-based methods such as SMO (Platt, 1998) are able to efficiently manage problems
with large number of features p, but their computational complexities are super-linear in m. Other
training strategies (Suykens & Vandewalle, 1999; Fung & Mangasarian, 2005; Keerthi & DeCoste,
2005) are linear in m but scale quadratically in p in the worst case. The Pegasos algorithm (Shalev-
Shwartz et al., 2011) for non-linear kernel improves the complexity to Õ (m/(λε)), where λ, and ε
are the regularization parameter of SVM and the error of the solution, respectively.

Beyond the classical realm, three quantum algorithms for training linear models have been proposed,
the quantum LS-SVM that involves L2 regularizer (Rebentrost et al., 2014a), a recently proposed
Quantum Sparse SVM which is limited to a linear kernel (Arodz & Saeedi, 2019), and a quantum
training algorithm that solves a maximin problem resulting from a maximum – not average – loss
over the training set (Li et al., 2019).
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