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ABSTRACT

There has been continuous effort to learn to solve famous CO problems such as
Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP) using re-
inforcement learning (RL). Although they have shown good optimality and com-
putational efficiency, these approaches have been limited to scheduling a single-
vehicle. MinMax mTSP, the focus of this study, is the problem seeking to min-
imize the total completion time for multiple workers to complete the geographi-
cally distributed tasks. Solving MinMax mTSP using RL raises significant chal-
lenges because one needs to train a distributed scheduling policy inducing the co-
operative strategic routings using only the single delayed and sparse reward signal
(makespan). In this study, we propose the ScheduleNet that can solve mTSP with
any numbers of salesmen and cities. The ScheduleNet presents a state (partial so-
lution to mTSP) as a set of graphs and employs type aware graph node embeddings
for deriving the cooperative and transferable scheduling policy. Additionally, to
effectively train the ScheduleNet with sparse and delayed reward (makespan), we
propose an RL training scheme, Clipped REINFORCE with ”target net,” which
significantly stabilizes the training and improves the generalization performance.
We have empirically shown that the proposed method achieves the performance
comparable to Google OR-Tools, a highly optimized meta-heuristic baseline.

1 INTRODUCTION

There have been numerous approaches to solve combinatorial optimization (CO) problems using
machine learning. Bengio et al. (2020) have categorized these approaches into demonstration and
experience. In demonstration setting, supervised learning has been employed to mimic the behavior
of the existing expert (e.g., exact solvers or heuristics). On the other hand, in the experience setting,
typically, reinforcement learning (RL) has been employed to learn a parameterized policy that can
solve newly given target problems without direct supervision. While the demonstration policy can-
not outperform its guiding expert, RL-based policy can outperform the expert because it improves
its policy using a reward signal. Concurrently, Mazyavkina et al. (2020) have further categorized
the RL approaches into improvement and construction heuristics. An improvement heuristics start
from the arbitrary (complete) solution of the CO problem and iteratively improve it with the learned
policy until the improvement stops (Chen & Tian, 2019; Ahn et al., 2019). On the other hand, the
construction heuristics start from the empty solution and incrementally extend the partial solution
using a learned sequential decision-making policy until it becomes complete.

There has been continuous effort to learn to solve famous CO problems such as Traveling Salesman
Problem (TSP) and Vehicle Routing Problem (VRP) using RL-based construction heuristics (Bello
et al., 2016; Kool et al., 2018; Khalil et al., 2017; Nazari et al., 2018). Although they have shown
good optimality and computational efficiency performance, these approaches have been limited to
only scheduling a single-vehicle. The multi-extensions of these routing problems, such as multiple
TSP and multiple VRP, are underrepresented in the deep learning research community, even though
they capture a broader set of the real-world problems and pose a more significant scientific challenge.

The multiple traveling salesmen problem (mTSP) aims to determine a set of subroutes for each
salesman, given m salesmen and N cities that need to be visited by one of the salesmen, and a depot
where salesmen are initially located and to which they return. The objective of a mTSP is either
minimizing the sum of subroute lengths (MinSum) or minimizing the length of the longest subroute
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(MinMax). In general, the MinMax objective is more practical, as one seeks to visit all cities as
soon as possible (i.e., total completion time minimization). In contrast, the MinSum formulation,
in general, leads to highly imbalanced solutions where one of the salesmen visits most of the cities,
which results in longer total completion time (Lupoaie et al., 2019).

In this study, we formulate (MinMax mTSP as a Markov Decision Process (MDP) and derive an RL-
based construction heuristic that can solve mTSP instances with any numbers of salesmen and cities.
Solving MinMax mTSP using an RL-based construction approach is challenging because one needs
to train the scheduling policy that can coordinate multiple workers to complete the distributed tasks
as quickly as possible using only the delayed and sparse reward signal (makespan). In addition, the
state representation should be flexible and transferable to varying numbers of salesmen and cities.
(coordination, transferability, sparse and delayed reward).

The proposed method first presents a state (partial solution to mTSP) as a set of graphs, each of
which captures specific relationships among works, cities, and a depot. The proposed method then
employs type-aware graph attention (TGA) to compute the node embeddings. Lastly, the proposed
model using the node embeddings make the next assignment action. The type aware graph node
embedding technique specially designed for mTSP is an essential component for deriving the coop-
erative and transferable scheduling policy. Additionally, to effectively train the graph representation
and policy learning modules effectively with sparse and delayed reward (makespan), we propose a
stable RL training scheme which significantly stabilizes the training and improves the generalization
performance.

We have empirically shown that the proposed method achieves the performance comparable to
Google OR-Tools, a highly optimized meta-heuristic baseline. The proposed approach outperforms
OR-Tools in many cases on in-training, out-of-training problem distributions, and real-world prob-
lem instances.

2 RELATED WORK

Construction RL approaches A seminal body of work focused on the construction approach in the
RL setting for solving CO problems (Bello et al., 2016; Nazari et al., 2018; Kool et al., 2018; Khalil
et al., 2017). These approaches utilize encoder-decoder architecture, that encodes the problem struc-
ture into a hidden embedding first, and then autoregressively decodes the complete solution. Bello
et al. (2016) utilized LSTM (Hochreiter & Schmidhuber, 1997) based encoder and decode the com-
plete solution (tour) using Pointer Network (Vinyals et al., 2015) scheme. Since the routing tasks
are often represented as graphs, Nazari et al. (2018) proposed an attention based encoder, while
using LSTM decoder. Recently, Kool et al. (2018) proposed to use Transformer-like architecture
(Vaswani et al., 2017) to solve several variants of TSP and single-vehicle CVRP. On the contrary,
Khalil et al. (2017) do not use encoder-decoder architecture, but a single graph embedding model,
structure2vec (Dai et al., 2016), that embeds a partial solution of the TSP and outputs the next city
in the (sub)tour. (Kang et al., 2019) has extended structure2vec to random graph and employed
this random graph embedding to solve identical parallel machine scheduling problems, the problem
seeking to minimize the makespan by scheduling multiple machines.

Learned mTSP solvers The machine learning approaches for solving mTSP date back to Hopfield
& Tank (1985). However, these approaches require per problem instance training. (Hopfield &
Tank, 1985; Wacholder et al., 1989; Somhom et al., 1999). Among the recent learning methods,
Kaempfer & Wolf (2018) encodes MinSum mTSP with a set-specialized variant of Transformer ar-
chitecture that uses permutation invariant pooling layers. To obtain the feasible solution, they use a
combination of the softassign method Gold & Rangarajan (1996) and a beam search. Their model
is trained in a supervised setting using mTSP solutions obtained by Integer Linear Programming
(ILP) solver. Hu et al. (2020) utilizes a GNN encoder and self-attention Vaswani et al. (2017) policy
outputs a probability of assignment to each salesman per city. Once cities are assigned to specific
salesmen, they use existing TSP solver, OR-Tools (Perron & Furnon), to obtain each worker’s sub-
routes. Their method shows impressive scalability in terms of the number of cities, as they present
results for mTSP instances with 1000 cities and ten workers. However, the trained model is not
scalable in terms of the number of workers and can only solve mTSP problems with a pre-specified,
fixed number of workers.
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Figure 1: The mTSP MDP The black lined balls indicates the events of the mTSP MDP. The empty,
dashed, and, filled rectangles represent the unassigned, assigned, and inactive cities, respectively.
The circles represent the workers and the positions of the circles show the 2D coordinates of worker.
The orange and blue colored lines shows the subtours of the orange and blue worker, respectively.

3 PROBLEM FORMULATION

We define the set ofm salesmen VT = {1, 2, ...,m}, and the set ofN cities VC = {m+1, 2, ...,m+
N}. Following mTSP conventions, we define the first city as the depot. We also define the 2D-
coordinates of entities (salesmen, cities, and the depot) as pi. The objective of MinMax mTSP is
to minimize the length of the longest subtour of salesmen, while subtours covers all cities and all
subtours of salesmen end at the depot. For the clarity of explanation, we will refer to salesman as a
workers, and cities as a tasks.

3.1 MDP FORMULATION FOR MINMAX MTSP

In this paper, the objective is to construct an optimal solution with a construction RL approach.
Thus, we cast the solution construction process of MinMax mTSP as a Markov decision process
(MDP). The components of the proposed MDP are as follows.

Transition. The proposed MDP transits based on events. We define an event as the the case where
any worker reaches its assigned city. We enumerate the event with the index τ for avoiding confusion
from the elapsed time of the mTSP problem. t(τ) is a function that returns the time of event τ . In the
proposed event-based transition setup, the state transitions coincide with the sequential expansion
of the partial scheduling solution.

State. Each entity i has its own state siτ =
(
piτ ,1

active
τ ,1assgined

τ

)
at the τ -th event. the coordinates piτ

is time-dependent for workers and static for tasks and the depot. Indicator 1active
τ describes whether

the entity is active or inactive. In case of tasks, inactive indicates that the task is already visited;
in case of worker, inactive means that worker returned to the depot. Similarly, 1assgined

τ indicates
whether worker is assigned to a task or not. We also define the environment state senv

τ that contains
the current time of the environment, and the sequence of tasks visited by each worker, i.e., partial
solution of the mTSP. The state sτ of the MDP at the τ -th event becomes sτ =

(
{siτ}m+N

i=1 , senv
τ

)
.

The first state s0 corresponds to the empty solution of the given problem instance, i.e., no cities have
been visited, and all salesmen are in the depot. The terminal state sT corresponds to a complete so-
lution of the given mTSP instance, i.e., when every task has been visited, and every worker returned
to the depot (See Figure 1).

Action. A scheduling action aτ is defined as the worker-to-task assignment, i.e. salesman has to
visit the assigned city.

Reward. We formulate the problem in a delayed reward setting. Specifically, the sparse reward
function is defined as r(sτ ) = 0 for all non-terminal events, and r(sT) = t(T), where T is the
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Figure 2: Assignment action determination step of ScheduleNet

index of the terminal state. In other words, a single reward signal, which is obtained only for the
terminal state, is equals to the makespan of the problem instance.

4 SCHEDULENET

Given the MDP formulation for MinMax mTSP, we propose ScheduleNet that can recommend a
scheduling action aτ given the current state Gτ represented as a graph, i.e., πθ(aτ |Gτ ). The Schedul-
Net first presents a state (partial solution of mTSP) as a set of graphs, each of which captures spe-
cific relationships among workers, tasks, and a depot. Then ScheduleNet employs type-aware graph
attention (TGA) to compute the node embeddings and use the computed node embeddings to deter-
mine the next assignment action (See figure 2).

4.1 WORKER-TASK GRAPH REPRESENTATION

Whenever an event occurs and the global state sτ of the MDP is updated at τ , ScheduleNet constructs
a directed complete graph Gτ = (V,E) out of sτ , where V = VT ∪ VC is the set of nodes and E is
the set of edges. We drop the time iterator τ to simplify the notations since the following operations
only for the given time step. The nodes and edges and their associated features are defined as:

• vi denotes the node corresponding entity i in mTSP problem. The node feature xi for vi is equal
to the state siτ of entity i. In addition, ki denote the type of node vi. For instance, if the entity i is
worker and its 1activeτ = 1, then the ki becomes active-worker type.

• eij denotes the edge between between source node vi and destination node vj , representing the
relationships between the two. The edge feature wij is equal to the Euclidean distance between
the two nodes.

4.2 TYPE-AWARE GRAPH ATTENTION EMBEDDING

In this section, we describe a type-aware graph attention (TGA) embedding procedure. We denote
hi and hij as the node and the edge embedding, respectively, at a given time step, and h′i and h′ij as
the updated embedding by TGA embedding. A single iteration of TGA embedding consists of three
phases: (1) edge update, (2) message aggregation, and (3) node update.

Type-aware Edge update Given the node embeddings hi for vi ∈ V and the edge embeddings hij
for eij ∈ E, ScheduleNet computes the updated edge embedding h′ij and the attention logit zij as:

h′ij = TGAE([hi, hj , hij ], kj)

zij = TGAA([hi, hj , hij ], kj)
(1)

where TGAE and TGAA are, respectively, the type aware edge update function and the type aware
attention function, which are defined for the specific type kj of the source node vj . The updated
edge feature h′ij can be thought of as the message from the source node vj to the destination node
vi, and the attention logit zij will be used to compute the importance of this message.

In computing the updated edge feature (message), TGAE and TGAA first compute the “type-aware”
edge encoding uij , which can be seen as a dynamic edge feature varying depending on the source
node type, to effectively model the complex type-aware relationships among the nodes. Using the
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computed “type-aware” edge encoding uij , these two functions then compute the updated edge
feature and attention logit using a multiplicative interaction (MI) layer (Jayakumar et al., 2019).
The use of MI layer significantly reduces the number of parameters to learn without discarding
the expressibility of the embedding procedure. The detailed architecture for TGAE and TGAA are
provided in Appendix A.1.

Type-aware Message aggregation The distribution of the node types in the mTSP graphs is highly
imbalanced, i.e., the number of task-specific node types is much larger than the worker specific ones.
This imbalance is problematic, specifically, during the message aggregation of GNN, since permu-
tation invariant aggregation functions are akin to ignore messages from few-but-important nodes in
the graph. To alleviate such an issue, we propose the following type-aware message aggregation
scheme.

We first define the type k neighborhood of node vi as the set of the k-type source nodes that are
connected to the destination node vi, i.e., Nk(i) = {vj |kj = k, ∀l ∈ N (i)}, where N (i) is the
neighborhood set of node vi containing the nodes that are connected to node vi with edges.

The node vi aggregates separately messages from the same type of source nodes. For example, the
aggregated message mk

i from k-type source nodes is computed as:

mk
i =

∑
j∈Nk(i)

αijh
′
ij (2)

where αij is the attention score computed using the attention logits computed before as:

αij =
exp(zij)∑

j∈Nk(i)
exp(zij)

(3)

Finally, all aggregated messages per type are concatenated to produce the total aggregated message
mi for node vi as

mi = concat({mk
i |k ∈ K}) (4)

Type-aware Node update The aggregated message mi for node vi is then used to compute the
updated node embedding h

′

i using the type-aware graph node update function TGAV as:

h′i = TGAV(hi,mi, ki) (5)

Being different from TGAE and TGAA, TGAV is defined per different destination node type ki.

4.3 ASSIGNMENT PROBABILITY COMPUTATION

ScheduleNet model consists of two type-aware graph embedding layers that utilize the embedding
procedure explained in the section above. The first embedding layer raw-2-hid is used to encode
initial node and edge features xi and wij of the (full) graph Gτ , to obtain initial hidden node and
edge features h(0)i and h(0)ij , respectively.

We define the target subgraph Gsτ as the subset of nodes and edges from the original (full) graph
Gτ that only includes a target-worker (unassigned-worker) node and all unassigned-city nodes. The
second embedding layer hid-2-hid embeds the target subgraph Gsτ H times. In other words, a hidden
node and edge embeddings h(0)i and h(0)ij are iteratively updated H times to obtain final hidden em-

beddings h(H)
i and h(H)

ij , respectively. The final hidden embeddings are then used to make decision
regarding the worker-to-task assignment.

Specifically, probability of assigning target worker i to task j is computed as

yij = MLPactor([h
(H)
i ;h

(H)
j ;h

(H)
ij ])

pij = softmax({yij}j∈ A(Gτ ))
(6)

where the h(H)
i , and h(H)

ij is the final hidden node, edge embeddings, respectively. In addition,
A(Gτ ) denote the set of feasible actions defined as {vj |kj = “Unassigned-task”∀j ∈ V}.
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5 TRAINING SCHEDULENET

In this section, we describe the training scheme of the ScheduleNet. Firstly, we explain reward
normalization scheme which is used to reduce the variance of the reward. Secondly, we introduce a
stable RL training scheme which significantly stabilizes the training process.

Makespan normalization

As mentioned in Section 3.1, we use the makespan of mTSP as the only reward signal for training RL
agent. We denote the makespan of given policy π as M(π). We observe that, the makespan M(π) is
a highly volatile depending on the problem size (number of cities and salesmen), the topology of the
map, and the policy. To reduce the variance of the reward, we propose the following normalization
scheme:

m(π, πb) =
M(πb)−M(π)

M(πb)
(7)

where π and πb is the evaluation and baseline policy, respectively.

The normalized makespan m(π, πb) is similar to (Kool et al., 2018), but we additionally divide the
performance difference by the makespan of the baseline policy, which further reduces the variance
that is induced by the size of the mTSP instance.

From the normalized terminal reward m(π, πb), we compute the normalized return as follows:

Gτ (π, πb) := γT−τm(π, πb) (8)

where T is the index of the terminal state, and γ is the discount factor.

Stable RL training It is well known that the solution quality of CO problems, including the
makespan of mTSP, is extremely sensitive to the action selection, and it thus prevents the stable
policy learning. To address this problem, we propose the clipped REINFORCE, a variant PPO with-
out the learned value function. We empirically found that it is hard to train the value function1, thus
we use normalized returns Gτ(πθ, πb) directly. Then, the objective of the clipped REINFORCE is
given as follows:

L(θ) = E
(Gτ , aτ ) ∼ πθ [min(clip(ρτ , 1− ε, 1 + ε)Gτ(πθ, πb), ρτGτ(πθ, πb))] (9)

where

ρτ =
πθ(aτ |Gτ )
πθold(aτ |Gτ )

(10)

and (Gτ , aτ ) ∼ πθ is the state-action marginal following πθ, and πθold is the old policy.

After updating the policy πθ, we smooth the parameters of policy πθ with the Polyak average (Polyak
& Juditsky, 1992) to further stabilize policy training. The training procedure of ScheduleNet is given
in Appedix A.2.1.

6 EXPERIMENTS

We train the ScheduleNet using mTSP instances whose number m of tasks and the number N of
workers are sampled from m ∼ U(2, 4) and N ∼ U(10, 20), respectively. This trained Schedu-
leNet policy is then evaluated on the various dataset, including randomly generated uniform mTSP
datasets, mTSPLib, and randomly generated uniform TSP dataset, TSPLib, and TSP (dai). Un-
less explicitly mentioned, all performance results are obtained from this single trained model. See
Appendix for further training details.

1Note that the value function is trained to predict the makespan of the state to serve as an advantage esti-
mator. Due to the combinatorial nature of the mTSP, the target of value function, makespan, is highly volatile,
which makes training value function hard.
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Table 1: MTSP Uniform Results.

N = 20 N = 50

m = 2 m = 3 m = 5 m = 5 m = 7 m = 10

Obj. (OR-Tools) 2.527 2.083 1.833 2.076 1.946 1.937
Obj. (ScheduleNet) 2.744 2.260 1.959 2.352 2.172 2.098
Obj. (Hu et. al.) – – – 2.115 – 1.965

Gap (vs OR-Tools) 1.087 1.086 1.071 1.135 1.122 1.086

N = 100 N = 200

m = 5 m = 10 m = 15 m = 10 m = 15 m = 20

Obj. (OR-Tools) 2.452 1.993 2.031 ? 2.295 2.370
Obj. (ScheduleNet) 2.892 2.251 2.185 ? 2.248 2.299
Obj. (Hu et. al.) 2.480 2.087 – – – –

Gap (vs OR-Tools) 1.179 1.129 1.075 1.164(?) 1.011 0.971

Table 2: MTSPLIB CITE MINMAX Results Result with † 1, 2, 3, 4 were obtained by running
CPLEX for 120, 96, 168, 216 hours, respectively. The optimal result(s) are indicated with ∗, other-
wise, CPLEX results are reported as the average of the upper and lower bound.

Instance m CPLEX OR-Tools ScheduleNet SOM ACO EA

eil51

2 222.73∗ 243.02 259.67 278.44 248.76 276.62
3 155.13 170.05 172.16 210.25 180.59 208.16
5 110.43 127.50 118.94 157.68 135.09 151.21
7 92.44†1 112.07 112.42 136.84 119.96 123.88

berlin52

2 4079.63 4665.47 4816.30 5350.83 4388.99 5038.33
3 2999.01 3311.31 3372.14 4197.61 3468.9 3865.45
5 2056.54 2482.57 2615.57 3461.93 2733.56 2853.63
7 1856.49 2440.92 2576.04 3125.21 2510.09 2543.73

eil76

2 280.85 318.00 334.10 364.02 308.53 365.72
3 191.84 212.41 226.54 278.63 224.56 285.43
5 133.95 143.38 168.03 210.69 163.93 211.91
7 113.985 128.31 151.31 183.09 146.88 177.83

rat99

2 674.85 762.19 789.98 927.36 767.15 896.72
3 512.13†2 552.09 579.28 756.08 620.45 739.43
5 402.71†3 473.66 502.49 624.38 525.54 596.87
7 373.80†4 442.47 471.67 564.14 492.13 534.91

Gap 1.00 1.145 1.206 1.464 1.216 1.287

6.1 MTSP RESULTS

Random mTSP results We firstly investigate the generalization performance of ScheduleNet on
the randomly generated uniform maps with varying numbers of tasks and workers. We report the
results of OR-Tools, as well as (Hu et al., 2020) when available. Table 1 shows that ScheduleNet in
overall produces a slightly longer makespan than OR-Tools even for the large-sized mTSP instances.
As the complexity of the target mTSP instance increases, the gap between ScheduleNet and OR-
Tools decreases, even showing the cases where ScheduleNet outperforms OR-Tools. The result
empirically proves that ScheduleNet, even trained with small-sized mTSP instances, can solve large
scale problems well (generalization and scalability).

mTSPLib results The trained ScheduleNet is employed to solve the benchmark problems in mT-
SPLib (cite), without parameter retraining, to validate the generalization capability of ScheduleNet
on unseen mTSP instances whose problem structures can be completely different from the ones
used during training. Table 2 compares the performance of the ScheduleNet to other baseline mod-
els, including CPLEX (optimal solution), OR-Tools, and other heuristics. In general, ScheduleNet
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Figure 3: Training curves The orange and blue line shows the averaged training performance of
ScheduleNet trained with REINFORCE (Sutton et al., 2000) and clipped REINFORCE with param-
eter smoothing, respectively. The shadow regions indicate the standard deviations of the models.
We repeat ten times with different random seeds for each setup.

produces a slightly longer makespan than OR-Tools but significantly lower makespan than other
heuristics. It is worth noting that Our model is the first one that has empirically proven that an
RL-based contraction heuristic generalizes well over unseen mTSP whose problem distribution is
entirely different from the training instances.

6.2 EFFECTIVENESS OF THE PROPOSED TRAINING SCHEME

Figure 3 compares the training curves of ScheduleNet model that was trained with REINFORCE-
only against the performance of the ScheduleNet with clipped REINFORCE with parameter smooth-
ing. This clearly illustrates how the parameter smoothing and policy clipping results in a consider-
ably more stable training.

7 CONCLUSION

We proposed ScheduleNet for solving MinMax mTSP, the problem seeking to minimize the total
completion time for multiple workers to complete the geographically distributed tasks. The use
of type-aware graphs and the specially designed TGA graph node embedding allows the trained
ScheduleNet policy to induce the coordinated strategic subroutes of the workers and to be well
transferred to unseen mTSP with any numbers of workers and tasks. We have empirically shown that
the proposed method achieves the performance comparable to Google OR-Tools, a highly optimized
meta-heuristic baseline. All in all, this study has shown the potential that the proposed ScheduleNet
can be effectively used to schedule multiple vehicles for solving large-scale, practical, real-world
applications.
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A APPENDIX

A.1 DETAILS OF TYPE-AWARE GRAPH ATTENTION EMBEDDING

In this section, we thoroughly describe a type-aware graph embedding procedure. Similar to the
main body, We overload notations for the simplicity of notation such that the input node and edge
feature as hi and hij , and the embedded node and edge feature h′i and h′ij , respectively.

The proposed graph embedding step consists of three phases: (1) type-aware edge update, (2) type-
aware message aggregation, and (3) type-aware node update.

Type-aware Edge update The edge update scheme is designed to reflect the complex type relation-
ship among the entities while updating edge features. First the context embedding cij of edge eij
computed using the source node type, ki, such that:

cij = MLPetype(ki) (11)

where MLPetype is the edge type encoder. The source node types are embedded into the context
embedding cij using MLPetype. Next, the type-aware edge encoding uij is computed using the
Multiplicative Interaction (MI) layer (Jayakumar et al., 2019) as follows:

uij = MIedge([hi;hj ;hij ], cij) (12)

where MIedge is the edge MI layer. We utilize the MI layer, which dynamically generates its param-
eter depending on the context cij and produces and produces “type-aware” edge encoding uij , to
effectively model the complex type relationships among the nodes. “type-aware” edge encoding uij
can be seen as a dynamic edge feature which varies depending on the source node type. After the
updated edge embedding h′ij and its attention logit zij is obtained as:

h′ij = MLPedge(uij) (13)

zij = MLPattn(uij) (14)

where MLPedge and MLPattn is the edge updater and logit function, respectively. the edge updater
and logit function produces updated edge embdding and logits from the “type-aware” edge.

The computation steps of equation 11, 12,and ?? are defined as TGAE. Similarly, the computation
steps of equation 11, 12, and ?? are defined as TGAA.

Message aggregation First, we define the type-k neighborhood of node vi such that Nk(i) =
{eli|kl = k,∀l ∈ N (i)}, where N (i) is the neigborhood set of node i. The type-k neighborhood
is the set of edges heading to node i, and their source nodes have type k. The proposed type-aware
message aggregation procedure computes attention score αji for the eji, which starts from node j
and heads to node i, such that:

αji =
exp(zji)∑

l∈Nkj
(i) exp(zli)

(15)

Intuitively speaking, The proposed attention scheme normalizes the attention logits of incoming
edges over the types. Therefore, the attention scores sum up to 1 over each type-k neighborhood.
Next, the type-k neighborhood message mi,k for node vi is computed as:

mi,k =
∑

l∈Nk(i)

αlih
′
li (16)

In this aggregation step, the incoming messages of node i are aggregated type-wisely. Finally, all
incoming type neighborhood messages are concatenated to produce (inter-type) aggregated message
mi for node vi, such that:

mi = concat({mi,k|k ∈ K}) (17)

10
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Figure 4: Type-aware graph attention embedding We omit the type-aware edge update for the
clarity of visualization.

Node update Similar to the edge update phase, first, the context embedding ci is computed for each
node vi:

ci = MLPntype(ki) (18)

where MLPntype is the node type encoder. Then, the updated hidden node embedding h′i is com-
puted as below:

h′i = MLPnode([hi;ui]) (19)

where ui = MInode(mi, ci) is the type-aware node embedding that is produced by MInode layer
using aggregated messages mi and the context embedding ci.

The computation steps of equation 18, and 19 are defined as TGAE. The overall computation pro-
cedure TGA is illustrated in Figure 4.

A.2 DETAILS OF SCHEDULENET TRAINING

A.2.1 TRAINING PSEUDO CODE

In this section, we presents a pseudocode for training ScheduleNet.

Algorithm 1: ScheduleNet Training
Input: Training policy πθ
Output: Smoothed policy πφ

1 Initialize smoothed policy with parameters φ← θ.
2 for update step do
3 Generate a random mTSP instance I
4 for number of episodes do
5 Construct mTSP MDP from the instance I
6 πb ← argmax(πθ)
7 Collect samples with πθ and πb from the mTSP MDP.
8 πθold ← πθ
9 for inner updates K do

10 θ ← θ + α∇θL(θ)
11 φ← βφ+ (1− β)θ

A.2.2 HYPERPARAMETERS

In this section, we fully explain hyperparameters of SchduleNet. Network Architecture We use
the same hyperparmeters for the raw-2-hid TGA layer and the hid-2-hid TGA layer. MLPetype and
MLPntype has one hidden layer with 32 neurons and their output dimensions are both 32. Both MI
layers has 64 dimensional outputs. MLPedge, MLPattn, and MLPnode has 2 hidden layers with 32

11
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neurons. MLPactor has 2 hidden layers and the hidden layers has 128 neurons each. We use ReLU
activation functions for all hidden layers. The hidden graph embedding step H is two.

Training We use Adam (Kingma & Ba, 2014) with learning rate value of 0.001. Inner updates steps
K is three. The smoothing parameter β is 0.95.

A.3 TRANSFERABILITY TEST ON TSP (m = 1)

The trained ScheduleNet has been employed to solve random TSP instances. Because ScheduleNet
can be used to schedule any m number of workers, if we set m = 1, it can be used to schedule TSP
instance without further training. Table 3 shows the results on this transferability experiments.

Table 3 shows that the trained ScheduleNet can solve reasonably well on random TSP instances,
although ScheduleNet has never been exposed to such TSP instances. Note that as the size of TSP
increases, the gap between the ScheduleNet and other models becomes smaller. If the ScheduleNet
is trained with TSP instances with m = 1, the performance can be further improved. However, we
did not try that experiment to check its transferability over different types of routing problems with
different objectives.

Table 3: Performance comparison on random uniform TSP instances. The Obj. defines the
makespan, i.e., the length of the tour of the salesman.

N = 20 N = 50 N = 100

Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)
LKH3 3.84 0.00% (18s) 5.70 0.00% (5m) 7.76 0.00% (21m)
Gurobi 3.84 0.00% (7s) 5.70 0.00% (2m) 7.76 0.00% (17m)

Nearest Insertion 4.33 12.91% (1s) 6.78 19.03% (2s) 9.46 21.82% (6s)
Farthest Insertion 3.93 2.36% (1s) 6.01 5.53% (2s) 8.35 7.59% (7s)
OR-Tools 3.85 0.37% (1s) 5.80 1.83% (2s) 7.99 2.90% (7s)

Bello et al. (2016) 3.89 1.42% – 5.95 4.46% – 8.30 6.90% –
Khalil et al. (2017) 3.89 1.42% – 5.99 5.16% – 8.31 7.03% –
AM (greedy) 3.85 0.34% (0s) 5.80 1.76% (2s) 8.12 4.53% (6s)
Am (sampling) 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)
ScheduleNet 4.01 4.34% (2s) 6.11 7.01% (9s) 8.71 12.35% (34s)
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