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ABSTRACT

In recent years, Message-Passing Neural Networks (MPNNs), the most prominent
Graph Neural Network (GNN) framework, have celebrated much success in the
analysis of graph-structured data. In MPNNs the computations are split into three
steps, Aggregation, Update and Readout. In this paper a series of models to succes-
sively sparsify the linear transform in the Update step is proposed. Specifically, the
ExpanderGNN model with a tuneable sparsification rate and the Activation-Only
GNN, which has no linear transform in the Update step, are proposed. In agree-
ment with a growing trend in the relevant literature the sparsification paradigm is
changed by initialising sparse neural network architectures rather than expensively
sparsifying already trained architectures. These novel benchmark models enable a
better understanding of the influence of the Update step on model performance and
outperform existing simplified benchmark models such as the Simple Graph Convo-
lution (SGC). The ExpanderGNNs, and in some cases the Activation-Only models,
achieve performance on par with their vanilla counterparts on several down-stream
graph prediction tasks, proving that often the update step has little impact on the
performance and resulting in models with exponentially fewer trainable parameters
than the state-of-the-art.

1 INTRODUCTION

Recent years have witnessed the blossom of Graph Neural Networks (GNNs). They have become
the standard tools for analysing and learning graph-structured data (Wu et al., 2020) and have
demonstrated convincing performance in various application areas, including chemistry (Duvenaud
et al., 2015), social networks (Monti et al., 2019), natural language processing (Yao et al., 2019) and
neural science (Griffa et al., 2017).

Among various GNN models, Message-Passing Neural Networks (MPNNs, Gilmer et al. (2017))
and their variants are considered to be the dominating class. In MPNNs, the learning procedure
can be separated into three major steps: Aggregation, Update and Readout, where Aggregation and
Update are repeated iteratively so that each node’s representation is updated recursively based on the
transformed information aggregated over its neighbourhood. With each iteration, the receptive field
of the hidden representation is increased by 1-step on the graph structure such that at kth iteration,
the hidden state of node i is composed of information from its k-hop neighbourhood.

There is thus a division of labour between the Aggregation and the Update step, where the Aggregation
utilises local graph structure, while the Update step is only applied to single node representations at a
time independent of the local graph structure. From this a natural question then arises: What is the
impact of the graph-agnostic Update step on the performance of GNNs?

Wu et al. (2019) first challenged the role of Update steps by proposing a simplified graph convolutional
network (SGC) where they removed the non-linearities in the Update steps and collapsed the
consecutive linear transforms into a single transform. Their experiments demonstrated, surprisingly,
that in some instances the Update step of Graph Convolutional Network (GCN, Kipf & Welling
(2017)) can be left out completely without the models’ accuracy decreasing.

In the same spirit, we propose in this paper to analyse the impact of the Update step in a systematic
way. To this end, we propose two nested model classes, where the Update step is successively
sparsified. In the first model class which we refer to as Expander GNN, the linear transform layers
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of the Update step are sparsified; while in the second model class, the linear transform layers
are removed and only the activation functions remain in the model. We name the second model
Activation-Only GNN and it contrasts the SGC where the activation functions where removed to
merge the linear layers.

Inspired by the recent advances in the literature of sparse Convolutional Neural Network (CNN)
architectures (Prabhu et al., 2018), we propose to utilise expander graphs as the sparsifier of the
linear layers (hence the model’s name). Guided by positive graph theoretic properties, it optimises
sparse network architectures at initialisation and accordingly saves the cost of traditional methods of
iteratively pruning connections during training.

Through a series of empirical assessments on different graph learning tasks (graph and node classifi-
cation as well as graph regression), we demonstrate that the Update step can be heavily simplified
without inhibiting performance or relevant model expressivity. Our findings partly agree with the
work in (Wu et al., 2019), in that dense Update steps in GNN are expensive and often unnecessary. In
contrast to their proposition, we find that there are many instances in which leaving the Update step
out completely significantly harms performance. In these instances our Activation-Only model shows
superior performance while matching the number of parameters and efficiency of the SGC.

Our contributions can be summarised as follows.

(1) We explore the impact of the Update step in MPNNs through the newly proposed model class of
Expander GNNs with tuneable density. We show empirically that a sparse update step matches
the performance of the standard model architectures.

(2) As an extreme case of the Expander GNN, as well as an alternative to the SGC, we propose the
Activation-Only GNNs that remove the linear transformation layer from the Update step and keep
non-linearity in tact. We observe the Activation-Only models to exhibit comparable, sometimes
significantly superior performance to SGC while being equally time and memory efficient.

Both of our proposed model classes can be extrapolated without further efforts to a variety of models
in the MPNN framework and hence provide practitioners with an array of efficient and often highly
performant GNN benchmark models.

The rest of this paper is organised as follows. In Section 2, we provide an overview of the related
work. Section 3 introduces preliminary concepts of MPNNs and expander graphs, followed by a
detailed presentation of our two proposed model classes. Section 4 discusses our experimental setting
and empirical evaluation of the proposed models in a variety of downstream graph learning tasks.

2 RELATED WORKS

In recent years the idea of utilising expander graphs in the design of neural networks is starting
to be explored in the CNN literature. Most notably, Prabhu et al. (2018) propose to replace linear
fully connected layers in deep networks using an expander graph sampling mechanism and hence,
propose a novel CNN architecture they call X-nets. The great innovation of this approach is that
well-performing sparse neural network architectures are initialised rather than expensively calculated.
Furthermore, they are shown to compare favourably in training speed, accuracy and performance
trade-offs to several other state of the art architectures. McDonald & Shokoufandeh (2019) and
Kepner & Robinett (2019) build on the X-net design and propose alternative expander sampling
mechansisms to extend the simplistic design chosen in the X-nets. Independent of this literature
branch, Bourely et al. (2017) explore 6 different mechanisms to randomly sample expander graph
layers. Across the literature the results based on expander graph layers are encouraging. Since our
experiments suggest that in the novel context of GNNs the simplistic sampling mechanism from
Prabhu et al. (2018) produces results on par with the vanilla GNNs, we did not explore the more
advanced sampling mechanisms in this work. However, we believe that as GNN models, tasks and
datasets gain in complexity, the development of more refined expander sampling mechansisms is
likely to positively contribute to the GNN performance.

Recently, two papers observed that simplifications in the update step of the GCN model is a promising
area of research (Wu et al., 2019; Salha et al., 2019). Wu et al. (2019) proposed the Simple Graph
Convolution (SGC) model, where simplification is achieved by removing the non-linear activation
functions from the GCN model. This removal allows them to merge all linear transformations in
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the update steps into a single linear transformation without sacrificing expressive power. Salha et al.
(2019) followed a similar rationale in their simplification of the graph autoencoder and variational
graph autoencoder models. These works have had an immediate impact on the literature featuring as
a benchmark model and object of study in many recent papers. The idea of omitting update steps
guided us in the design of simplified models (Chen et al., 2020) and has found successful application
in various areas where model complexity needs to be reduced (Waradpande et al., 2020; He et al.,
2020) or very large graphs (∼ 106 nodes/edges) need to be processed (Salha et al., 2020).

In our work we aim to extend these efforts by providing more simplified benchmark models for
GNNs without a specific focus on the GCN.

3 INVESTIGATING THE ROLE OF THE UPDATE STEP

In this section, we present the two proposed model classes, where we sparsify or remove the linear
transform layer in the Update step, with the aim to systematically analyse the impact of the Update
step. We begin in Section 3.1 by introducing the general model structure of MPNNs, the main GNN
class we study in this paper, and expander graphs, the tool we use to sparsify linear layers. We then
demonstrate how expander graphs are used to sparsify linear layers and how an Expander GNN is
constructed in Section 3.2. The idea of Activation-Only GNNs is discussed in Section 3.3 and a
comparison to the SGC model is drawn.

3.1 PRELIMINARIES

3.1.1 MESSAGE-PASSING GRAPH NEURAL NETWORK

Given a graph G = (A,X), where A = [0, 1]n×n denotes the graph’s adjacency matrix, which
contains the information of the node set V, and X ∈ Rn×d = [x1, . . . ,xn]T represents the initial
node features of dimension d, a graph learning task aims at learning meaningful embeddings on the
node or graph level from this graph that can be used in downstream tasks such as node or graph
classification. MPNNs, a prominent paradigm that arose in recent years for performing machine
learning tasks on graphs, learn such embeddings by iteratively aggregating information from the
neighbourhoods of each node and updating their representations based on this information. Precisely,
the learning procedure of MPNNs can be divided into the following phases:

Initial (optional). In this phase, the initial node features X are mapped from the feature space
to a hidden space by a parameterised neural network U (0), usually a fully-connected linear layer.
H(1) = U (0)(X) = (h

(1)
1 , . . . ,h

(1)
n ), where the hidden representation of node i is denoted as h(1)

i ,
which will be used as the initial point for later iterations.

Aggregation. In this phase, MPNNs gather, for each node, information from the node’s neighbour-
hood, denoted N (i) for node i. The gathered pieces of information are called “messages”, denoted
by mi. Formally, at iteration l,

m
(l)
i = f (l)({h(l)

j |j ∈ N (i)}), (1)

where f (l)(·) is the aggregation function at iteration l. Due to the isotropic nature of graphs (arbitrary
node labelling), this function needs to be permutation invariant. It also has to be differentiable so that
the framework will be end-to-end trainable.

Update. The nodes then update their hidden representations based on their current representations
and the received “messages”. For node i at iteration l, we have

h
(l+1)
i = U (l)(h

(l)
i ,m

(l)
i ), (2)

where U (l) is the update function at iteration l.

Readout (optional). After L aggregation and update iterations, depending on the downstream
tasks, the MPNN will either output node representations directly or generate a graph representation
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via a readout phase, g = R({h(L)
i |i ∈ V}). Just like the aggregation function, the readout function

also needs to be permutation invariant and differentiable.

This paper focuses on the Update step. More precisely, we would like to find the answer to the
question: What is the impact of the Update step on the performance of GNNs?

It is clear that the MPNN framework divides its learning procedure into two parts: the Aggregation
step that utilises graph structure and the Update step, the main source of model parameters while
being completely agnostic to graph structure. Thus, understanding the importance of the Update step
could have a great impact on the design of parsimonious GNNs.

Note that various choices of Aggregation, Update and Readout functions are proposed in the literature.
To avoid shifting from the subject of this paper, we work with the simplest and most widely used
function choices, such as sum, mean and max aggregators for Aggregation, the Multi-Layer Perceptron
(MLP) for the Update step and summation for the Readout. As an example to visualise our model in
the subsequent sections we use the following matrix representation of the GCN computations,

H(L) = σ(Â . . . σ(ÂH(1)W (1)) . . .W (L)), (3)

where σ denotes a nonlinear activation function, W (i) contains the trainable weights of the linear
transform in the update step and Â = D̃−

1
2 ÃD̃−

1
2 is the symmetric normalised adjacency matrix

with Ã = A+ I denoting the adjacency matrix with added self-loops and D̃ being the corresponding
degree matrix.

Now we proceed to define the class of expander graphs, which serves as necessary background
knowledge for our chosen sparsification mechanism in the Update step.

3.1.2 EXPANDER GRAPHS

Expander graphs are a well studied class of graphs which can be informally defined as being highly
connected and sparse (Hoory et al., 2006; Lubotzky, 2012). Formally, expander graphs can be
characterised by the expansion ratio, which we will now define.
Definition 1 (Expander Graph). For 0 < δ ∈ R, G is an δ-expander graph if for all S ⊂ V such that
|S| ≤ |V|2 we have |∂S||S| ≤ δ, where ∂S is the boundary set of S, i.e., the set of all vertices, which are
connected to a vertex in S by an edge but are not in S. Then, the expansion ratio h(G) is defined to
be the minimal δ such that G is an δ-expander graph.

Expander graphs have been successfully applied in communication networks where communication
comes at a certain cost and is to be used such that messages are spread across the network efficiently
(Lubotzky, 2012). We believe that expander graphs have a promising future in the neural network
literature. Training each parameter (corresponding to an edge in the NN architecture) incurs some
training and inference, computational. Using the expander graph concept we sparsify this graph
reducing thus cost and it is the aim to utilise each parameter, i.e., edge, to its greatest efficiency.

3.2 SPARSIFYING THE UPDATE STEP: EXPANDER GNN

In order to study the influence of the Update step in GNNs, we propose an experiment design,
where its linear transform (of the MLPs) is gradually sparsified. By observing the trend of model
performance change (on downstream tasks) with respect to the sparsity of the linear transform layer,
we measure the impact of the Update step.

Linear Layer as a graph The fully-connected linear transform layer in MLPs can be considered
to be a bipartite graph B(S1,S2,E), where S1 and S2 are two sets of nodes and E the set of edges
that satisfy ∀u ∈ S1,∀v ∈ S2,∃(u, v) ∈ E; ∀u, v ∈ S1(resp.S2),@(u, v) ∈ E. The number of
connections, or number of parameters, is |S1||S2| and the connections can be written in matrix form
as W ∈ R|S1|×|S2|, which is the weight matrix in Equation (3).

3.2.1 EXPANDER LINEAR LAYER

The aim of sparsifying a linear layer is to remove redundant connections and to only keep the
important weights. Following Prabhu et al. (2018), we choose expander graphs as the sparsifiers for
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the linear transform layer. When compared to pruning algorithms which sparsify neural network
layers by iteratively removing parameters according to certain metric during training, the expander
sparsifiers have two advantages:

(1) Good properties of expander structures allow consecutive linear layers to be highly connected
when only a smaller number of edges is present. The expander design assures that paths exist
between consecutive layers, avoiding the risk of layer-collapse that is common in many pruning
algorithms, where the algorithm prunes all parameters (weights) in one layer and cuts down the
flow between input and output (Tanaka et al., 2020).

(2) The expander sparsifier removes parameters at initialisation and keeps the sparsified structures
fixed during training, which avoids the expensive computational cost stemming from iterations in
pruning algorithms.

Given a linear transform layer B(S1,S2,E) with adjacency matrix A, we follow the design of Prabhu
et al. (2018) to construct the sparsifier by sampling its subgraph of specific expander structure.

Definition 2. Without loss of generality, we suppose |S1| ≤ |S2|. For each vertex u ∈ S1, we
uniformly sample d vertices {vui }i=1,...,d from S2 to be connected with u. Then, the constructed
graph B′(S1,S2,E′) with corresponding adjacency matrix A′ is the subgraph of B with A′i,j = 1 if
and only if (i, j) ∈ {(u, vui )}u∈S1;i=1,...,d.

Remark (Prabhu et al. (2018)). A graph sampled according to the sampling scheme in Definition 2
has an expansion ratio h(G′) ≈ d and a diameter D ≤ O(log |S1|).

Definition 3 (layer density). We refer to the density of the expander linear layer as the ratio of the
number of sampled connections to the number of connections in the original graph. For example, the
fully-connected layer has density 1. The sampling scheme in Definition 2 returns an expander linear
layer of density d

|S2| .

When we replace all linear layers in the Update steps of a GNN with expander linear layers constructed
by the sampling scheme in Definition 2, we get the Expander GNN. An illustration can be found in
Appendix B.

3.2.2 IMPLEMENTATION OF EXPANDER LINEAR LAYER

The most straightforward way of implementing the expander linear layer is to store the weight matrix
W as a sparse matrix. However, due to the known issue of inefficiency of hardware acceleration
on sparse matrices (Wen et al., 2016), we use masks, similar to those of pruning algorithms, to
achieve the sparsification. A mask M ∈ {0, 1}|S1|×|S2| is of the same dimension as weight matrix
and Mu,v = 1 if and only if A′u,v = 1. An entrywise multiplication is then applied to the mask and
the weight matrix so that undesired parameters in the weight matrix are removed, i.e., Equation (3)
can be rewritten as,

H(L) = σ(Â . . . σ(ÂH(1)M (1) �W (1)) . . .M (L) �W (L)), (4)

where � denotes the Hadamard product.

Theoretically, replacing fully connected linear layers by expander linear layers should both save
memory cost and speed up computation. However, this practical implementation, which is adapted to
current hardware constraints, while saving memory as it requires fewer parameters both in forward
and backward passes, does not improve computation time, and indeed worsen it slightly by adding
new operations. More details can be found in Section 4.2.

3.3 AN EXTREME CASE: ACTIVATION-ONLY GNN

A natural extension for the Expander GNN is to consider the extreme case where the density of
expander linear layer becomes zero, i.e., removing the trainable weight matrix W from the update
step.

This case is worth investigating because of the special role which non-linear activation functions take
in GNNs. Gama et al. (2020) argue that the non-linearity present in GNNs, in form of the activation
functions, has the effect of frequency mixing in the sense that “part of the energy associated with
large eigenvalues” is brought “towards low eigenvalues where it can be discriminated by stable graph
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filters.” This theoretical insight that activation functions help capture information stored in the high
energy part of graph signals is strong motivation to consider the extreme case, which we refer to as
the Activation-Only GNN models, in which each message-passing step is immediately followed by a
pointwise activation function and the linear transformation of the update step is forgone. Hence, in a
Activation-Only GNN, Equation (3) will be rewritten as,

H(L) = σ(Â . . . σ(ÂH(1))). (5)

This proposed simplification is applicable to a wide variety of GNN models, whose extract formula-
tions can be found in Appendix C.3. For comparison we display the model equation of the SGC (Wu
et al., 2019),

H(L) = ÂLH(1)Θ,

where Θ = W (1) . . .W (L). Here the nonlinear activation functions have been removed and the
linear transformations have been collapsed into a single linear transformation layer. Interestingly, we
observe that the repeated application of the symmetric matrix Â to the input data X is equivalent to
an unnormalised version of the power method approximating the eigenvector corresponding to the
largest eigenvalue of Â. Hence, if sufficiently many layers L are used then inference is drawn in the
SGC model simply on the basis of the first eigenvector of Â.

4 EXPERIMENTS AND DISCUSSION

In this section, we evaluate the influence of sparsifying the linear transform layer in the Update steps
by comparing the performance of the proposed models on different downstream graph learning tasks
and datasets with their vanilla counterparts. Specifically, in Section 4.1 we provide an overview of the
experimentation setup and the vanilla GNNs we compare against. Then, in Sections 4.2, 4.3 and 4.4,
we observe the performance of the proposed benchmark models on the tasks of graph classification,
graph regression and node classification, respectively.

4.1 GENERAL SETTINGS AND BASELINES

We experiment on ten datasets from areas such as chemistry, social networks, computer vision and
academic citation, for three major graph learning tasks. Specifically, we work with four TU datasets
(Kersting et al., 2016) and two Image datasets (Knyazev et al., 2019) for graph classification; the
ZINC dataset for graph regression (Irwin et al., 2012) and three Citation datasets (Sen et al., 2008)
for node classification. Detailed statistics of these datasets can be found in Appendix C.

For each dataset on each task, we compare the performance of the vanilla GNN models, the Expander
GNN models with different densities (10%, 50%, 90%), the Activation-Only GNN models with
different activation functions (ReLU, PReLU, Tanh), as well as the simplified model, the SGC for the
GCN models.

To ensure that our inference is not specific to a certain GNN architecture only, we evaluate the
performance across 4 representative GNN models of the literature state-of-the-art. The considered
models are the Graph Convolutional Network (GCN, Kipf & Welling (2017)), the Graph Isomorphism
Network (GIN, Xu et al. (2019)), the GraphSage Network (Hamilton et al., 2017), and the Principle
Neighborhood Aggeragation (PNA, Corso et al. (2020)), along with a MLP baseline that only takes
the node features into account while ignoring the graph structure. For the MLP baseline, we only
consider the vanilla and Expander variants.

Other experiment details, such as the choice of loss functions for different tasks, dataset splits,
hyperparameters as well as the extact message-passing formulation of the models we studied and
their variants can be found in Appendix C.

4.2 GRAPH CLASSIFICATION

Figure 1(a), (b), (c) and (e) show the experiment results of the GCN, GIN and MLP models and their
Expander and Activation-Only variants on the ENZYMES, DD, PROTEINS and IMDB-BINARY
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Figure 1: (a,b,c,e): Accuracy of different model types for GCN, GIN and MLP on
ENZYMES/DD/PROTEINS/IMDB-BINARY datasets; (f,g) Accuracy of different model types for
GCN, GIN and MLP on MNIST/CIFAR10 datasets; (d) Training time (per epoch) of different model
type for GCN on PROTEINS dataset; (h) Number of parameters required for GCN on PROTEINS
dataset.

datasets for graph classification. The evaluation metric is classification accuracy, where the average
accuracy, obtained from a 10-folder cross validation, is used.

One direct observation from Figure 1(a), (b), (c) and (e) is that the Expander GNN models perform
on par with the vanilla models, despite their altered densities. Even the expander-sparsified network
with only 10% edges being present achieves comparable results with the vanilla models. Surprisingly,
the same is true for the Activation-Only model on the ENZYMES, DD and PROTEINS datasets.
IMDB-BINARY is our only graph classification dataset where the node attributes are initialised to all
be equal. This uninformative initialisation, surprisingly, seems to lead to an increased performance if
the linear update step is present, visible in the performance gap of the Activation-Only models and
the Expander GNN models. Different activation functions often do not cause significantly different
results. However, in a few cases the influence of the activation functions is not negligible, as can be
observed in Figure 1(c) in the comparison of the PReLU activation and the Tanh activation on the
PROTEINS dataset. The SGC performs either on par or worse than the Activation-Only model.

As we can see from Figure 1(d) and (h), which are the plots of the training time per epoch and number
of model parameters of GCN and its variants on the PROTEINS dataset, the Activation-Only model
is comparable to the SGC on running time and in the scale of model parameters. Both models are
significantly more efficient than vanilla and Expander models. As stated in Section 3.2.2, the time
efficiency of the Expander GNN models is slightly less than that of the vanilla models due to our
implementation, while theoretically, it should enjoy higher speed.

Figure 1(f) and (g) show the graph classification results on the MNIST and CIFAR10 datsets. Similar
conclusions can be drawn: the Expander GNN models are as good as the vanilla model in terms of
performance, no matter how sparse they are. The Activation-Only models, perform slightly worse
than their vanilla counterparts. Interestingly the GCN Activation-Only model outperforms the SGC
by a larger margin than what we observed on the TU datasets. It seems that especially for these
computer vision datasets the presence of activation functions in the GCN architecture has a large
positive impact on model performance in the graph classification task. In Figure 1(f) and (g) we also
notice that the MLP matches the performance of the GNN models even though the MLP does not
utilise the graph structure which Knyazev et al. (2019) extracted from these datasets.
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Figure 2: (a): Mean Absolute Error of different model types for GCN/GIN/GraphSage/PNA/MLP on
ZINC dataset; (b,c,d): Accuracy of different model types for GCN/GIN/GraphSage/PNA/MLP on
CORA/CITESEER/PUBMED datasets.

4.3 GRAPH REGRESSION

We can find the results of our studied and proposed models on the ZINC dataset for graph regression
in Figure 2(a). The evaluation metric, displayed on the y-axis in Figure 2(a), is the Mean Absolute
Error (MAE). Similar to the graph classification task, the Expander GCN and GraphSage models
are on the same level with vanilla models, regardless of their densities. The performance of the
Expander GIN and PNA models exhibits greater variance accross the different densities, especially
in the case of the PNA models the performance is increasing as the network gets denser indicating
that the density of the Update step does positively contribute to the model performance of the PNA
for the task of graph regression on the ZINC dataset. The Activation-Only models perform worse
than their Expander counterparts on this task, again confirming the insight from the results of the
Expander GNNs that the linear transform in the update step does improve performance in this graph
regression task. Again we see that Activation-Only GCNs outperform the SGC benchmark in this set
of experiments.

4.4 NODE CLASSIFICATION

Results from the node classification experiments on three citation graphs (CORA, CITESEER and
PUBMED) can be found in Figure 2(b), (c) and (d). In contrast to the graph classification and
graph regression tasks discussed in Sections 4.2 and 4.3, the Expander model with 10% density
shows a non-negligible drop in performance compared to the vanilla model on node classification
task; while the 50% and 90% dense Expander models remain comparable to the vanilla one. The
Activation-Only models also perform as well as or even better than (on CITESEER) the vanilla model.
The performance of the GCN Activation-Only model and SGC are equally good across all three
datasets.

5 CONCLUSION

With extensive experiments across different GNN models and graph learning tasks, we are able to
confirm that the Update step can be sparsified heavily without a significant performance cost. In fact
for six of the ten tested datasets across a variety of tasks we found that the linear transform can be
removed entirely without a loss in performance, i.e., the Activation-Only models performed on par
with their vanilla counterparts. The Activation-Only GCN model consistently outperformed the SGC
model and especially in the computer vision datasets we witnessed that the activation functions seem
to be crucial for good model performance accounting for an accuracy difference of up to 59%. These
findings partially support the hypothesis by Wu et al. (2019) that the update step can be simplified
significantly without a loss in performance. Contrary to Wu et al. (2019) we find that the nonlinear
activation functions result in a significant accuracy boost and the linear transfromation in the update
step can be removed or heavily sparsified.

The Activation-Only GNN is an effective and simple benchmark model framework for any message
passing neural network. It enables practitioners to test whether they can cut the large amount of model
parameters used in the linear transform of the update steps. If the linear transfrom does contribute
postitively to the model’s peformance then the Expander GNNs provide a model class of tunable
sparsity which allows efficient parameter usage.

8
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APPENDIX

A COMPLETE EXPERIMENT RESULTS

A.1 GRAPH CLASSIFICATION

Table 1: Full results of GCN/GIN/MLP on Four TU Datasets

ENZYMES DD
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 63.67 ± 8.06 0.2004 37853 75.90 ± 3.93 1.3841 43643

Activations

GCN

lelu 66.67 ± 6.24 0.2073

37853

74.79 ± 3.46 1.3979

43643

prelu 66.67 ± 6.71 0.2486 75.39 ± 3.98 1.4643
relu 66.33 ± 5.31 0.2132 74.88 ± 3.41 1.3915
selu 66.17 ± 6.99 0.206 75.64 ± 4.54 1.3948

softshrink 66.17 ± 7.11 0.2031 58.66 ± 0.30 1.4099
tanh 65.67 ± 7.04 0.2154 76.57 ± 5.20 1.391

linear 58.83 ± 8.53 0.2322 37999 73.77 ± 2.50 1.4246 43781

GIN

lelu 52.17 ± 5.78 0.3219

5420

70.12 ± 4.30 1.6544

10610

prelu 55.17 ± 7.94 0.3531 69.19 ± 3.02 1.7253
relu 51.00 ± 5.88 0.3122 70.03 ± 3.27 1.6424
selu 53.83 ± 7.34 0.3201 72.49 ± 4.30 1.6772

softshrink 54.83 ± 7.97 0.3165 71.22 ± 3.39 1.6558
tanh 62.83 ± 7.15 0.3073 71.32 ± 5.29 1.6443

linear 42.83 ± 7.57 0.3222 5970 76.65 ± 2.10 1.6726 11140

Expander

GCN
10% 66.33 ± 6.78 0.2863 22775 74.53 ± 3.50 1.5731 21064
50% 64.83 ± 8.64 0.285 58293 74.28 ± 2.52 1.5856 56960
90% 64.83 ± 9.44 0.2917 93209 75.13 ± 4.69 1.5763 92215

GIN
10% 65.83 ± 7.75 0.3798 8918 68.59 ± 2.70 1.6605 6730
50% 67.00 ± 6.05 0.3822 29070 70.03 ± 4.20 1.6427 28789
90% 67.50 ± 5.74 0.3729 49222 68.93 ± 3.26 1.637 50335

MLP
10% 71.50 ± 5.13 0.1653 26001 77.00 ± 3.39 1.0672 23858
50% 74.67 ± 5.72 0.1783 59661 76.66 ± 2.69 1.07 58020
90% 73.17 ± 7.65 0.1772 92811 76.24 ± 3.80 1.0621 91631

Vanilla
GCN — 66.50 ± 8.71 0.2557 102239 75.13 ± 3.44 1.5782 101189
GIN — 67.67 ± 7.68 0.3692 54260 68.76 ± 5.55 1.6572 55978
MLP — 74.17 ± 6.34 0.1646 101481 77.43 ± 3.98 1.0523 100447

PROTEINS IMDB-BINARY
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 67.65 ± 2.21 0.3374 39311 61.30 ± 3.61 0.3297 31499

Activations

GCN

lelu 75.20 ± 5.19 0.3464

39311

61.30 ± 4.05 0.3418

31499

prelu 75.29 ± 4.85 0.3654 61.00 ± 3.92 0.388
relu 74.48 ± 4.61 0.348 61.90 ± 4.01 0.3497
selu 75.92 ± 2.88 0.3469 62.70 ± 3.32 0.3479

softshrink 70.53 ± 3.27 0.3462 50.00 ± 0.00 0.344
tanh 70.89 ± 2.70 0.3452 61.20 ± 4.56 0.3522

linear 67.38 ± 2.26 0.3523 39457 61.70 ± 4.05 0.3762 31637

GIN

lelu 67.74 ± 4.82 0.4978

4410

68.10 ± 4.50 0.5292

1282

prelu 70.34 ± 4.78 0.5144 69.50 ± 3.88 0.577
relu 68.82 ± 5.97 0.4897 67.90 ± 3.96 0.5262
selu 72.40 ± 5.03 0.4989 69.00 ± 6.03 0.5345

softshrink 69.45 ± 3.66 0.4929 69.70 ± 4.31 0.5271
tanh 71.96 ± 4.26 0.494 67.30 ± 5.62 0.5233

linear 69.72 ± 1.83 0.5 4960 68.80 ± 7.24 0.5439 1812

Expander

GCN
10% 76.55 ± 1.90 0.4524 22781 71.60 ± 5.50 0.4673 19920
50% 76.36 ± 3.43 0.448 58948 72.40 ± 5.70 0.4779 50888
90% 75.38 ± 4.01 0.4476 94502 72.30 ± 6.65 0.4835 81303

GIN
10% 70.53 ± 3.96 0.5481 6819 72.00 ± 6.16 0.6368 5850
50% 70.08 ± 2.69 0.5483 27455 68.80 ± 5.90 0.6268 24125
90% 70.71 ± 2.55 0.5455 48091 70.30 ± 7.39 0.6127 41975

MLP
10% 69.00 ± 4.99 0.2856 25453 50.00 ± 0.00 0.287 22538
50% 64.15 ± 4.32 0.2852 58928 50.00 ± 0.00 0.2896 51244
90% 63.61 ± 2.40 0.2831 91888 50.00 ± 0.00 0.2967 79487

Vanilla
GCN — 76.73 ± 3.85 0.4388 103697 72.70 ± 5.68 0.4433 89045
GIN — 72.51 ± 2.39 0.5309 53250 69.00 ± 6.23 0.6135 46650
MLP — 64.33 ± 4.93 0.2769 100643 50.00 ± 0.00 0.2725 86895
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Table 2: Full results of GCN/GIN/MLP on Computer Vision datasets (MNIST/CIFAR10)

MNIST CIFAR10
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 24.48 100.098 35811 27.90 143.721 36103

Activations

GCN

lelu 83.52 101.554

14349

48.31 39.6657

14641
prelu 83.84 103.11 47.90 41.3494
relu 83.16 102.443 48.27 40.2591
tanh 77.67 102.975 43.89 40.6699

linear 24.73 107.673 14495 27.76 38.6787 14787

GIN

lelu 75.68 119.803

5990

37.90 44.6216

6210
prelu 71.60 115.862 36.48 46.0211
relu 75.73 119.081 38.67 45.0776
tanh 79.49 119.729 39.71 45.0382

linear 31.99 119.386 6540 29.89 44.9312 6760

Expander

GCN
10% 89.00 124.411 22713 50.27 45.0057 22741
50% 90.75 124.075 57346 50.69 45.1236 57492
90% 90.87 124.166 91392 51.68 44.769 91654

GIN
10% 88.73 120.735 10973 35.93 44.4764 10995
50% 92.31 119.554 30465 40.35 44.537 30575
90% 90.24 116.378 49957 42.25 44.401 50155

MLP
10% 94.97 67.2461 26980 57.96 31.6988 27012
50% 96.04 66.9236 61456 58.12 31.6178 61624
90% 96.17 66.7391 95425 58.85 31.6307 95727

Vanilla
GCN — 90.77 124.091 100197 52.04 44.337 100489
GIN — 90.33 120.191 54830 42.46 45.2386 55050
MLP — 96.17 66.125 104044 58.66 31.5435 104380
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A.2 GRAPH REGRESSION

Table 3: Full results of GCN/GIN/GraphSage/PNA/MLP on Molecule dataset (ZINC)

ZINC
MAE Time per Epoch(s) #Parameters

Simple GCN — 0.6963 1.9847 34347

Activations

GCN

lelu 0.5947 1.8624

13177

prelu 0.5855 1.9273
relu 0.5967 1.8407
selu 0.6128 1.8581

softshrink 0.6549 1.8574
tanh 0.6086 1.8639

linear 0.699 1.9033 13322

GIN

lelu 0.5368 2.8046

555

prelu 0.5743 2.8826
relu 0.5524 2.8009
selu 0.5424 2.8144

softshrink 0.5221 2.821
tanh 0.5354 2.8263

linear 0.643 2.8708 1105

GraphSage

lelu 0.4937 4.1406

5130

prelu 0.494 4.3778
relu 0.4907 4.1238
selu 0.5365 4.1293

softshrink 1.5508 4.1428
tanh 0.5665 4.121

linear 0.5591 4.2496 5850

PNA

lelu 0.5181 27.9922

3515

prelu 0.5038 28.1269
relu 0.4972 28.0074
selu 0.5285 27.9645

softshrink 0.5374 28.0993
tanh 0.4493 27.9598

linear 0.6643 28.0911 5390

Expander

GCN
10% 0.3958 2.5833 21877
50% 0.3856 2.5793 55517
90% 0.3845 2.5578 89157

GIN
10% 0.4888 3.0905 5835
50% 0.5274 3.1125 25195
90% 0.4456 3.0852 44555

GraphSage
10% 0.4721 4.461 11970
50% 0.4584 4.4495 37890
90% 0.4579 4.4581 63810

MLP
10% 0.6931 2.1455 23775
50% 0.6898 2.1426 59775
90% 0.6873 2.1542 95775

PNA
10% 0.3798 32.0922 23735
50% 0.3384 32.148 102495
90% 0.2946 32.0666 181255

Vanilla

GCN — 0.3823 2.5538 97857
GIN — 0.4939 3.0569 49395

GraphSage — 0.4526 4.4149 70290
MLP — 0.6916 2.1085 104775
PNA — 0.3184 31.6077 201205
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A.3 NODE CLASSIFICATION

Table 4: Full results of GCN/GIN/GraphSage/PNA/MLP on Three Citations dataset

CORA CITESEER PUBMED
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 76.90 0.0554 32982 72.70 0.1289 81488 78.90 0.14 9519

Activations

GCN

lelu 76.90 0.0553

10038

72.70 0.1302

22224

78.90 0.141

1503

prelu 76.90 0.057 72.70 0.1326 78.90 0.1432
relu 76.90 0.0556 72.70 0.13 78.90 0.141
selu 78.40 0.0558 72.50 0.1303 79.10 0.1411

softshrink 30.90 0.0557 23.10 0.1301 18.00 0.1411
tanh 76.90 0.0557 72.70 0.1303 78.80 0.1406

linear 73.80 0.0564 11471 63.50 0.132 25927 73.80 0.1424 2003

GIN

lelu 67.80 0.0589

30114

61.90 0.138

66672

72.90 0.1477

4509

prelu 67.80 0.0597 61.90 0.1388 72.90 0.1485
relu 67.80 0.0589 61.90 0.1379 72.90 0.1473
selu 68.00 0.0589 62.30 0.138 72.70 0.1477

softshrink 54.30 0.0589 61.40 0.1379 73.30 0.1477
tanh 70.70 0.0589 63.80 0.1379 75.50 0.1477

linear 61.40 0.0591 34413 50.80 0.1384 77781 72.40 0.1481 6009

GraphSage

lelu 76.90 0.0925

10038

66.00 0.1701

22224

73.40 0.2733

1503

prelu 76.90 0.1194 66.00 0.2211 73.40 0.4124
relu 76.90 0.0934 66.00 0.1703 73.40 0.2742
selu 76.90 0.0925 65.70 0.1701 73.40 0.274

softshrink 30.50 0.0922 23.10 0.1703 22.20 0.2744
tanh 78.10 0.0928 66.00 0.1706 74.30 0.2738

linear 62.30 0.1155 17203 54.70 0.2195 40739 65.90 0.4107 4003

PNA

lelu 63.90 0.1883

23063

58.90 0.2413

59366

71.10 0.4561

8067

prelu 67.90 0.1879 50.90 0.2395 72.00 0.454
relu 63.80 0.1861 58.80 0.2407 71.30 0.4432
selu 70.50 0.1891 63.80 0.2403 75.70 0.4551

softshrink 30.90 0.1874 23.10 0.2409 18.00 0.4566
tanh 64.80 0.1883 61.40 0.2403 73.30 0.4526

linear 66.40 0.1879 23111 63.40 0.2413 59414 66.00 0.4508 8115

Expander

GCN
10% 68.20 0.0615 2423 57.10 0.1268 6038 75.70 0.1384 867
50% 80.00 0.0573 11591 65.10 0.127 29734 77.60 0.1385 4067
90% 81.40 0.0563 20759 68.30 0.1268 53430 77.60 0.1384 7267

GIN
10% 66.20 0.0583 12612 53.70 0.1297 28396 74.50 0.1405 2453
50% 77.00 0.0584 21892 59.30 0.1299 52204 76.90 0.1406 5765
90% 78.90 0.0583 31156 64.80 0.1296 75996 77.40 0.1405 9061

GraphSage
10% 46.60 0.0971 4823 45.40 0.167 12054 65.00 0.2755 1715
50% 64.80 0.0972 23175 59.30 0.1672 59462 72.50 0.2758 8115
90% 70.50 0.0964 41511 62.50 0.1673 106854 72.30 0.2747 14515

MLP
10% 19.00 0.0626 2423 16.90 0.1311 6038 40.70 0.1439 867
50% 35.20 0.0621 11591 16.00 0.1313 29734 45.10 0.1441 4067
90% 32.90 0.0618 20759 16.90 0.1319 53430 42.20 0.1441 7267

PNA
10% 74.10 0.1799 31271 58.40 0.2865 78278 75.60 0.4511 11043
50% 77.50 0.1805 150503 63.50 0.2878 386374 76.30 0.4505 52643
90% 77.30 0.1799 269735 62.10 0.2871 694470 77.40 0.4492 94243

Vanilla

GCN — 80.90 0.0566 23063 69.30 0.1264 59366 78.30 0.138 8067
GIN — 77.00 0.0575 33492 63.70 0.1289 81964 77.70 0.1398 9893

GraphSage — 44.90 0.1294 46431 51.90 0.1937 119024 71.00 0.3363 16399
MLP — 25.10 0.0611 23063 16.10 0.1305 59366 27.70 0.1456 8067
PNA — 81.10 0.1769 299543 65.30 0.2817 771494 77.80 0.4525 104643
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A.4 CONVERGE BEHAVIOR: AN EXAMPLE OF GCN ON PROTEINS DATASET
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Figure 3: Train loss (cross-entropy) converging behaviour of different model type for GCN on
Proteins dataset.

Figure 3 exhibits the loss convergence in training of GCN model class on PROTEINS dataset. We
implement a learning rate decay scheme and terminate the training process when learning rate drops
to a preset minimum value. Then if a model terminates ealier than its alternatives, it indicates that
this model converges faster. As we can see from the figure, Activation-Only and SGC both terminate
the process with less epochs than vanilla and Expander models. Similar to the main paper, we are
able to draw the conclusion that Activation-Only and SGC do not only have fewer parameters but that
their training also converges faster, hence more efficient in time.

B ILLSTRATION OF EXPANDER MPNNS

Iteration 1

Iteration 2

Iteration L

Aggregation Update

Figure 4: Illustration of Expander MPNNs. The right part is the Aggregation or graph propagation
step and the left part is theUpdate step. The red lines on the left part represents reserved connections
in MLPs sampled by expander sparsifier.
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C EXTRA INFORMATION FOR EXPERIMENTS AND MODELS

C.1 DATASET DETAILS

Table 5: Properties of all datasets used in experiments.

Dataset #Graphs #Nodes (avg.) #Edges (avg.) Task

TU datasets

ENZYMES 600 32.63 62.14

Graph Classification
DD 1178 284.32 715.66

PROTEINS 1113 39.06 72.82
IMDB-BINARY 1000 19.77 193.06

Computer Vision MNIST 70K 70.57 282.27
CIFAR10 60K 117.63 470.53

ZINC 12K 23.16 24.92 Graph Regression

Citations
CORA 1 2708 5278

Node ClassificationCITESEER 1 3327 4552
PUBMED 1 19717 44324

In Table 5, we summarise the statistics of the ten datasets that we use in detail. We display their
number of graphs, number of nodes and of edges, as well as the tasks that are performed on them. In
the number of nodes and edges column we show the values, or the average of these values if there are
multiple graphs.

C.2 EXPERIMENT SETTINGS

In order to ensure a fair comparison across different GNN models, we follow the recent bench-
mark proposed in Dwivedi et al. (2020). Specifically, we use their datasets on computer vision
(MNIST/CIFAR10) and chemistry(TU datasets/ZINC dataset); we follow the same training proce-
dure, such as train/valid/test dataset splits, choice of optimiser, learning rate decay scheme, etc., as
well as the same hyper-parameters, such as initial learning rate, hidden feature dimensions, number of
GNN layers, etc. We also implement the same normalisation tricks such as adding batch normalisation
after non-linearity of each Update step. Their setting files (training procedure/hyperparameters) are
made public and can be found in this repository.

For the node classification task on citation datasets, we follow the settings from Wu et al. (2019). Our
experiments found that the node classification task on citation graphs of small/medium size can be
easily overfit and model performances heavily depend on the choice of hyperparameters. Using the
same parameters with Wu et al. (2019), such as learning rate, number of training epochs and number
of GNN layers, helps us achieve similar results with the paper on the same model, which allows a fair
comparison between the proposed Activation-Only models and the SGC.

C.3 MODEL DETAILS: GNNS UNDER THE MPNN FRAMEWORK

In Section 3, we present the message-passing GNN framework and explained the ideas which drive
the Expander and Activation-Only models that we proposed. These ideas are illustrated by an example
of GCN. In this section, we will recall the MPNN formulation. Normalisation layers such as batch
normalisation are omitted in the formulation for the purpose of clarity. For each of the models, we
present their vanilla version, Expander version and Activation-Only version. As stated in Section 3,
we ignore the various variants of vanilla models and only work with variants of simple forms.

C.3.1 GRAPH CONVOLUTIONAL NETWORK

Vanilla GCN and Expander GCN We have shown the matrix form of Aggregation and Update
iterations in GCN in the main paper. Here we are going to revisit the message-passing procedure in
GCN from the angle of a single node. At iteration l,

m
(l)
i =

1√
degi

∑
j∈N (i)

h
(l)
j

1√
degj

, (6)

h
(l+1)
i = σ(m

(l)
i M (l) �W (l)), (7)
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where W (l) is the weight matrix of lth linear transform layer and M (l) is its corresponding mask. For
vanilla GCNs, all entry of M (l) is 1 while for Expander GNN M (l) is a sparse matrix. Equation (6)
is the Aggregation step, which constructs “messgae” equivalent to a weighted average of neighbours’
embeddings, then Equation (7) Updates node i’s representation based on constructed “message”.

Activation-Only GCN The Activation-Only model can then simply be written as,

h
(l+1)
i = σ

 1√
degi

∑
j∈N (i)

h
(l)
j

1√
degj

 .

C.3.2 GRAPH ISOMORPHISM NETWORK

Vanilla GIN and Expander GIN The message-passing procedure of GIN is very similar to GCN,
except that at the Aggregation step, it adds explicitly a learnable ratio of the central node’s own
representation, defined as,

m
(l)
i = (1 + ε)h

(l)
i +

∑
j∈N (i)

h
(l)
j . (8)

Its Update step is the same with Equation (7).

Activation-Only GIN Similar to GCN, the Activation-Only model can then be written as,

h
(l+1)
i = σ

(1 + ε)h
(l)
i +

∑
j∈N (i)

h
(l)
j

 .

C.3.3 GRAPHSAGE NETWORK

Vanilla GraphSAGE and Expander GraphSAGE GraphSage also incorporates explicitly the
central node’s representation in the Aggregation step by concatenation. Their message-passing
procedure is,

m
(l)
i = h

(l)
i ‖MAXj∈N (i)σ(h

(l)
j M

(l)
1 �W

(l)
1 ), (9)

h
(l+1)
i =

ĥi
(l+1)

‖ĥi
(l+1)
‖2
, ĥi

(l+1)
= σ(m

(l)
i M

(l)
2 �W

(l)
2 ), (10)

where ‖ denotes concatenation and MAX function takes maximum along each feature dimension.

Activation-Only GraphSAGE In Activation-Only models for GraphSage, we need to consider the
issue of dimension incoherence after removing linear transforms. Since a simple removal of linear
transforms will result in an exponential growth in the dimension of hidden representation. One
convenient solution is to replace concatenation with a summation so that the dimension of either m
or h remains unchanged after the iteration. The message-passing steps then become,

m
(l)
i = h

(l)
i + MAXj∈N (i)σ(h

(l)
j ), (11)

h
(l+1)
i =

ĥi
(l+1)

‖ĥi
(l+1)
‖2
, ĥi

(l+1)
= σ(m

(l)
i ). (12)

A more complex way is to separate the propagation and update of “message” m and hidden represen-
tation h. More precisely,

m
(l)
i = MAXj∈N (i)σ(m

(l−1)
j ), m

(0)
i = h

(1)
i , (13)

h
(l+1)
i =

ĥi
(l+1)

‖ĥi
(l+1)
‖2
, ĥi

(l+1)
= σ(h

(l)
i ‖m

(l)
i ), (14)

where the dimension of hi grows proportionally to the number of iterations. Neither of the methods
is out-weighted by the other based on evidence from our empirical experiments. However, from an
economic view on developping parsimonious GNN, Equation 11 is our preferred method.
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C.3.4 PRINCIPAL NEIGHBOURHOOD AGGREGATION

Vanilla PNA and Expander PNA The PNA model concatenates in its Aggregation step the “mes-
sages” obtained from different combinations of scalars and aggregators. This step can be written as
(Fey & Lenssen, 2019),

m
(l)
i =

⊕
j∈N (i)

σ(h
(l)
j M (l) �W (l)), (15)

where
⊕

is defined as the outer product, denoted by ⊗, of the arrays of scalars and aggregators, with
cardinality c1 and c2, respectively, as follow,[

1
S(D, α = 1)
S(D, α = −1)

]
︸ ︷︷ ︸

scalars

⊗

mean
std
max
min


︸ ︷︷ ︸
aggregators

.

The Update step is the same as Equation (7).

Activation-Only PNA Similar to the Activation-Only GraphSage, the Activation-Only PNA also
suffers from dimension incoherence issue, due to the concatenate operation. Instead of concatenation,
we take the average of each representation obtained from one combination of scaler and aggregator in
Activation-Only models. Then the message-passing procedure becomes,

h
(l+1)
i = σ

 1

c1c2

∑
1T

 ⊕
j∈N (i)

σ(h
(l)
j )

1

 ,

where c1 denotes the number of scalars and c2 denotes the number of aggregators used in the PNA.

C.3.5 GRAPH-AGNOSTIC BASELINE: MULTI-LAYER PERCEPTRON

Vanilla MLP and Expander MLP The MLP baseline has no Aggregation steps. Its Update step is
simply,

h
(l+1)
i = σ(h

(l)
i M (l) �W (l)).

C.4 LOSS FUNCTIONS FOR DIFFERENT TASKS

After L message-passing iterations, we obtain H(L) = [h
(L)
1 , . . . ,h

(L)
n ]T ∈ Rn×d as the final node

embedding, where we denote d as its feature dimension. Depending on downstream tasks, we either
keep working with H(L) or construct a graph-level representation g from H(L) by,

g =
1

n

∑
i∈V

h
(L)
i ,

which is refer to as the Readout step in Section 3.

g or H(L) is then fed into a fully-connected network (MLP) to be transformed into the desired form
of output for further assessment, i.e., a scalar value as prediction scores for graph regression. We
denote this network as f(·), which, in our experiments, is fixed to be a three-layer MLP of the form

f(·) = σ(σ(·,W1)W2)W3,

where W1 ∈ Rd×[ d2 ], W2 ∈ R[ d2 ]×[
d
4 ], W3 ∈ R[ d4 ]×k with k being the desired output dimension.

The final output, either f(g) or f(H(L)), is compared to the ground-truth by a task-specific loss
function. For graph classification and node classification, we choose cross-entropy loss and for graph
regression, we use mean absolute error (or the L1 loss).
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