
Under review as a workshop paper at ICLR 2019

CONTEXT MOVER’S DISTANCE & BARYCENTERS:
OPTIMAL TRANSPORT OF CONTEXTS FOR BUILDING
REPRESENTATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a framework for building unsupervised representations of entities
and their compositions, where each entity is viewed as a probability distribution
rather than a fixed length vector. In particular, this distribution is supported over
the contexts which co-occur with the entity and are embedded in a suitable low-
dimensional space. This enables us to consider the problem of representation
learning with a perspective from Optimal Transport and take advantage of its
numerous tools such as Wasserstein distance and Wasserstein barycenters. We
elaborate how the method can be applied for obtaining unsupervised representations
of text and illustrate the performance quantitatively as well as qualitatively on tasks
such as measuring sentence similarity and word entailment, where we empirically
observe significant gains (e.g., 4.1% relative improvement over Sent2vec and
GenSen).
The key benefits of the proposed approach include: (a) capturing uncertainty and
polysemy via modeling the entities as distributions, (b) utilizing the underlying
geometry of the particular task (with the ground cost), (c) simultaneously providing
interpretability with the notion of optimal transport between contexts and (d)
easy applicability on top of existing point embedding methods. In essence, the
framework can be useful for any unsupervised or supervised problem (on text or
other modalities); and only requires a co-occurrence structure inherent to many
problems. The code, as well as pre-built histograms, are available under
https://github.com/context-mover/.

1 INTRODUCTION

One of the driving factors behind recent successes in machine learning has been the development of
better methods for data representation, thus forming the foundation around which rest of the model
architecture gets built. Examples include continuous vector representations for language (Mikolov
et al., 2013; Pennington et al., 2014), convolutional neural network based feature representations for
images and text (LeCun et al., 1998; Collobert & Weston, 2008; Kalchbrenner et al., 2014), or via the
hidden state representations of LSTMs (Hochreiter & Schmidhuber, 1997; Sutskever et al., 2014).
Pre-trained unsupervised representations in particular have been immensely useful as general purpose
features for model initialization (Kim, 2014), downstream tasks, (Severyn & Moschitti, 2015; Deriu
et al., 2017) and in domains with limited supervised information (Qi et al., 2018).

The shared idea across these methods is to map input entities to dense vector embeddings lying in
a low-dimensional latent space where the semantics of inputs are preserved. Thus, each entity of
interest (e.g., a word) is represented directly as a single point (i.e., its embedding vector) in space,
which is typically Euclidean.

In contrast, we approach the problem of building unsupervised representations in a fundamentally
different manner. We focus on the co-occurrence information between the entities and their contexts,
and represent each entity as a probability distribution (histogram) over its contexts. Here the contexts
themselves are embedded as points in a suitable low-dimensional space. This allows us to cast
finding distance between entities as an instance of the Optimal Transport problem (Monge, 1781;
Kantorovich, 1942; Villani, 2008). So, our resulting framework intuitively compares the cost of
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moving the contexts of a given entity to the contexts of another, which motivates the naming Context
Mover’s Distance (CMD).
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Figure 1: Distributional estimate for the en-
tity ‘radio’.

We will call this distribution over contexts embed-
dings the distributional estimate of our entity of in-
terest (see Figure 1), while we refer to the individual
embeddings of contexts as point estimates. More
precisely, the contexts refer to any generic entities or
objects (such as words, phrases, sentences, images,
etc.) co-occurring with the entities to be represented.

The main motivation for our proposed approach orig-
inates from the domain of natural language, where
the entities (words, phrases, or sentences) generally
have different semantics depending on the context
under which they are present. Hence, it is important
to consider representations that are able to effectively
capture such inherent uncertainty and polysemy, and
we will argue that distributional estimates capture more of this information compared to point-wise
embedding vectors alone. In particular, we will see that the co-occurrence information required to
build the distributions is already obtained as the first step of point-wise embedding methods, like in
GloVe (Pennington et al., 2014), but has largely been ignored in the past.

Further, this co-occurrence information that is the crucial building block of our approach is in-
herent to a wide variety of problems, for instance, recommending products such as movies or
web-advertisements (Grbovic et al., 2015), nodes in a graph (Grover & Leskovec, 2016), sequence
data, or other entities (Wu et al., 2017). This means that, in principle, our framework can be employed
to obtain a representation of various entities present across these problems.

Overall, we strongly advocate for representing entities with distributional estimates due to the above
stated reasons. But at the same time, our message isn’t that point-wise embedding methods should
cease to exist, rather that both kinds of methods should go hand in hand. This will be reflected
through building distributional estimates on the top of existing point embedding methods, as well as
how we can combine them (cf. Section 4) to get the best of these intrinsically different ideas.

Lastly, the connection to optimal transport at the level of entities and contexts paves the way to
make better use of its vast toolkit (like Wasserstein distances, barycenters, barycentric coordinates,
etc.) for applications in NLP, which in the past has primarily been restricted to document distances
of original words (Kusner et al., 2015; Huang et al., 2016), as opposed to contexts. Thanks to the
entropic regularization introduced by Cuturi (2013), optimal transport computations can be carried
out efficiently in a parallel and batched manner on GPUs.

Contributions: 1) Employing the notion of optimal transport of contexts as a distance measure,
we illustrate how our framework can be of benefit for various important tasks, including word and
sentence representations, sentence similarity, as well as hypernymy (entailment) detection. The
method is static and does not require any additional learning, and can be readily used on top of
existing embedding methods.

2) The resulting representations, as portrayed in Figures 1, 3, 4, capture the various senses under
which the entity occurs. Next, the transport map obtained through CMD (see Figure 2) gives a clear
interpretation of the resulting distance obtained between two entities.

3) Our Context Mover’s Distance (CMD) can be used to measure any kind of distance (even asym-
metric) between words, by defining a suitable underlying cost on the movement of contexts, which
we show can lead to a state-of-the-art metric for word entailment.

4) Defining the transport over contexts has the additional benefit that the representations are composi-
tional - they directly extend from entities to groups of entities (of any size), such as from word to
sentence representations. To this end, we utilize the notion of Wasserstein barycenters, which to the
best of our knowledge has never been considered in the past. This results in a significant performance
boost on multiple datasets, and even outperforming supervised methods like InferSent (Conneau
et al., 2017) and GenSen (Subramanian et al., 2018) by a decent margin.
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2 RELATED WORK
Vector representations. The idea of using vector space models for natural language dates
back to Bengio et al. (2003), but in particular has been popularized by the seminal works of
Word2vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014). Further, works such as
(Levy & Goldberg, 2014a; Bojanowski et al., 2016) have suggested to enrich these embeddings to
capture additional information. One of the problems that still persists is the inability to capture,
within just a point embedding, the various semantics and uncertainties associated with the occurrence
of a particular word (Huang et al., 2012; Guo et al., 2014).

Representing with distributions. This line of work is fairly recent, mainly originating from Vilnis
& McCallum (2014), who proposed to represent words with Gaussian distributions, and later extended
to mixtures of Gaussians in (Athiwaratkun & Wilson, 2017). Concurrent to this work, Muzellec &
Cuturi (2018) and Sun et al. (2018) have suggested using elliptical and Gaussian distributions endowed
with a Wasserstein metric respectively. While these methods already provide richer information
than typical vector embeddings, their form restricts what could be gained by allowing for arbitrary
distributions as possible here. Our proposal of distributional estimate (i.e., distribution over context
embeddings), inherently relies upon the empirically obtained co-occurrence information of a word
and its contexts. Hence, this naturally allows for the use of optimal transport (or Wasserstein metric)
in the space containing the contexts, and leads to an interpretation (Figure 2) which is not available in
the above approaches. Another consequence is that the training procedure required in these methods is
not necessary for our approach, as we can just utilize the existing point-embedding methods together
with the co-occurrence information.

Apart from embedding entities in the Wasserstein space, other metric spaces like the Hyperbolic
space, have recently gained attention for modelling hierarchical structures (Nickel & Kiela, 2017;
Ganea et al., 2018). But, these are so far restricted to supervised tasks1, not allowing unsupervised
representation learning, which is the focus here.

Optimal Transport in NLP. The primary focus of the explorations of optimal transport in NLP
has been on transporting words directly, and for downstream applications rather than representation
learning in general. These include document distances (Kusner et al., 2015; Huang et al., 2016),
topic modelling (Rolet et al., 2016; Xu et al., 2018), document clustering (Ye et al., 2017), and
others (Zhang et al., 2017; Grave et al., 2018). For example, the Word Mover’s Distance (WMD;
Kusner et al., 2015) considers computing the distance between documents as an optimal transport
between their bag-of-words, and in itself doesn’t lead to a representation. When the transport is
defined at the level of words like in these approaches, it can not be used to represent words themselves.
In our approach, the transport is considered over contexts instead, which enables us to develop
representations for words and also extend them to represent composition of words (i.e., sentences,
documents) in a principled manner, as will be illustrated further through the examples of entailment
detection and sentence representation respectively.

3 BACKGROUND ON OPTIMAL TRANSPORT

Optimal Transport (OT) provides a way to compare two probability distributions defined over a
space G (commonly known as the ground space), given an underlying distance or more generally a
cost of moving one point to another in the ground space. In other terms, it lifts a distance between
points to a distance between distributions. Other divergences, such as Kullback-Leibler (KL), or
f -divergence in general, only focus on the probability mass values, thus ignoring the geometry of the
ground space: something which we utilize throughout this work via OT. Also, KL-divergence isn’t
defined when the supports of distributions under comparison don’t fully overlap. Having motivated
our choice, we give a short yet formal background on OT in the discrete case.

Linear Program Formulation. Consider an empirical probability measure of the form µ =∑n
i=1 aiδ(x

(i)) where X = (x(1), . . . ,x(n)) ∈ Gn, δ(x) denotes the Dirac (unit mass) distribution
at point x ∈ G, and (a1, . . . , an) lives in the probability simplex Σn :=

{
p ∈ Rn+ |

∑n
i=1 pi = 1

}
.

Now given a second empirical measure, ν =
∑m
j=1 bjδ(y

(j)), with Y = (y(1), . . . ,y(m)) ∈ Gm,

1Also, similar for the elliptical embeddings (Muzellec & Cuturi, 2018) in the case of Hypernymy.
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and (b1, . . . , bm) ∈ Σm, and if the ground cost of moving from point x(i) to y(j) is denoted by Mij ,
then the Optimal Transport distance between µ and ν is the solution to the following linear program.

OT(µ, ν;M) := min
T∈Rn×m+

s.t. ∀i,
∑
j Tij=ai, ∀j,

∑
i Tij=bj

∑
ij

TijMij (1)

Here, the optimal T ∈ Rn×m+ is referred to as the transportation matrix: Tij denotes the optimal
amount of mass to move from point x(i) to point y(j). Intuitively, OT is concerned with the problem
of moving a given supply of goods from certain factories to meet the demands at some shops, such
that the overall transportation cost is minimal.

Distance. When G = Rd and the cost is defined with respect to a metric DG over G (i.e., Mij =

DG(x(i),y(j))p for any i, j), OT defines a distance between empirical probability distributions. This
is the p-Wasserstein distance, defined asWp(µ, ν) := OT(µ, ν;Dp

G)1/p. In most cases, we are only
concerned with the case where p = 1 or 2.

Regularization and Sinkhorn iterations. The cost of exactly solving OT scales at least in
O(n3 log(n)) (n being the cardinality of the support of the empirical measure) when using net-
work simplex or interior point methods. Following Cuturi (2013), we consider the entropy regularized
Wasserstein distance,Wp,λ(µ, ν) := OTλ(µ, ν;Dp

G)1/p, where the search space for the optimal T is
instead restricted to a smooth solution close to the extreme points of this linear program, as follows:

OTλ(µ, ν;M) := min
T∈Rn×m+

s.t.
{
∀i,
∑
j Tij = ai,

∀j,
∑
i Tij = bj

∑
ij

TijMij − λH(T ), (2)

where H(T ) = −
∑
ij Tij log Tij . The regularized problem can then be solved efficiently using

Sinkhorn iterations (Sinkhorn, 1964), albeit at the cost of some approximation error. This can be
controlled by the regularization strength λ ≥ 0, with the true OT recovered at λ = 0. While the cost
of each Sinkhorn iteration is quadratic in n, Altschuler et al. (2017) have shown that the convergence
to an ε-accurate solution can be attained in a number of iterations that is independent of n, thus
resulting in an overall complexity of Õ(n2/ε3).

Barycenters. In Section 6, we will make use of the notion of averaging in the Wasserstein space.
More precisely, the Wasserstein barycenter, introduced by Agueh & Carlier (2011), is a probability
measure that minimizes the sum of (p-th power) Wasserstein distances to the given measures. For-
mally, given N measures {ν1, . . . , νN} with corresponding weights η = {η1, . . . , ηN} ∈ ΣN , the
Wasserstein barycenter can be written as

Bp(ν1, . . . , νN ) = arg min
µ

N∑
i=1

ηiWp(µ, νi)
p. (3)

For practical purposes, we consider the regularized barycenter Bp,λ, using entropy regularized
Wasserstein distancesWp,λ in the above minimization problem, following Cuturi & Doucet (2014).
Employing the iterative Bregman projections (Benamou et al., 2015), we obtain an approximation of
the solution at a reasonable computational cost.

4 METHODOLOGY

In this section, we define the distributional estimate that we use to represent each entity. Since we
take the guiding example of building text representations, we consider each entity to be a word for
simplicity.

Distributional Estimate (PwV ). For a word w, its distributional estimate is built from a histogram
Hw over the set of contexts C, and an embedding of these contexts into a space G. The histogram
essentially measures how likely it is for a word w to occur in a particular context c, i.e., probability
p(w|c). The exact formulation of this in closed form is generally intractable and hence it’s common
to empirically estimate this by the number of occurrences of the word w in context c, relative to the
total frequency of context c in the corpus.
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Figure 2: Illustration of Context Mover’s Distance
(CMD) (Eq. (5)) between elephant & mammal
(when represented with their distributional esti-
mates and using entailment ground metric dis-
cussed in Section 7). Here, we pick four contexts
at random from their top 20 contexts in terms of
PPMI. The square cells above denote the entries
of the transportation matrix (or transport map) T
obtained in the process of computing CMD. The
darker a cell, the larger the amount of mass moved
between the corresponding contexts.

Thus one natural way to build this histogram is to maintain a co-occurrence matrix between words in
our vocabulary and all possible contexts, where each entry indicates how often a word and context
occur in a window of fixed size L. Then, the bin values (Hw)c∈C of the histogram can be viewed as
the row corresponding to w in this co-occurrence matrix.

Next, the simplest embedding of contexts is into the space of one-hot vectors of all the possible
contexts. However, this induces a lot of sparsity in the representation and the distance between such
embeddings of contexts does not reflect their semantics. A classical solution would be to instead
find a dense low-dimensional embedding of contexts that captures the semantics, possibly using
techniques such as SVD or deep neural networks. We denote by V = (vc)c∈C an embedding of the
contexts into this low-dimensional space G ⊂ Rd, which we refer to as the ground space2.

Combining the histogram Hw and the embedding V , we represent the word w by the following
empirical distribution, referred to as the distributional estimate of the word:

PwV :=
∑
c ∈C

(Hw)c δ(vc). (4)

Distance. If we equip the ground space G with a meaningful metric DG and use distributional
estimates (PwV ) to represent the words, then we can define a distance between two words wi and wj
as the solution to the following optimal transport problem:

CMD(wi, wj ;D
p
G) := OT(PwiV ,P

wj
V ;Dp

G) ' Wp,λ(PwiV ,P
wj
V )p. (5)

We call this distance in Eq.(5) as the Context Mover’s Distance (CMD).

Intuition. Two words are similar in meaning if the contexts of one word can be easily transported
to the contexts of the other, with this cost of transportation being measured by DG . This idea still
remains in line with the distributional hypothesis (Harris, 1954; Rubenstein & Goodenough, 1965)
that words in similar contexts have similar meanings, but provides a precise way to quantify it.

Interpretation. The particular definition of CMD in Eq.(5), lends a pleasing interpretation (see
Figure 2 in terms of the transportation map T . This interpretation can be useful in understanding why
and how are the two words being considered as similar in meaning, by looking at this movement
of contexts. Hence, one potential application could be in checking for the implicit bias in point
estimates (Bolukbasi et al., 2016) and then correcting it via the ground cost.

Relation between the histogram and point estimates. Both these elements of the distributional
estimate are closely tied together and required to serve as an effective representation. In particular,
the histogram information is the characteristic of representations in count-based language models,
and the point estimates are reflective of embeddings in neural language models. The distributional
estimate can be intuitively seen as trying to relate and get the best of both these worlds.

Mixed Distributional Estimate. We also consider adding the information from point estimate
into the distributional estimate to get best of both the worlds. This is done by adding a point estimate
(i.e., a Dirac at its location) as an additional context with a particular mixing weight, denoted as m.
The other contexts in the distributional estimate are reweighted to sum to 1−m.

2We will consider example cases of how this metric can be obtained in Sections 6 and 7.

5



Under review as a workshop paper at ICLR 2019

Roadmap. Next, we discuss concretely how this framework can be applied and for brevity we
restrict to the particular case where contexts consist of single words. Section 6 details how this
framework can be extended to obtain a representation for the composition of entities via Wasserstein
barycenter. Lastly in section 7, we utilize the fact that the CMD in Eq.(5) is parameterized by ground
cost, and show how this flexibility can be used to define an asymmetric cost measuring entailment.

5 CONCRETE FRAMEWORK

Making associations better. We consider that a word and a context word co-occur if the latter
appears in a symmetric window of size L around the word whose distributional estimate we seek (i.e.,
the target word). But, it is commonly understood that co-occurrence counts alone may not necessarily
suggest a strong association between the two. The well-known Positive Pointwise Mutual Information
(PPMI) matrix (Church & Hanks, 1990; Levy et al., 2015) addresses this shortcoming, and is defined
as follows: PPMI(w, c) := max(log( p(w,c)

p(w)×p(c) ), 0). This means that the PPMI entries are non-zero
when the joint probability of target and context words co-occurring is higher than the probability
when they are independent. Typically, these probabilities are estimated from the co-occurrence
counts in the corpus. Further improvements to the PPMI matrix have been suggested, like in Levy
& Goldberg (2014b), and following them we make use of a shifted and smoothed PPMI matrix,
denoted by SPPMIα,s where α and s denote the smoothing and k-shift parameters3. Overall, these
variants of PPMI enable us to extract better semantic associations from the co-occurrence matrix.
Hence, the bin values (at context c) for the histogram of word w in Eq. (4) can be formulated as:
(Hw)c :=

SPPMIα,s(w,c)∑
c ∈C SPPMIα,s(w,c)

.

Computational considerations. A natural question could arise that CMD might be computation-
ally intractable in its current formulation, as the possible number of contexts can be enormous. Since
the contexts are dense embeddings, it is possible to only considerK representative contexts (centroids
of clusters of contexts), each covering some part Ck of the set of contexts C. The histogram for word
w with respect to these contexts can then be written as P̃w

Ṽ
=
∑K
k=1(H̃

w
)k δ(ṽk), where ṽk ∈ Ṽ is

the point estimate of the kth representative context, and (H̃
w

)k denote the new histogram bin values.
Precise definitions, and a detailed discussion on the effect of the number of clusters are given in the
supplementary material, Section S2.

Overall efficiency. With the above aspects in account and using batched implementations on (Nvidia
TitanX) GPUs, it is possible to compute around 13,700 Wasserstein-distances/second (for histogram
of size 100). Same also holds for barycenters, where we can compute 4,600 barycenters/second for
sentences of length 25 and histogram size of 100. Building this histogram information comes almost
for free during the typical learning of embeddings, as in GloVe (Pennington et al., 2014). A practical
take-home message of this work thus is to not throw away the co-occurrence information e.g. when
using GloVe, but to instead pass it on to our method.

6 SENTENCE REPRESENTATIONS

The goal of this task is to develop a representation for sentences, that captures the semantics conveyed
by it. Most unsupervised representations proposed in the past rely on the composition of vector
embeddings for the words, through either additive, multiplicative, or other ways (Mitchell & Lapata,
2008; Arora et al., 2017; Pagliardini et al., 2017). As before, our aim is to represent sentences as
distributional estimates to better capture the inherent uncertainty and polysemy.

We hypothesize that a sentence, S = (w1, w2, . . . , wN ), can be efficiently represented via the
Wasserstein barycenter of the distributional estimates of its words,

P̃S := Bp,λ
(
P̃w1

V , P̃w2

V , . . . , P̃wNV
)
. (6)

The motivation is that since the barycenter minimizes the sum of optimal transports, cf. Eq. (3),
it should result in a representation which best captures the simultaneous occurrence of the words
in a sentence. For instance, consider two probability measures which are Diracs, δ(x) and δ(y),
with equal weights and under Euclidean ground metric. Then, the Wasserstein barycenter is δ(x+y

2 )

3Please refer to Appendix S1.2 for the definition of SPPMI and more details such as our column normalization.
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(a) Distributional estimates of ‘my’
(green), ‘love’ (red) and ‘life’ (blue).

(b) Euclidean average. (c) Wasserstein barycenter.

Figure 3: Illustrates how Wasserstein barycenter takes into account the geometry of ground space,
while the simple averaging just focuses on the probability mass.5

while simple averaging gives 1
2 (δ(x) + δ(y)). In fact, Figure 3 says it all, and compares these two

kinds of averaging based on the actual distributional estimates of the words. Hence, illustrating
that Wasserstein barycenter is better suited than naive averaging, for applications having an innate
geometry. We refer to this representation as the Context Mover’s Barycenters (CoMB) henceforth.

Interestingly, the classical weighted averaging of point-estimates, like Smooth Inverse Frequency
(SIF) in (Arora et al., 2017) (without principal component removal), can be seen as a special case of
CoMB, when the distribution associated to a word is just a Dirac at its point estimate. It becomes
apparent that having a rich distributional estimate for a word could turn out to be advantageous.

Since with CoMB (Eq. (6)), each sentence is also a distribution over the ground space G containing
the contexts, we can utilize the Context Mover’s Distance (CMD) defined in Eq. (5) to define the
distance between two sentences S1 and S2, under a given ground metric DG as follows,

CMD(S1, S2;Dp
G) := OT(P̃S1

V , P̃
S2

V ;Dp
G) ' Wp,λ(P̃S1

V , P̃
S2

V )p. (7)

6.1 EXPERIMENTAL SETUP

To evaluate CoMB as an effective sentence representation, we consider 24 datasets from SemEval
semantic textual similarity (STS) tasks (Agirre et al., 2012; 2013; 2014; 2015; 2016), containing
sentences from domains such as news headlines, forums, Twitter, etc. The objective here is to give
a similarity score to each sentence pair and rank them, which is evaluated against the ground truth
ranking via Pearson correlation.

As a ground metric (DG), we consider Euclidean or angular distance between the point estimates
(depending upon validation performance). The point estimates are obtained by using GloVe (Pen-
nington et al., 2014) on the Book Corpus (Zhu et al., 2015), and via this we also get the histogram
information needed for the distributional estimate. The representative contexts are obtained by
performing K-means clustering of the point estimates with respect to angular distance.

We benchmark6 against a variety of unsupervised methods such as SIF from Arora et al. (2017) who
regard it as a “simple but tough-to-beat baseline”, Bag of Words (BoW) averaging, Skip-thought
(Kiros et al., 2015), Sent2vec (Pagliardini et al., 2017) and Word Mover’s Embedding (WME; Wu
et al., 2018) which is a recent variant of WMD. For comparison, we also show the performance of
recent supervised methods such as InferSent (Conneau et al., 2017) and GenSen (Subramanian et al.,
2018), although these methods are clearly at an advantage due to training on labeled corpora.

6.2 EMPIRICAL RESULTS

Ground Metric: GloVe. Table 1 (a) shows the performance of CoMB when GloVe embeddings
trained on Book Corpus are used as ground metric. Hyperparameters for all the methods are tuned
on STS16, and the best configuration so obtained is used for the other STS tasks. We observe that

5For visualization purposes in Figures 1, 3, 4, we compute a two dimensional representation of the actual
context emb using t-SNE (Maaten & Hinton, 2008) and use a kernel density estimate to smooth the distributions.

6We use SIF’s publicly available implementation (https://github.com/PrincetonML/SIF) and
adapted version of SentEval (Conneau & Kiela, 2018) for evaluating CoMB.
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Val. Set Test Set

Model Corpus STS16 STS12 STS13 STS14 STS15 Avg.

(a) Unsupervised methods with GloVe embeddings

BoW

Book Corpus

19.2 21.1 13.5 25.0 30.7 22.6
SIF 26.6 32.4 23.0 34.1 35.3 31.2
SIF PC removed 57.6 41.0 50.1 51.9 52.8 49.0
CoMB 52.4 48.2 42.2 54.9 53.8 49.8
CoMB Mix 60.2 50.5 51.0 58.3 60.5 55.1
CoMB Mix + PC removed 63.0 49.3 56.5 60.8 64.0 57.7

(b) Unsupervised methods with Sent2vec embeddings

Sent2vec
Book Corpus

69.1 55.6 57.1 68.4 74.1 63.8
CoMB Mix 70.1 56.1 59.7 68.8 73.7 64.6
CoMB Mix + PC removed 70.6 57.9 64.2 70.3 73.1 66.4

(c) Other unsupervised methods

Skip-thought† Book Corpus NA 30.8 24.8 31.4 31.0 29.5
WME Google News NA 60.6 54.5 65.5 61.8 60.6
SIF PC removed Common Crawl NA 56.2 56.6 68.5 71.7 63.3

(d) Supervised methods

GenSen† Multiple* 66.4 60.6 54.7 65.8 74.2 63.8
InferSent AllNLI 71.5 59.2 58.9 69.6 71.3 64.8

Table 1: Performance of CoMB and other baselines on the STS tasks. The numbers are average
Pearson correlation x 100. Results are grouped into unsupervised (a, b, c) and supervised (d) methods.
A further distinction is made between unsupervised results to indicate the source of word embeddings.
(†) Skip-thought and GenSen scores are taken from Arora et al. (2017) and Kiros & Chan (2018)
respectively. (∗) GenSen uses a combination of multiple datasets: AllNLI, Book Corpus, WMT, etc.

‘Mix’ denotes the mixed distributional estimate. ‘PC removed’ refers to removing contribution along
the principal component of point estimates as done in SIF. Detailed results of individual tasks can be
found in S3. The best results overall are in bold while best results in a group are underlined.

the vanilla CoMB is better then SIF PC removed on average across the test set. Next, using the mixed
distributional estimate (CoMB Mix) improves the average test performance by 10%, and interestingly
this is for mixing weight 0.4 (towards the point estimate). Further, when the PC removal is carried
out for point estimates during mixing (i.e., CoMB Mix + PC removed), the average performance goes to
57.7 and results in 18% relative improvement over SIF PC removed.

Ground Metric: Sent2Vec. In parts (b, c, d) of Table 1, we see the effect of using an improved
ground metric, by employing the word vectors obtained from Sent2vec7. Here, we notice that
CoMBMix + PC removed results in a performance of 66.4 and thus a relative improvement of 4% over
Sent2vec’s score of 63.8. This is a decent gain considering that for unstructured text corpora, Sent2vec
is a state-of-the-art unsupervised method. Next, WME performs much worse than CoMB, showing
the benefit of defining transport over contexts than words. Further, CoMB also outperforms popular
supervised sentence embedding methods8 such as GenSen and InferSent which utilize labeled corpora.

Ablation studies and Qualitative analysis. We perform an extensive ablation and qualitative
analysis for sentence similarity. Due to space constraints, we enumerate the main observations here
and details can be found in the supplementary section as follows. (a) Section S4.3: CoMB and SIF
appear complementary in the nature of errors they make. CoMB outperforms when the difference in
sentences stems from predicate while SIF is better when the distinguishing factor is the subject of the
sentences. This is likely the reason why mixed distributional estimate helps in practice. (b) Section
S2.3: we observe that by around K = 300 to 500, the performance gained by increasing the number

7Sent2vec learns word embeddings so that their average works well as a sentence representation. We use the
pre-trained embeddings available at https://github.com/epfml/sent2vec.

8USE (Cer et al., 2018), which relies on a labeled corpus, doesn’t report results on STS12-15 but going by
https://github.com/google-research/bert/issues/128#issuecomment-451896503,
its performance is 67.5 which is close to CoMB’s unsupervised performance of 66.4.

8

https://github.com/epfml/sent2vec
https://github.com/google-research/bert/issues/128#issuecomment-451896503


Under review as a workshop paper at ICLR 2019

of clusters starts to plateau, implying that it is sufficient to only consider the representative contexts.
(c) Section S4.4: CoMB generally fares better than SIF on datasets with longer sentences.

Summary and further prospects. We observe that using CoMB along with either GloVe or
Sent2vec leads to a substantial boost, even taking beyond the performance of popular supervised
methods such as GenSen and InferSent. Starting from the raw co-occurrence information, it takes less
than 11 minutes to get all the STS results and see S1.4 for details. A future avenue would be to utilize
the important property of non-associativity for Wasserstein barycenters (i.e., Bp(µ,Bp(ν, ξ)) 6=
Bp(Bp(µ, ν), ξ)). This implies that we can take into account the word order with various aggregation
strategies, like parse trees, to build the sentence representation by recursively computing barycenters
phrase by phrase. However, this remains beyond the scope of this paper. Overall, this highlights the
advantage of having distributional estimates for words, that can be extended to give a meaningful
representation of sentences via CoMB in a principled manner.

7 HYPERNYMY DETECTION

In linguistics, hypernymy is a relation between words (or sentences) where the semantics of one
word (the hyponym) are contained within that of another word (the hypernym). A simple form of this
relation is the is-A relation, e.g., cat is an animal. Hypernymy is a special case of the more general
concept of lexical entailment, the detection of which is relevant for tasks such as Question Answering
(QA).

soundtrack
instruments

ridges

quartz

musical

granite

coldplay

lessons

rock
music

Figure 4: Distributional estimates of
rock and music. The two words have an
overlapping mode (for rock in the sense
of rock music) and separate modes for
other senses (such as rock in the sense
of a stone).

The early unsupervised approaches for this task exploited
different linguistic properties of hypernymy (Weeds &
Weir, 2003; Kotlerman et al., 2010; Santus et al., 2014;
Rimell, 2014). While most of these are count-based, point
embedding based methods (Chang et al., 2017; Hender-
son & Popa, 2016) have become more popular in recent
years. Other approaches represent words by Gaussian
distributions with KL-divergence as a measure of entail-
ment (Vilnis & McCallum, 2014; Athiwaratkun & Wilson,
2017). These methods have proven to be powerful, as they
not only capture the semantics but also the uncertainty
about the contexts in which the word appears.

Therefore, hypernymy detection is a great testbed to verify
the effectiveness of our approach to represent each entity
by the distribution of its contexts. The intuitive idea for
the applicability of our method to this task originates from
the Distributional Inclusion Hypothesis (Geffet & Dagan,
2005), which states that a word v entails another word w
if “the most characteristic contexts of v are expected to
be included in all w’s contexts (but not necessarily amongst the most characteristic ones for w)”.
The inclusion of the contexts for the words rock and music is illustrated in Figure 4. We see our
method as a relaxation of this strict inclusion condition, as a suitable entailment based ground metric
in combination with CMD can more flexibly model this condition. Hence, it is natural to make use of
the Context Mover’s Distance (CMD), Eq. (5), but with an appropriate ground cost that measures
entailment relations well.

For this purpose, we utilize a recently proposed method by (Henderson & Popa, 2016; Henderson,
2017) which explicitly models what information is known about a word, by interpreting each entry of
the embedding as the degree to which a certain feature is present. Based on the logical definition
of entailment they derive an operator measuring the entailment similarity between two so-called
entailment vectors defined as follows: vi=vj = σ(−vi)·log σ(−vj), where the sigmoid σ and log are
applied component-wise on the embeddings vi,vj . Thus, we use as ground cost DHend.

ij := −vi=vj .
This asymmetric ground cost also shows that our framework can be flexibly used with an arbitrary
cost function defined on the ground space.

Evaluation. In total, we evaluate our method on 10 standard datasets: BLESS (Baroni & Lenci,
2011), EVALution (Santus et al., 2015), (Benotto, 2015), (Weeds et al., 2014), BIBLESS (Kiela et al.,
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Validation Set Test Set

Method HypeNet-Train HypeNet-Test EVALution LenciBenotto Weeds Turney Baroni BIBLESS

DHend. 29.0 28.8 31.6 44.8 60.8 56.6 78.3 70.5
CMDK=200+DHend. 53.4 53.4 38.1 50.1 63.9 56.0 67.5 74.0
CMDK=250+DHend. 53.6 53.7 37.1 49.9 63.8 56.3 67.3 74.9

GE + C NA 21.6 26.7 43.3 52.0 53.9 69.7 NA
GE + KL NA 23.7 29.6 45.1 51.3 52.0 64.6 NA
DIVE + C·∆S NA 32.0 33.0 50.4 65.5 57.2 83.5 NA

Table 2: Comparison of the entailment vectors from (Henderson, 2017) used alone (DHend.), and
when used together with our Context Mover’s Distance (CMDK ) andDHend.

ij as the underlying ground
metric. The two listed CMD variants are the ones with best validation performance for K = 200
and K = 250 clusters. For reference, this table also includes state-of-the-art methods, like Gaussian
embeddings with cosine similarity (GE+C) or KL-divergence (GE+KL), and DIVE.10 The scores
are AP@all (%). More details about the training setup and results on other datasets can be found in
Section S1.1, and Table S11 in Section S6.1. Best results are in bold and 2nd best are underlined.

2015), (Baroni et al., 2012), (Kotlerman et al., 2010), (Levy et al., 2014), HypeNet-Test (Shwartz
et al., 2016), and (Turney & Mohammad, 2015). As an evaluation metric, we use average precision
AP@all (Zhu, 2004). Following (Chang et al., 2017) we pushed any OOV (out-of-vocabulary) words
in the test data to the bottom of the list, effectively assuming that the word pairs do not have a
hypernym relation.

The foremost thing that we would like to check is the benefit of having a distributional estimate
in comparison to just the point embeddings. Here, we observe that employing CMD along with
the entailment embeddings, leads to a significant boost on most of the datasets, except on Baroni
and Turney, where the performance is still competitive with the other state of the art methods like
Gaussian embeddings. The more interesting observation is that on some datasets (EVALution,
HypeNet, LenciBenotto) we even outperform or match state-of-the-art performance (cf. Table 2),
by simply using CMD together with this ground cost DHend.

ij based on the entailment embeddings.
Notably, this approach is not specific to the entailment vectors from (Henderson, 2017) and more
accurate set of vectors might help additionally. Alternatively, this also suggests that using CMD along
with a method that produces embedding vectors (specialized for measuring the degree of entailment)
can be a potential way to further improve the performance of that method. Some qualitative results
taken from the BIBLESS dataset are listed in Table 3.

Hyponym Hypernym Ground Truth CMD Henderson

saw tool True 3 7
guitar trumpet False 3 7
battleship vehicle True 3 7
box mortality False 7 3

Table 3: Excerpts from
hypernymy detection on
BIBLESS. For more ex-
amples and a detailed de-
scription, please refer to
Tables S14/S15.

8 CONCLUSION

We advocate for representing entities by a distributional estimate on top of any given co-occurrence
structure. For each entity, we jointly consider the histogram information (with its contexts) as well
as the point embeddings of the contexts. We show how this enables the use of optimal transport
over distributions of contexts. Our framework results in an efficient, interpretable and compositional
metric to represent and compare entities (e.g. words) and groups thereof (e.g. sentences), while
leveraging existing point embeddings. We demonstrate its performance on several NLP tasks such
as sentence similarity and word entailment detection. Motivated by the promising empirical results,
applying the proposed framework on co-occurrence structures beyond NLP is an exciting direction.

10Scores for GE+C, GE+KL, and DIVE + C·∆S are taken from (Chang et al., 2017) as we use the same
evaluation setup. All the methods use a Wikipedia dump as a training corpus. In particular GE and DIVE employ
WaCkypedia (a 2009 Wikipedia dump) from Baroni et al. (2009), and DHend. and CMD are based on a 2015
Wikipedia dump.
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Appendices

In these appendices, we provide supplementary details on the experiments, mathematical framework,
and detailed results in Section S1. In Section S2 we discuss computational aspects and the importance
of clustering the contexts. Detailed results of the sentence representation and hypernymy detection
experiments are listed on the following pages in Section S3 and S6 respectively. Then we describe a
qualitative analysis of sentence similarity in Section S4, and finally discuss a qualitative analysis of
hypernymy detection in Section S7.

S1 TECHNICAL SPECIFICATIONS

In this Section, we give further details on the experimental framework in Section S1.1, on the PPMI
formulation (Section S1.2), and on Optimal Transport (Section S1.3). In Section S1.5, we provide
references for software release.

S1.1 EXPERIMENTAL DETAILS

Sentence Representations. While using the Toronto Book Corpus, we remove the errors caused
by crawling and pre-process the corpus by filtering out sentences longer than 300 words, thereby
removing a very small portion (500 sentences out of the 70 million sentences). We utilize the codeS1

from GloVe for building the vocabulary of size 205513 (obtained by setting min count=10) and
the co-occurrence matrix (considering a symmetric window of size 10). Note that as in GloVe, the
contribution from a context word is inversely weighted by the distance to the target word, while
computing the co-occurrence. The vectors obtained via GloVe have 300 dimensions and were trained
for 75 iterations at a learning rate of 0.005, other parameters being the default ones. The performance
of these vectors from GloVe was verified on standard word similarity tasks.

Hypernymy Detection. The training of the entailment vector is performed on a Wikipedia dump
from 2015 with 1.7B tokens that have been tokenized using the Stanford NLP library (Manning et al.,
2014). In our experiments, we use a vocabulary with a size of 80’000 and word embeddings with
200 dimensions. We followed the same training procedure as described in Henderson (2017) and
were able to reproduce their scores on the hypernymy detection task. For tuning the hyperparameters,
we utilize the HypeNet training set of Shwartz et al. (2016) (from the random split), following the
procedure indicated in Chang et al. (2017) for tuning DIVE and Gaussian embeddings.

S1.2 PPMI DETAILS

Formulation and Variants. Typically, the probabilities used in PMIare estimated from the co-
occurrence counts #(w, c) in the corpus and lead to

PPMI(w, c) = max

(
log

(
#(w, c)× |Z|
#(w)×#(c)

)
, 0

)
, (8)

where, #(w) =
∑
c #(w, c), #(c) =

∑
w #(w, c) and |Z| =

∑
w

∑
c #(w, c). Also, it is known

that PPMI is biased towards infrequent words and assigns them a higher value. A common solution is
to smoothenS2 the context probabilities by raising them to an exponent of α lying between 0 and 1.
Levy & Goldberg (2014b) have also suggested the use of the shifted PPMI (SPPMI) matrix where
the shiftS3 by log(s) acts like a prior on the probability of co-occurrence of target and context pairs.

S1https://github.com/stanfordnlp/GloVe
S2pα(c) := #(c)α∑

c′ #(c′)α .
S3Here, we denote the shift parameter by s instead of the k defined in (Levy et al., 2015) to avoid confusion

with the other usage of k.
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These variants of PPMI enable us to extract better semantic associations from the co-occurrence
matrix. Finally, we have

SPPMIα,s(w, c) :=max

(
log

(
#(w, c)×

∑
c′ #(c′)α

#(w)×#(c)α

)
− log(s), 0

)
.

Computational aspect. We utilize the sparse matrix support of ScipyS4 for efficiently carrying out
all the PPMI computations.

PPMI Column Normalizations. In certain cases, when the PPMI contributions towards the par-
titions (or clusters) have a large variance, it can be helpful to consider the fraction of Ck’s SPPMI
(Eq. (9), (10)) that has been used towards a word w, instead of aggregate values used in (13). Oth-
erwise the process of making the histogram unit sum might misrepresent the actual underlying
contribution. We call this PPMI column normalization (β). In other words, the intuition is that
the normalization will balance the effect of a possible non-uniform spread in total PPMI across the
clusters. We observe that setting β to 0.5 or 1 help in boosting performance on the STS tasks. The
basic form of column normalization is shown in (10).

(H̃
w

)k :=
(H̄w)k∑K
k=1 (H̄w)k

with (9)

(H̄w)k :=
SPPMIα,s(w, Ck)∑
w SPPMIα,s(w, Ck)

. (10)

Another possibility while considering the normalization to have an associated parameter β that can
interpolate between the above normalization and normalization with respect to cluster size.

(H̃
w

β )k :=
(H̄wβ )k∑K
k=1 (H̄wβ )k

, where

(H̄wβ )k :=
SPPMIα,s(w, Ck)∑
w SPPMIα,s(w, Ck)β

(11)

In particular, when β = 1, we recover the equation for histograms as in (10), and β = 0 would imply
normalization with respect to cluster sizes.

S1.3 OPTIMAL TRANSPORT

Implementation aspects. We make use of the Python Optimal Transport (POT)S5 for performing
the computation of Wasserstein distances and barycenters on CPU. For more efficient GPU imple-
mentation, we built custom implementation using PyTorch. We also implement a batched version
for barycenter computation, which to the best of our knowledge has not been done in the past. The
batched barycenter computation relies on a viewing computations in the form of block-diagonal
matrices. As an example, this batched mode can compute around 200 barycenters in 0.09 seconds,
where each barycenter is of 50 histograms (of size 100) and usually gives a speedup of about 10x.

Scalability. For further scalability, an alternative is to consider stochastic optimal transport tech-
niques (Genevay et al., 2016). Here, the idea would be to randomly sample a subset of contexts from
the distributional estimate while considering this transport.

Stability of Sinkhorn Iterations. For all our computations involving optimal transport, we typi-
cally use λ around 0.1 and make use of log or median normalization as common in POT to stabilize
the Sinkhorn iterations. Also, we observe that clipping the ground metric matrix (if it exceeds a
particular large threshold) also sometimes results in performance gains.

S4https://docs.scipy.org/doc/scipy/reference/sparse.html
S5http://pot.readthedocs.io/en/stable/
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Value of p. It has been shown in Agueh & Carlier (2011) that when the underlying space is
Euclidean and p = 2, there exists a unique minimizer to the Wasserstein barycenter problem.
But, since we are anyways solving the regularized Wasserstein barycenter (Cuturi & Doucet, 2014)
problem over here instead of the exact one, the particular value of p seems less of an issue. Empirically
in the sentence similarity experiments, we have observed p = 1 to perform better than p = 2 (by
about 2-3 points).

S1.4 EMPIRICAL RUNTIME

Starting from scratch, it takes less than 11 minutes to get the results on all STS tasks which contains
25,000 sentences. This includes about 3 minutes to cluster 200,000 words (1 GPU), 5 minutes to
convert raw co-occurrences into histograms of size 300 (1 CPU core) and 3 minutes for STS (1 GPU).

S1.5 SOFTWARE RELEASE

Core code and histograms. Our code to build the ppmi-matrix, clusters, histograms as well
computing Wasserstein distances and barycenters is publicly available on Github under https:
//github.com/context-mover. Precomputed histograms, clusters and point embeddings
used in our experiments can also be downloaded from https://drive.google.com/open?
id=13stRuUd--71hcOq92yWUF-0iY15DYKNf.

Standard evaluation suite for Hypernymy. To ease the evaluation pipeline, we have collected
the most common benchmark datasets and compiled the code for assessing a model’s performance
on hypernymy detection or directionality into a Python package, called HypEval, which is publicly
available at https://github.com/context-mover/HypEval. This also handles OOV
(out-of-vocabulary) pairs in a standardized manner and allows for efficient, batched evaluation on
GPU.

S2 CLUSTERING THE CONTEXTS

In this Section, we discuss computational aspects and how using clustering makes the problem
scalable. We give precise definition of the distributional estimate in Section S2.1, and show how the
number of clusters affects the performance in Section S2.3.

S2.1 COMPUTATIONAL CONSIDERATIONS.

The view of optimal transport between histograms of contexts introduced in Eq. (5) offers a pleas-
ing interpretation (see Figure 2). However, it might be computationally intractable in its current
formulation, since the number of possible contexts can be as large as the size of vocabulary (if the
contexts are just single words) or even exponential (if contexts are considered to be phrases, sentences
and otherwise). For instance, even with the use of SPPMI matrix, which also helps to sparsify the
co-occurrences, the cardinality of the support of histograms still varies from 103 to 5× 104 context
words, when considering a vocabulary of size around 2× 105.

This is problematic because the Sinkhorn algorithm for regularized optimal transport (Cuturi, 2013,
see Section 3) scales roughly quadratically in the histogram size, and the ground cost matrix can also
become prohibitive to store in memory. One possible fix is to instead consider a set of representative
contexts in this ground space, for example via clustering. We believe that with dense low-dimensional
embeddings and a meaningful metric between them, we may not require as many contexts as needed
before. For instance, this can be achieved by clustering the contexts with respect to metric DG . Apart
from the computational gain, the clustering will lead to transport between more abstract contexts.
This will although come at the loss of some interpretability.

Now, consider that we have obtained K representative contexts, each covering some part Ck of the
set of contexts C. The histogram for word w with respect to these contexts can then be written as:

P̃w
Ṽ

=

K∑
k=1

(H̃
w

)k δ(ṽk). (12)
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Here ṽk ∈ Ṽ is the point estimate of the kth representative context, and (H̃
w

)k denote the new
histogram bin values with respect to the part Ck,

(H̃
w

)k :=
SPPMIα,s(w, Ck)∑K
k=1 SPPMIα,s(w, Ck)

,with (13)

SPPMIα,s(w, Ck) :=
∑
c∈Ck

SPPMIα,s(w, c). (14)

In the following subsection, we show the effect of the number of clusters on the performance.

S2.2 IMPLEMENTATION.

For clustering, we make use of kmcuda’sS6 efficient implementation of K-Means algorithm on GPUs.

S2.3 EFFECT OF NUMBER OF CLUSTERS

Here, we analyze the impact of number of clusters on the performance of Context Mover’s Barycenters
(CoMB) for the sentence similarity experiments (cf. Section 6). In particular, we look at the three
best performing variants (A, B, C) on the validation set (STS 16) as well as averaged across them.

Figure S1: Effect of the number of clusters (K) on validation performance. A, B, C correspond to the
three best performing variants of CoMB obtained as per validation on STS16 and as presented in
the Table 1. In particular, A denotes the hyperparameter setting of [(α=0.55, β=1, s=5], B refers
to [α=0.55, β=0.5, s=5] and C denotes [α=0.15, β=0.5, s=1]. The ‘avg’ plot shows the average
trend across these three configurations.

We observe in Figure S1 that on average the performance significantly improves when the number of
clusters are increased until around K = 300, and beyond that mostly plateaus (± 0.5). But, as can be
seen for variants B and C the performance typically continues to rise until K = 500. It seems that
the amount of PPMI column normalization (β = 0.5 vs β = 1) might be at play here.

As going from K = 300 to K = 500 comes at the cost of increased computation time, and doesn’t
lead to a substantial gain in performance. We use either K = 300 or 500 clusters, depending on
validation results, for our results on sentence similarity tasks.

Such a trend seems to be in line with the ideal case where we wouldn’t need to do any clustering and
just take all possible contexts into account. Thus, it suggests that better ways (other than clustering)
to deal with this problem might further boost the performance.

S6https://github.com/src-d/kmcuda
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S3 SENTENCE REPRESENTATION

We provide detailed results of the test set performance of Context Mover’s Barycenters (CoMB)
and related baselines on the STS-12, 13, 14 and STS-15 tasks in Tables S1 and S2 and validation set
performance in Table S3.

STS12

Model MSRpar MSRvid SMTeuroparl WordNet SMTnews Average

BoW 17.5 -6.4 25.4 37.2 31.9 21.1
SIF 12.1 51.6 23.5 55.1 19.9 32.4
SIF + PC removed 21.9 58.9 30.9 55.9 37.2 41.0
CoMB (GloVe) 31.3 61.5 47.5 54.5 46.0 48.2
CoMB (GloVe) + Mix 35.8 75.0 44.2 59.2 38.5 50.5
CoMB (GloVe) + Mix + PC removed 35.5 78.2 35.5 60.9 36.5 49.3

Sent2vec 37.7 78.7 49.3 70.2 42.3 55.6
CoMB (sent2vec) + Mix 40.7 78.9 49.9 68.0 43.0 56.1
CoMB (sent2vec) + Mix + PC removed 44.3 82.3 47.1 68.8 47.0 57.9

STS13

Model FNWN Headlines WordNet Average

BoW 14.2 27.1 -0.8 13.5
SIF 8.5 54.1 6.3 23.0
SIF + PC removed 13.7 61.0 75.5 50.1
CoMB (GloVe) 11.8 54.6 60.1 42.2
CoMB (GloVe) + Mix 22.3 58.5 72.3 51.0
CoMB (GloVe) + Mix + PC removed 28.9 62.8 77.7 56.5

Sent2vec 42.4 66.2 62.7 57.1
CoMB (sent2vec) + Mix 42.5 67.6 69.1 59.7
CoMB (sent2vec) + Mix + PC removed 43.3 69.4 80.0 64.2

STS14

Model Forum News Headlines Images WordNet Twitter Average

BoW 18.2 37.6 24.0 14.9 17.1 38.0 25.0
SIF 21.1 29.4 50.7 34.3 22.4 46.5 34.1
SIF + PC removed 27.9 43.1 57.0 52.9 76.8 53.5 51.9
CoMB (GloVe) 40.4 64.9 50.5 51.5 64.4 57.8 54.9
CoMB (GloVe) + Mix 40.9 62.7 53.9 59.7 73.7 58.8 58.3
CoMB (GloVe) + Mix + PC removed 40.0 60.8 58.6 66.6 77.9 60.8 60.8

Sent2vec 49.1 67.2 63.9 82.5 72.4 75.5 68.4
CoMB (sent2vec) + Mix 52.1 69.5 63.2 78.3 75.1 74.5 68.8
CoMB (sent2vec) + Mix + PC removed 52.5 69.5 64.4 78.4 81.6 75.3 70.3

Table S1: Detailed test set performance of Context Mover’s Barycenters (CoMB) and related
baselines on the STS12, STS13, and STS14 tasks using Toronto Book Corpus. The numbers are
average Pearson correlation x100 (with respect to groundtruth scores). ‘Mix’ denotes the mixed
distributional estimate. ‘PC removed’ refers to removing contribution along the principal component
of point estimates as done in SIF. The part in brackets after CoMB refers to the underlying ground
metric.

The first 3 baselines (Bow, and SIF twice) as well as the first three CoMB (first part of the Tables)
are using Glove embeddings, while the last three methods (sent2vec and CoMB twice) use Sent2vec
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STS15

Model Forum Students Belief Headlines Images Average

BoW 18.6 43.7 28.5 37.1 25.8 30.7
SIF 23.9 33.8 30.2 57.6 31.1 35.3
SIF + PC removed 35.3 63.8 51.0 62.3 51.6 52.8
CoMB (GloVe) 36.2 64.5 45.2 61.1 61.8 53.8
CoMB (GloVe) + Mix 51.0 66.2 54.4 62.5 68.2 60.5
CoMB (GloVe) + Mix + PC removed 55.3 61.3 63.3 66.1 74.1 64.0

Sent2vec 67.5 73.9 77.1 69.4 82.6 74.1
CoMB (sent2vec) + Mix 67.9 73.8 75.6 69.8 81.5 73.7
CoMB (sent2vec) + Mix + PC removed 68.4 69.6 74.6 71.3 81.9 73.1

Table S2: (continued from Table S1) Detailed test set performance of Context Mover’s Barycenters
(CoMB) and related baselines on the STS15 using Toronto Book Corpus. The numbers are average
Pearson correlation x 100 (with respect to groundtruth scores). ‘Mix’ denotes the mixed distributional
estimate. ‘PC removed’ refers to removing contribution along the principal component of point
estimates as done in SIF. The part in brackets after CoMB refers to the underlying ground metric.

STS16

Model Answer Headlines Plagiarism Postediting Question Average

BoW 19.9 32.6 16.5 35.7 -8.9 19.2
SIF 35.1 55.1 14.6 31.7 -3.5 26.6
SIF + PC removed 42.4 60.0 58.5 71.7 55.4 57.6
CoMB (GloVe) 38.7 55.4 50.2 67.6 50.1 52.4
CoMB (GloVe) + Mix 50.5 57.1 64.2 69.6 59.7 60.2
CoMB (GloVe) + Mix + PC removed 47.9 60.6 70.0 76.6 59.9 63.0

Sent2vec 62.5 68.3 78.6 82.5 53.5 69.1
CoMB (sent2vec) + Mix 62.6 69.0 76.4 83.0 59.5 70.1
CoMB (sent2vec) + Mix + PC removed 63.3 69.7 74.8 83.9 61.1 70.6

Table S3: Detailed validation set performance of Context Mover’s Barycenters (CoMB) and related
baselines on the STS16 using Toronto Book Corpus. The numbers are average Pearson correlation
x100 (with respect to groundtruth scores). ‘Mix’ denotes the mixed distributional estimate. ‘PC
removed’ refers to removing contribution along the principal component of point estimates as done in
SIF. The part in brackets after CoMB refers to the underlying ground metric. Note that, STS16 was
used as the validation set to obtain the best hyperparameters for all the methods in these experiments.
As a result, high performance on STS16 may not be indicative of the overall performance.

embeddings (second part of the Tables). The numbers are average Pearson correlation (with respect
to ground-truth scores).

We observe empirically that the PPMI smoothing parameter α, which balances the bias of PPMI
towards rare words, plays an important role. While its ideal value would vary on each task, we found
the settings mentioned in the Table S4 to work well uniformly across the above spectrum of tasks.
We also provide in Table S4 a comparison of the hyper-parameters used in each of the methods in
Tables S1, S2 and S3
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a Clusters PC removed Mixing

SIF a = 10−4

SIF + PC removed a = 10−4 3 0.4

α β s

CoMB (GloVe) 0.55 1 5 300
CoMB (GloVe) + Mix 0.95 1 1 500 0.4

CoMB (GloVe) + Mix + PC removed 0.95 1 1 500 3 0.4

CoMB (sent2vec) + Mix 0.15 1 1 300 0.4

CoMB (sent2vec) + Mix + PC removed 0.15 1 1 300 3 0.4

Table S4: Detailed parameters for the methods presented in Tables S1, S1 and S3. The parameters for
CoMB α, β, s denote the PPMI smoothing, column normalization exponent (Eq. (11)), and k-shift.

S4 QUALITATIVE ANALYSIS OF SENTENCE SIMILARITY

In this section, we aim to qualitatively analyse the particular examples where our method, Context
Mover’s Barycenters (CoMB), performs better or worse than the Smooth Inverse Frequency (SIF)
approach from Arora et al. (2017).

S4.1 EVALUATION PROCEDURE

Comparing by rank. It doesn’t make much sense to compare the raw distance values between two
sentences as given by Context Mover’s Distance (CMD) for CoMB and cosine distance for SIF. This
is because the spread of distance values across sentence pairs can be quite different. Note that the
quantitative evaluation of these tasks is also carried out by Pearson/Spearman rank correlation of the
predicted distances/similarities with the ground-truth scores.

Thus, in accordance with this reasoning, we compare the similarity score of a sentence pair relative
to its rank based on ground-truth score (amongst the sentence pairs for that dataset). So, the better
method should rank sentence pairs closer to the ranking obtained via ground-truth scores.

Ground-Truth Score Implied meaning

5 The two sentences are completely equivalent, as they mean the same thing.
4 The two sentences are mostly equivalent, but some unimportant details differ.
3 The two sentences are roughly equivalent, but some important information differs/missing.
2 The two sentences are not equivalent, but share some details.
1 The two sentences are not equivalent, but are on the same topic.
0 The two sentences are completely dissimilar.

Table S5: STS ground scores and their implied meanings, as taken from Agirre et al. (2015)

Ground-truth details. The ground-truth scores (can be fractional) and range from 0 to 5, and the
meaning implied by the integral score values can be seen in the Table S5. In the case where different
examples have the same ground-truth score, the ground-truth rank is then based on lexicographical
ordering of sentences for our qualitative evaluation procedure. (This for instance means that sentence
pairs ranging from 62 to 74 would correspond to the same ground-truth score of 4.6). The ranking is
done in the descending order of sentence similarity, i.e., most similar to least similar.

Example selection criteria. For all the examples, we compare the best variants of CoMB and SIF
on those datasets. We particularly choose those examples where there is the maximum difference in
ranks according to CoMB and SIF, as they would be more indicative of where a method succeeds
or fails. Nevertheless, such a qualitative evaluation is subjective and is meant to give a better
understanding of things happening under the hood.
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S4.2 EXPERIMENTS AND OBSERVATIONS

We look at examples from three datasets, namely: Images from STS15, News from STS14 and
WordNet from STS14 to get a better idea of an overall behavior. In terms of aggregate quantitative
performance, on Images and News datasets, CoMB is better than SIF, while the opposite is true for
WordNet. These examples across the three datasets may not probably be exhaustive and are up to
subjective interpretation, but hopefully will lend some indication as to where and why each method
works.

S4.2.1 TASK: STS14, DATASET: NEWS

We look in detail at the examples in News dataset from STS 2014 (Agirre et al., 2014). The results of
qualitative analysis on Images and WordNet datasets can be found in Section S4.5. For reference,
CoMB results in a better performance overall with a Pearson correlation (x100) of 64.9 versus 43.0
for SIF, as presented in Table S1. The main observations are:

Observation 1. Examples 1, 2, 4, 5 are sentence pairs which are equivalent in meaning (cf.
Table S5), but typically have additional details in the predicates of the sentences. Here, CoMB is
better than SIF at ranking the pairs closer to the ground-truth ranking. This probably suggests the
averaging of word embeddings, which is the 1st step in SIF, is not as resilient to the presence of such
details than the Wasserstein barycenter of distributional estimates in CoMB. We speculate that when
having distributional estimates (where multiple senses or contexts are considered), adding details can
help towards refining the particular meaning implied.

Observation 2. Let’s consider the examples 3 and 6 where SIF is better than CoMB. These
are sentence pairs which are equivalent or roughly equivalent in meanings, but with a few words
substituted (typically subjects) like “judicial order” instead of “court” in example 3. Here it seems
that the substitution is adverse for CoMB while considering varied senses through the distributional
estimate, in comparison to looking at the “point” meaning given by SIF.

Observation 3. In 7, 8, and 10, each sentence pair is about a common topic, but the meaning of
individual sentences is quite different. For instance, example 8: “south korea launches new bullet
train reaching 300 kph” & “south korea has had a bullet train system since the 1980s”. Or like in
example 10: “china is north korea ’ s closest ally” & “north korea is a reclusive state”. Note that
typically in these examples, the subject is same in a sentence pair, and the difference is mainly in the
predicate. Here, CoMB identifies the difference and ranks them closer to the ground-truth. Whereas,
SIF fails to understand this and ranks them as more similar (and far away) than the ground-truth.

Observation 4. The examples 9, 11, and 12 are related sentences and differ mainly in details such
as the name of the country, person, department, i.e. proper nouns. In particular, consider example
9: “south korea and israel oppose proliferation of weapons of mass destruction and an arms race” &

“china will resolutely oppose the proliferation of mass destructive weapons”. The main difference in
these examples stems from differences in the subject rather than the predicate. CoMB considers these
sentence pairs to be more similar than suggested by ground-truth. Hence, in such scenarios where the
subject (like the particular proper nouns) makes the most difference, SIF seems to be better.

S4.3 CONCLUSIONS FROM QUALITATIVE EXAMPLES

Summarizing the observations from the above qualitative analysis on News datasetS7, we conclude
the following about the nature of success or failures of each method.

• When the subject of the sentence is similar and main difference stems from the predicate,
CoMB is the winner. This can be seen for both the case when predicates are equivalent but
described distinctly (observation 1) and when predicates are not equivalent (observation 3).
• When the predicates are similar and the distinguishing factor is in the subject (or object),

SIF takes the lead. This seems to be true for both scenarios when the subject used increases
or decreases the similarity as measured by CoMB, (observations 2 and 4).

S7Similar findings can also be seen for the two other datasets in Section S4.5.
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Sentence 1 Sentence 2
Ground-Truth

Score

Ground-Truth

Ranking

CoMB

Ranking

SIF

Ranking

1 the united states government and other
nato members have refused to ratify the
amended treaty until officials in moscow
withdraw troops from the former soviet
republics of moldova and georgia .

the united states and other nato members
have refused ratify the amended treaty
until russia completely withdraws from
moldova and georgia .

4.6 30 67 152

2 jewish-american group the anti-
defamation league ( adl ) published
full-page advertisements in swiss and
international papers in april 2008 ac-
cusing switzerland of funding terrorism
through the deal .

the anti-defamation league took out full-
page advertisments in swiss and interna-
tional newspapers earlier in april 2008
accusing switzerland of funding terror-
ism through the deal .

4.4 36 35 128

3 the judicial order accused raghad of fund-
ing terrorism .

the court accused raghad saddam hussein
of funding terrorism .

4.2 59 258 124

4 estonian officials stated that some of the
cyber attacks that caused estonian gov-
ernment websites to shut down temporar-
ily came from computers in the admin-
istration of russia including in the office
of president vladimir putin .

officials in estonia including prime min-
ister andrus ansip have claimed that
some of the cyber attacks came from
russian government computers including
computers in the office of russian presi-
dent vladimir putin .

3.8 86 84 206

5 the african union has proposed a peace-
keeping mission to help somalia ’ s strug-
gling transitional government stabilize
somalia .

the african union has proposed a peace-
keeping mission to aid the struggling
transitional government in stabilizing so-
malia , particularly after the withdrawal
of ethiopian forces

3.6 119 104 262

6 some asean officials stated such standard-
ization would be difficult due to different
countries ’ political systems .

some officials stated the task would be
difficult for asean members because of
varied legal and political systems .

3.6 117 244 108

7 nicaragua commemorated the 25th an-
niversary of the sandinista revolution .

nicaragua has not reconciled how to ap-
proach the anniversary of the sandinista
revolution .

2.4 213 250 48

8 south korea launches new bullet train
reaching 300 kph .

south korea has had a bullet train system
since the 1980s .

2 232 267 130

9 south korea and israel oppose prolifera-
tion of weapons of mass destruction and
an arms race .

china will resolutely oppose the prolifer-
ation of mass destructive weapons .

1.4 262 164 235

10 china is north korea ’ s closest ally . north korea is a reclusive state . 1.2 265 279 196

11 the chinese government gave active co-
operation and assistance to the organi-
zation for the prohibition of chemical
weapons inspections .

the ecuadorian foreign ministry said in
a statement that delegates from the orga-
nization for the prohibition of chemical
weapons ( opaq ) will also take part in
the meeting .

1 277 158 231

12 do quy doan is a spokesman for the viet-
namese ministry of culture and informa-
tion .

grenell is spokesman for the u.s. mission
to the united nations .

0.8 282 213 292

Table S6: Examples of some indicative sentence pairs, from News dataset in STS14, with ground-truth
scores and ranking as obtained via (best variants of) CoMB and SIF. The total number of sentences is
300 and the ranking is done in descending order of similarity. The method which ranks an example
closer to the ground-truth rank is better and is highlighted in blue. CoMB ranking is the one produced
when representing sentences via CoMB and then using CMD to compare them. SIF ranking is when
sentences are represented via SIF and then employing cosine similarity.
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• The above two points in a way also signify where having distributional estimates can be
better or worse than point estimates.
• CoMB and SIF appear to be complementary in the kind of errors they make. Hence,

combining the two is an exciting future avenue.

Lastly, it also seems worthwhile to explore having different ground metrics for CoMB and CMD
(which are currently shared). The ground metric plays a crucial role in performance and the nature of
these observations. Employing a ground metric(s) that better handles the above subtleties would be a
useful research direction.

S4.4 EFFECT OF SENTENCE LENGTH

In this section, we look at the length of sentences across all the datasets in each of the STS tasks.
Average sentence length is one measure of the complexity of a particular dataset. But looking at just
sentence lengths may not give a complete picture, especially for the textual similarity tasks where
there can be many words common between the sentence pairs. The Table S7 shows the various
statistics of each dataset, with respect to the sentence lengths along with the better method on each of
them (out of CoMB and SIF).

Task-Dataset # sentence pairs Avg. sentence length
Avg. word overlap
(per sentence pair)

Avg. effective sentence length
(excluding common words)

Better method

STS12-MSRpar 750 21.16 14.17 6.99 CoMB

STS12-MSRvid 750 7.65 4.70 2.95 CoMB

STS12-SMTeuroparl 459 12.33 8.11 4.22 CoMB

STS12-WordNet 750 8.82 5.03 3.79 SIF

STS12-SMTnews 399 13.62 8.66 4.96 SIF

STS13-FNWN 189 22.94 2.53 20.41 CoMB

STS13-Headlines 750 7.80 3.76 4.05 SIF

STS13-WordNet 561 8.17 4.64 3.53 SIF

STS14-Forum 450 10.48 7.03 3.45 CoMB

STS14-News 300 17.42 11.59 5.83 CoMB

STS14-Headlines 750 7.91 3.89 4.01 SIF

STS14-Images 750 10.18 6.20 3.98 SIF

STS14-WordNet 750 8.87 4.83 4.05 SIF

STS14-Twitter 750 12.25 4.85 7.40 (equal)

STS15-Forum 375 17.77 4.29 13.49 CoMB

STS15-Students 750 10.70 5.33 5.37 CoMB

STS15-Belief 375 16.53 6.27 10.26 SIF

STS15-Headlines 750 8.00 3.71 4.29 SIF

STS15-Images 750 10.66 6.07 4.59 CoMB

Table S7: Analysis of sentence lengths in each of the datasets from STS12, STS13, STS14, and STS15.
Along with the average sentence lengths, we also measure average word overlap in the sentence
pair and thus the average effective sentence length (i.e., after excluding the overlapping/common
words in the sentence pair). For reference, we also show which out of CoMB or SIF performs better.
On STS14-Twitter, the difference in performance isn’t significant and we thus write ‘equal’ in the
corresponding cell.

Observations.

• We notice that on datasets with longer effective sentence lengths, CoMB performs better
than SIF on average. There might be other factors at play here, but if one had to pick on the
axis of effective sentence length, CoMB leads over SIFS8.

S8Effective sentence length averaged across datasets where CoMB is better is 7.48. Contrast this to an average
effective sentence length of 5.03 across datasets where SIF is better.
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• The above statement also aligns well with the observation 1 from the qualitative analysis
(cf. Section S4.2.1), that having more details can help in refining the particular meaning or
sense implied by CoMB. (Effective sentence length can serve as a good proxy for indicating
the amount of details.)
• It also seems to explain why both methods don’t perform well (see Table S1) on STS13-

FNWN, which has on average the maximum effective sentence length (of 20.4).
• To an extent, it also points towards the effect of corpora. For instance, in a corpus such as

WordNet, which has a low average sentence length and with examples typically concerned
about word definitions (see Table S9), SIF seems to be better of the methods. On the other
hand, CoMB seems to be better for News (Table S6), Image captions (Table S8) or Forum.

S4.5 ADDITIONAL QUALITATIVE ANALYSIS

S4.5.1 TASK: STS15, DATASET: IMAGES

We consider the sentence pairs from Images dataset in STS15 task (Agirre et al., 2015), as presented
in Table S8. As a reminder, CoMB outperforms SIF on this dataset with a Pearson correlation (x100)
of 61.8 versus 51.7, as mentioned in Table S2. The main observations are:

Sentence 1 Sentence 2
Ground-Truth

Score

Ground-Truth

Ranking

CoMB

Ranking

SIF

Ranking

1 the man and two young boys jump on a
trampoline .

a man and two boys are bouncing on a
trampoline .

4.8 68 74 640

2 a boy waves around a sparkler . a young boy is twisting a sparkler around
in the air .

4.4 126 195 624

3 a dog jumps in midair to catch a frisbee . the brown dog jumps for a pink frisbee . 4 184 161 481

4 a child is walking from one picnic table
to another .

the boy hops from one picnic table to the
other in the park .

3.2 287 401 737

5 three boys are running on the beach play-
ing a game .

two young boys and one young man run
on a beach with water behind them .

3.2 306 260 421

6 a boy swinging on a swing . the girl is on a swing . 2.4 380 410 622

7 a man is swinging on a rope above the
water .

a man in warm clothes swinging on mon-
key bars at night .

1.6 492 259 606

8 a skier wearing blue snow pants is flying
through the air near a jump .

a skier stands on his hands in the snow
in front of a movie camera .

1.4 514 264 605

9 two black and white dogs are playing
together outside .

two children and a black dog are playing
out in the snow .

1 570 185 372

10 three dogs running in the dirt . the yellow dog is running on the dirt road
.

1 524 303 531

11 a little girl and a little boy hold hands on
a shiny slide .

a little girl in a paisley dress runs across
a sandy playground .

0.4 629 683 354

12 a little girl walks on a boardwalk with
blue domes in the background .

a man going over a jump on his bike with
a river in the background .

0 696 310 591

Table S8: Examples of some indicative sentence pairs, from Images dataset in STS15, with ground-
truth scores and ranking as obtained via (best variants of) CoMB and SIF. The total number of
sentences is 750 and the ranking is done in descending order of similarity. The method which ranks
an example closer to the ground-truth rank is better and is highlighted in blue. CoMB ranking is the
one produced when representing sentences via CoMB and then using CMD to compare them. SIF
ranking is when sentences are represented via SIF and then employing cosine similarity.

Observation A. Example 1 to 5 indicate pairs of sentences which are essentially equivalent in
meaning, but with varying degrees of equivalence. Here, we can see that CoMB with CMD is able
to rank the similarity between these pairs quite well in comparison to SIF, even when their way of
describing is different. For instance, example 2 : “a boy waves around a sparkler” & “a young boy
is twisting a sparkler around in the air”. This points towards the benefit of having multiple senses or
contexts encoded through the distributional estimate in CoMB.
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Observation B. Next, in the examples 7 to 10, which consist of sentence pairs that are not
equivalent but have commonalities (about the topic). Here, SIF ranks the sentences closer to the
ground-truth ranking while CoMB interprets these pairs as being more common in meaning than
given by ground-truth. This could be the consequence of comparing the various senses or contexts
implied by the sentence pairs via CMD. Take for instance, example 10, “three dogs running in the
dirt” & “the yellow dog is running on the dirt road”. Since these sentences are about the similar
topic (and the major difference is in their subject), this can result in CMD considering them more
similar than cosine distance.

Observation C. For sentences which are completely dissimilar as per ground-truth, let’s look at
example 11 and 12. Consider 11, which is “a little girl and a little boy hold hands on a shiny slide”
& “a little girl in a paisley dress runs across a sandy playground”, the sentences meaning totally
different things and CoMB seems to be better at ranking than SIF. But, consider example 12: “a
little girl walks on a boardwalk with blue domes in the background” & “a man going over a jump on
his bike with a river in the background”. One common themeS9 can be thought as “a person moving
with something blue in the background”, which can result in CoMB ranking the sentence as more
similar. SIF also ranks it higher (at 591) than ground-truth (696), but is more closer than CoMB
which ranks it at 310.

S4.5.2 TASK: STS14, DATASET: WORDNET

Sentence 1 Sentence 2
Ground-Truth

Score

Ground-Truth

Ranking

CoMB

Ranking

SIF

Ranking

1 combine so as to form a more complex
product .

combine so as to form a whole ; mix . 4.6 127 142 335

2 ( cause to ) sully the good name and rep-
utation of .

charge falsely or with malicious intent ;
attack the good name and reputation of
someone .

4.4 176 235 534

3 a person or thing in the role of being a
replacement for something else

a person or thing that takes or can take
the place of another .

4.2 248 270 535

4 create something in the mind . form a mental image of something that
is not present or that is not the case .

3.6 340 443 683

5 the act of surrendering an asset the act of losing or surrendering some-
thing as a penalty for a mistake or fault
or failure to perform etc .

3 405 445 639

6 ( attempt to ) convince to enroll , join or
participate

register formally as a participant or mem-
ber .

2.8 406 423 507

7 return to a prior state . return to an original state . 4.4 219 384 231

8 give away something that is not needed . give up what is not strictly needed . 4.2 261 709 383

9 a person who is a member of the senate . a person who is a member of a partner-
ship .

0.4 553 260 429

10 the context or setting in which something
takes place .

the act of starting something . 0 717 485 707

11 a spatial terminus or farthest boundary
of something .

a relation that provides the foundation
for something .

0 620 500 623

12 the act of beginning something new . the act of rejecting something . 0 670 677 539

Table S9: Examples of some indicative sentence pairs, from WordNet dataset in STS14, with ground-
truth scores and ranking as obtained via (best variants of) CoMB and SIF. The total number of
sentences is 750 and the ranking is done in descending order of similarity. The method which ranks
an example closer to the ground-truth rank is better and is highlighted in blue. CoMB ranking is the
one produced when representing sentences via CoMB and then using CMD to compare them. SIF
ranking is when sentences are represented via SIF and then employing cosine similarity.

Lastly, we discuss the examples and observations derived from the qualitative analysis on WordNet
dataset from STS14 (Agirre et al., 2014). This dataset is comprised of sentences which are the
definitions of words/phrases, and sentence length is typically smaller than the datasets discussed

S9Of course, this is upto subjective interpretation.
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before. For reference, SIF (76.8) does better than CoMB (64.4) in terms of average Pearson correlation
(x100), as mentioned in Table S1.

Observation D. Consider examples 1 to 6 as shown in Table S9, which fall in the category of
equivalent sentences but in varying degrees. The sentence pairs essentially indicate different ways of
characterizing equivalent things. Here, CoMB is able to rank the similarity between sentences in a
better manner than SIF. Specifically, see example 2: “( cause to ) sully the good name and reputation
of” & “charge falsely or with malicious intent ; attack the good name and reputation of someone”. It
seems that SIF is not able to properly handle the additional definition present in sentence 2 and ranks
this pair much lower in similarity at 534 versus 235 for CoMB. This is also in line with observation 1
about added details in the Section S4.2.1.

Observation E. In the examples 7 to 9, where CoMB doesn’t do well in comparison to SIF, mainly
have a slight difference in the object of the sentence. For instance, in example 9: “a person who is a
member of the senate” & “a person who is a member of a partnership”. So based on the kind of
substituted word, looking at its various contexts via the distributional estimate can make it more or
less similar than desired. In such cases, using the “point” meanings of the objects seems to fare better.
This also aligns with the observations 2 and 4 in the Section S4.2.1.

S5 NEAREST NEIGHBOR ANALYSIS

Here, we would like to qualitatively probe the kind of results obtained when computing Wasserstein
barycenter of the distributional estimates, in particular, when using CoMB to represent sentences. To
this end, we consider a few simple sentences and find the closest word in the vocabulary for CoMB
(with respect to CMD) and contrast it to SIF with cosine distance.

Query CoMB (with CMD) SIF (with cosine, no PC removal)

[’i’, ’love’, ’her’]
love, hope, always, actually, because,
doubt, imagine, but, never, simply

love, loved, breep-breep, want, clash-clash-clang,
thysel, know, think, nope, life

[’my’, ’favorite’, ’sport’]
sport, costume, circus, costumes, outfits,
super, sports, tennis, brand, fabulous

favorite, favourite, sport, wiccan-type, pastime,
pastimes, sports, best, hangout, spectator

[’best’, ’day’, ’of’, ’my’, ’life’]
best, for, also, only, or,
anymore, all, is, having, especially

life, day, best, c.5, writer/mummy, days,
margin-bottom, time, margin-left,night

[’he’, ’lives, ’in’, ’europe’, ’for’]
america, europe, decades, asia, millenium,
preserve, masters, majority, elsewhere, commerce

lives, europe, life, america, lived,
world, england, france, people, c.5

[’he’, ’may’, ’not’, ’live’]
unless, perhaps, must, may, anymore,
will, likely, youll, would, certainly

may, live, should, will, might,
must, margin-left, henreeeee, 0618082132, think

[’can’, ’you’, ’help’, me’, ’shopping’]
anytime, yesterday, skip, overnight, wed,
afterward, choosing, figuring, deciding, shopping

help, can, going, want, go,
do, think, need, able, take

[’he’, ’likes’, ’to’, ’sleep’, ’a’, ’lot’]
whenever, forgetting, afterward, pretending, rowan,
eden, casper, nash, annabelle, savannah,

lot, sleep, much, besides, better,
likes, really, think, probably, talk

Table S10: Top 10 closest neighbors for CoMB and SIF (no PC removed) found across the vocabulary,
and sorted in ascending order of distance from the query sentence. Words in italics are those which
in our opinion would fit well when added to one of the places in the query sentence. Note that, both
CoMB (under current formulation) and SIF don’t take the word order into account.

Observations. We find that closest neighbors (see Table S10) for CoMB consist of relatively more
diverse set of words which fit well in the context of given sentence. For example, take the sentence “i
love her”, where CoMB captures a wide range of contexts, for example, “i actually love her”, “i love
her because”, “i doubt her love” and more. Also for an ambiguous sentence “he lives in europe for”,
the obtained closest neighbors for CoMB include: ‘decades’, ‘masters’, ‘majority’, ‘commerce’ , etc.,
while with SIF the closest neighbors are mostly words similar to one of the query words. Further, if
you look at the last three sentences in the Table S10, the first closest neighbor for CoMB even acts as
a good next word for the given query. This suggests that CoMB might perform well on the task of
sentence completion, but this additional evaluation is beyond the scope of this paper.
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S6 HYPERNYMY DETECTION

In this Section, we provide detailed results for the hypernymy detection in Section S6.1 and mention
the corresponding hyperparamters in Section S6.2. We also mention the effect of PPMI parameters
on Hypernymy results in Section S6.3.

S6.1 DETAILED RESULTS

Dataset

Method BLESS EVALution LenciBenotto Weeds BIBLESS Baroni

Henderson et al. (DHend.) 6.4 31.6 44.8 60.8 70.5 78.3

CMD (K=200) + DHend. 5.8 38.1 50.1 63.9 74.0 67.5
CMD (K=250) + DHend. 5.8 37.1 49.9 63.8 74.9 67.3

Dataset

Method Kotlerman Levy HypeNet-Test Turney Avg.Gain
Henderson et al. (DHend.) 34.0 11.7 28.8 56.6 -

CMD (K=200) + DHend. 34.7 12.2 53.4 56.0 +3.2
CMD (K=250) + DHend. 34.4 12.9 53.7 56.3 + 3.3

Table S11: Comparison of the entailment vectors alone (Hend.) and when used together with our
Context Mover’s Distance, CMD(K) (where K is the number of clusters), in the form of ground cost
DHend.. We also indicate the average gain in performance across these 10 datasets by using CMD
along with the entailment vectors. All scores are AP at all (%).

S6.2 HYPERPARAMETERS

The above listed variants of CMD are the ones with best validation performance on HypeNet-Train
(Shwartz et al., 2016). The other hyperparameters (common) for both of them are as follows:

• PPMI smoothing, α = 0.5.
• PPMI column normalization exponent, β=0.5.
• PPMI k-shift, s=1.
• Regularization constant for Wasserstein distance, λ=0.1

• Number of Sinkhorn iterations = 500.
• Log normalization of Ground Metric.

Out of Vocabulary Details. The following shows the out of vocabulary information for entailment
experiments.

S6.3 EFFECT OF PPMI PARAMETERS FOR HYPERNYMY DETECTION

This table was generated during an earlier version of the paper, when we were not considering the
validation on HypeNet-Train. Hence, the above table doesn’t contain numbers on HypeNet-Test, but
an indication of performance on it can be seen in Section S11. In any case, this table suggests that
our method works well for several PPMI hyper-parameter configurations.
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Dataset Number of pairs (N) Out of vocabulary pairs (OOV)

BLESS 26554 1504
EVALution 13675 92
LenciBenotto 5010 1172
Weeds 2928 354
BIBLESS 1668 33
Baroni 2770 37
Kotlerman 2940 172
Levy 12602 4926
HypeNet-Test 17670 11334
Turney 2188 173

Table S12: Dataset sizes. N is the number of word pairs in the dataset, and OOV denotes how many
word pairs are not processed.

Dataset

Method BLESS EVALution LenciBenotto Weeds BIBLESS Baroni

Henderson et al. (DHend.) 6.4 31.6 44.8 60.8 70.5 78.3

CMD (α=0.15, s=1) + DHend. 7.3 37.7 49.0 63.6 74.8 64.4
CMD (α=0.15, s=5) + DHend. 6.9 39.1 49.4 64.3 74.0 65.2
CMD (α=0.15, s=15) + DHend. 7.0 39.8 48.5 64.7 75.0 65.6
CMD (α=0.5, s=1) + DHend. 6.6 39.2 48.6 62.9 76.1 64.6
CMD (α=0.5, s=5) + DHend. 5.9 40.4 49.9 65.7 73.9 67.2
CMD (α=0.5, s=15) + DHend. 5.5 40.5 49.5 66.2 72.8 67.4

Dataset

Method Kotlerman Levy Turney Avg.Gain Avg. Gain (w/o Baroni)
Henderson et al. (DHend.) 34.0 11.7 56.6 - -

CMD (α=0.15, s=1) + DHend. 33.9 10.8 57.2 +0.5 +2.2
CMD (α=0.15, s=5) + DHend. 34.2 11.6 57.0 +0.8 +2.5
CMD (α=0.15, s=15) + DHend. 34.9 12.3 57.3 +1.2 +2.9
CMD (α=0.5, s=1) + DHend. 34.7 10.2 56.8 +0.6 +2.4
CMD (α=0.5, s=5) + DHend. 34.6 11.3 56.5 +1.2 +2.7
CMD (α=0.5, s=15) + DHend. 35.6 12.6 56.1 +1.3 +2.8

Table S13: Comparison of the entailment vectors alone (Hend.) and when used together with our
Context Mover’s Distance, CMD(α, s) (where α and s are the PPMI smoothing and shift parameters),
in the form of ground cost DHend.. All of the CMD variants use K = 100 clusters. We observe that
using our method with the entailment vectors performs better on 8 out of 9 datasets in comparison
to just using these vectors alone. Avg. gain refers to the average gain in performance relative to
the entailment vectors. Avg. gain w/o Baroni refers to the average performance gain excluding the
Baroni dataset. The hyperparameter α refers to the smoothing exponent and s to the shift in the PPMI
computation. All scores are AP at all (%).
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S7 QUALITATIVE ANALYSIS OF HYPERNYMY DETECTION

Here, our objective is to qualitatively analyse the particular examples where our method of using
Context Mover’s Distance (CMD) along with embeddings from Henderson (2017) performs better or
worse than just using these entailment embeddings alone.

S7.1 EVALUATION PROCEDURE

Comparing by rank. Again as in the qualitative analysis with sentence similarity, it doesn’t make
much sense to compare the raw distance/similarity values between two words as their spread across
word pairs can be quite different. We thus compare the ranks assigned to each word pair by both the
methods.

Ground-truth details. In contrast to graded ground-truth scores in the previous analysis, here we
just have a binary ground truth: ‘True’ if the hyponym-hypernym relation exists and ‘False’ when it
doesn’t. We consider the BIBLESS dataset (Kiela et al., 2015) for this analysis, which has a total of
1668 examples. Out of these, 33 word pairs are not in the vocabulary (see Table S12), so we ignore
them for this analysis. Amongst the 1635 examples left, 814 are ‘True’ and 821 are ‘False’. A perfect
method should rank the examples labeled as ‘True’ from 1 to 814 and the ‘False’ examples from 815
to 1635. Of course, achieving this is quite hard, but the better of the methods should rank as many
examples in the desired ranges.

Example selection criteria. We look at the examples where the difference in ranks as per the two
methods is the largest. Also, for a few words, we also look at how each method ranks when present
as a hypernym and a hyponym. If the difference in ranks is defined as, CMD rank - Henderson Rank,
we present the top pairs where this difference is most positive and most negative.

S7.2 RESULTS

For reference on the BIBLESS dataset, CMD performs better than Henderson embeddings quantita-
tively (cf. Table 2). Let’s take a look at some word pairs to get a better understanding.

S7.2.1 MAXIMUM POSITIVE DIFFERENCE IN RANKS

These are essentially examples where CMD considers the entailment relation as ‘False’ while the
Henderson embeddings predict it as ‘True’, and both are most certain about their decisions. Table S14
shows these pairs, along with ranks assigned by the two methods and the ground-truth label for
reference.

Some quick observations: many of the word pairs which the Henderson method gets wrong are
co-hyponym pairs, such as: (‘banjo’, ‘flute’), (‘guitar’, ‘trumpet’), (‘turnip, ‘radish’). Additionally,
(‘bass’, ‘cello’ ), (‘creature’, ‘gorilla’), etc., are examples where the method has to assess not just if
the relation exists, but also take into account the directionality between the pair, which the Henderson
method seems unable to do.

S7.2.2 MAXIMUM NEGATIVE DIFFERENCE IN RANKS

Now the other way around, these are examples where CMD considers the entailment relation as
‘True’ while the Henderson embeddings predict it as ‘False’, and both are most certain about their
decisions. Table S15 shows these pairs. The examples where CMD performs poorly like, (‘box’,
‘mortality’), (‘pistol’, ‘initiative’) seem to be unrelated and we speculate that matching the various
contexts or senses of the distributional estimate causes this behavior. One possibility to deal with this
can be to take into account the similarity between word pairs in the ground metric. Overall, CMD
does a good job at handling these pairs in comparison to the Henderson method.
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Hypernym candidate Hypernym candidate Ground Truth CMD rank Henderson rank Better Method

bass cello FALSE 1346 56 CMD
banjo flute FALSE 1312 108 CMD
guitar trumpet FALSE 1249 52 CMD
trumpet violin FALSE 1351 165 CMD
gill goldfish FALSE 1202 21 CMD
topside battleship FALSE 1508 345 CMD
trumpet piano FALSE 1289 126 CMD
washer dishwasher FALSE 1339 234 CMD
gun pistol FALSE 1270 166 CMD
cauliflower rainbow FALSE 1197 136 CMD
hawk woodpecker FALSE 1265 210 CMD
garlic spice TRUE 1248 204 Henderson
coyote beast TRUE 1096 57 Henderson
lizard beast TRUE 1231 201 Henderson
turnip radish FALSE 1060 39 CMD
creature gorilla FALSE 1558 543 CMD
rabbit squirrel FALSE 1260 249 CMD
ship battleship FALSE 1577 571 CMD
giraffe beast TRUE 1220 220 Henderson
coyote elephant FALSE 1017 28 CMD

Table S14: The top 20 word pairs with maximum positive difference in ranks (CMD rank - Hender-
son rank). The rank is given out of 1635.

Hyponym candidate Hypernym candidate Ground Truth CMD rank Henderson rank Better Method

box mortality FALSE 116 1534 Henderson
radio device TRUE 110 1483 CMD
television system TRUE 5 1354 CMD
elephant hospital FALSE 52 1355 Henderson
pistol initiative FALSE 40 1316 Henderson
library construction TRUE 71 1335 CMD
radio system TRUE 6 1266 CMD
bowl artifact TRUE 223 1448 CMD
oven device TRUE 88 1279 CMD
bear creature TRUE 324 1513 CMD
stove device TRUE 167 1356 CMD
saw tool TRUE 461 1620 CMD
television equipment TRUE 104 1244 CMD
library site TRUE 87 1217 CMD
battleship bus FALSE 292 1418 Henderson
pistol device TRUE 70 1187 CMD
battleship vehicle TRUE 77 1175 CMD
bowl container TRUE 333 1431 CMD
pub construction TRUE 19 1116 CMD
bowl object TRUE 261 1334 CMD

Table S15: The top 20 word pairs with maximum negative difference in ranks (CMD rank -
Henderson rank). The rank is given out of 1635.
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