ANALYSING THE UPDATE STEP IN GRAPH NEURAL NETWORKS VIA SPARSIFICATION

Anonymous authors

Paper under double-blind review

Abstract

In recent years, Message-Passing Neural Networks (MPNNs), the most prominent Graph Neural Network (GNN) framework, have celebrated much success in the analysis of graph-structured data. In MPNNs the computations are split into three steps, Aggregation, Update and Readout. In this paper a series of models to successively sparsify the linear transform in the Update step is proposed. Specifically, the ExpanderGNN model with a tuneable sparsification rate and the Activation-Only GNN, which has no linear transform in the Update step, are proposed. In agreement with a growing trend in the relevant literature the sparsification paradigm is changed by initialising sparse neural network architectures rather than expensively sparsifying already trained architectures. These novel benchmark models enable a better understanding of the influence of the Update step on model performance and outperform existing simplified benchmark models such as the Simple Graph Convolution (SGC). The ExpanderGNNs, and in some cases the Activation-Only models, achieve performance on par with their vanilla counterparts on several down-stream graph prediction tasks, proving that often the update step has little impact on the performance and resulting in models with exponentially fewer trainable parameters than the state-of-the-art.

1 INTRODUCTION

Recent years have witnessed the blossom of Graph Neural Networks (GNNs). They have become the standard tools for analysing and learning graph-structured data (Wu et al., 2020) and have demonstrated convincing performance in various application areas, including chemistry (Duvenaud et al., 2015), social networks (Monti et al., 2019), natural language processing (Yao et al., 2019) and neural science (Griffa et al., 2017).

Among various GNN models, Message-Passing Neural Networks (MPNNs, Gilmer et al. (2017)) and their variants are considered to be the dominating class. In MPNNs, the learning procedure can be separated into three major steps: *Aggregation*, *Update* and *Readout*, where *Aggregation* and *Update* are repeated iteratively so that each node's representation is updated recursively based on the transformed information aggregated over its neighbourhood. With each iteration, the receptive field of the hidden representation is increased by 1-step on the graph structure such that at k^{th} iteration, the hidden state of node *i* is composed of information from its *k*-hop neighbourhood.

There is thus a division of labour between the *Aggregation* and the *Update* step, where the *Aggregation* utilises local graph structure, while the *Update* step is only applied to single node representations at a time independent of the local graph structure. From this a natural question then arises: What is the impact of the graph-agnostic *Update* step on the performance of GNNs?

Wu et al. (2019) first challenged the role of *Update* steps by proposing a simplified graph convolutional network (SGC) where they removed the non-linearities in the *Update* steps and collapsed the consecutive linear transforms into a single transform. Their experiments demonstrated, surprisingly, that in some instances the *Update* step of Graph Convolutional Network (GCN, Kipf & Welling (2017)) can be left out completely without the models' accuracy decreasing.

In the same spirit, we propose in this paper to analyse the impact of the *Update* step in a systematic way. To this end, we propose two nested model classes, where the *Update* step is successively sparsified. In the first model class which we refer to as *Expander* GNN, the linear transform layers

of the *Update* step are sparsified; while in the second model class, the linear transform layers are removed and only the activation functions remain in the model. We name the second model *Activation-Only* GNN and it contrasts the SGC where the activation functions where removed to merge the linear layers.

Inspired by the recent advances in the literature of sparse Convolutional Neural Network (CNN) architectures (Prabhu et al., 2018), we propose to utilise expander graphs as the sparsifier of the linear layers (hence the model's name). Guided by positive graph theoretic properties, it optimises sparse network architectures at initialisation and accordingly saves the cost of traditional methods of iteratively pruning connections during training.

Through a series of empirical assessments on different graph learning tasks (graph and node classification as well as graph regression), we demonstrate that the *Update* step can be heavily simplified without inhibiting performance or relevant model expressivity. Our findings partly agree with the work in (Wu et al., 2019), in that dense *Update* steps in GNN are expensive and often unnecessary. In contrast to their proposition, we find that there are many instances in which leaving the *Update* step out completely significantly harms performance. In these instances our *Activation-Only* model shows superior performance while matching the number of parameters and efficiency of the SGC.

Our contributions can be summarised as follows.

- (1) We explore the impact of the *Update* step in MPNNs through the newly proposed model class of *Expander* GNNs with tuneable density. We show empirically that *a sparse update step matches the performance of the standard model architectures*.
- (2) As an extreme case of the *Expander* GNN, as well as an alternative to the SGC, we propose the *Activation-Only* GNNs that remove the linear transformation layer from the *Update* step and keep non-linearity in tact. We observe the *Activation-Only* models to exhibit comparable, sometimes significantly superior performance to SGC while being equally time and memory efficient.

Both of our proposed model classes can be extrapolated without further efforts to a variety of models in the MPNN framework and hence provide practitioners with an array of efficient and often highly performant GNN benchmark models.

The rest of this paper is organised as follows. In Section 2, we provide an overview of the related work. Section 3 introduces preliminary concepts of MPNNs and expander graphs, followed by a detailed presentation of our two proposed model classes. Section 4 discusses our experimental setting and empirical evaluation of the proposed models in a variety of downstream graph learning tasks.

2 RELATED WORKS

In recent years the idea of *utilising expander graphs in the design of neural networks* is starting to be explored in the CNN literature. Most notably, Prabhu et al. (2018) propose to replace linear fully connected layers in deep networks using an expander graph sampling mechanism and hence, propose a novel CNN architecture they call X-nets. The great innovation of this approach is that well-performing sparse neural network architectures are initialised rather than expensively calculated. Furthermore, they are shown to compare favourably in training speed, accuracy and performance trade-offs to several other state of the art architectures. McDonald & Shokoufandeh (2019) and Kepner & Robinett (2019) build on the X-net design and propose alternative expander sampling mechansisms to extend the simplistic design chosen in the X-nets. Independent of this literature branch, Bourely et al. (2017) explore 6 different mechanisms to randomly sample expander graph layers. Across the literature the results based on expander graph layers are encouraging. Since our experiments suggest that in the novel context of GNNs the simplistic sampling mechanism from Prabhu et al. (2018) produces results on par with the vanilla GNNs, we did not explore the more advanced sampling mechanisms in this work. However, we believe that as GNN models, tasks and datasets gain in complexity, the development of more refined expander sampling mechansisms is likely to positively contribute to the GNN performance.

Recently, two papers observed that *simplifications in the update step of the GCN model* is a promising area of research (Wu et al., 2019; Salha et al., 2019). Wu et al. (2019) proposed the Simple Graph Convolution (SGC) model, where simplification is achieved by removing the non-linear activation functions from the GCN model. This removal allows them to merge all linear transformations in

the update steps into a single linear transformation without sacrificing expressive power. Salha et al. (2019) followed a similar rationale in their simplification of the graph autoencoder and variational graph autoencoder models. These works have had an immediate impact on the literature featuring as a benchmark model and object of study in many recent papers. The idea of omitting update steps guided us in the design of simplified models (Chen et al., 2020) and has found successful application in various areas where model complexity needs to be reduced (Waradpande et al., 2020; He et al., 2020) or very large graphs ($\sim 10^6$ nodes/edges) need to be processed (Salha et al., 2020).

In our work we aim to extend these efforts by providing more simplified benchmark models for GNNs without a specific focus on the GCN.

3 INVESTIGATING THE ROLE OF THE UPDATE STEP

In this section, we present the two proposed model classes, where we sparsify or remove the linear transform layer in the *Update* step, with the aim to systematically analyse the impact of the *Update* step. We begin in Section 3.1 by introducing the general model structure of MPNNs, the main GNN class we study in this paper, and expander graphs, the tool we use to sparsify linear layers. We then demonstrate how expander graphs are used to sparsify linear layers and how an *Expander* GNN is constructed in Section 3.2. The idea of *Activation-Only* GNNs is discussed in Section 3.3 and a comparison to the SGC model is drawn.

3.1 PRELIMINARIES

3.1.1 MESSAGE-PASSING GRAPH NEURAL NETWORK

Given a graph $\mathcal{G} = (\mathbf{A}, \mathbf{X})$, where $\mathbf{A} = [0, 1]^{n \times n}$ denotes the graph's adjacency matrix, which contains the information of the node set \mathbb{V} , and $\mathbf{X} \in \mathbb{R}^{n \times d} = [\mathbf{x}_1, \dots, \mathbf{x}_n]^T$ represents the initial node features of dimension d, a graph learning task aims at learning meaningful embeddings on the node or graph level from this graph that can be used in downstream tasks such as node or graph classification. MPNNs, a prominent paradigm that arose in recent years for performing machine learning tasks on graphs, learn such embeddings by iteratively aggregating information from the neighbourhoods of each node and updating their representations based on this information. Precisely, the learning procedure of MPNNs can be divided into the following phases:

Initial (optional). In this phase, the initial node features X are mapped from the feature space to a hidden space by a parameterised neural network $U^{(0)}$, usually a fully-connected linear layer. $H^{(1)} = U^{(0)}(X) = (h_1^{(1)}, \dots, h_n^{(1)})$, where the hidden representation of node *i* is denoted as $h_i^{(1)}$, which will be used as the initial point for later iterations.

Aggregation. In this phase, MPNNs gather, for each node, information from the node's neighbourhood, denoted $\mathcal{N}(i)$ for node *i*. The gathered pieces of information are called "messages", denoted by m_i . Formally, at iteration *l*,

$$\boldsymbol{m}_{i}^{(l)} = f^{(l)}(\{\boldsymbol{h}_{j}^{(l)} | j \in \mathcal{N}(i)\}), \tag{1}$$

where $f^{(l)}(\cdot)$ is the aggregation function at iteration l. Due to the isotropic nature of graphs (arbitrary node labelling), this function needs to be permutation invariant. It also has to be differentiable so that the framework will be end-to-end trainable.

Update. The nodes then update their hidden representations based on their current representations and the received "messages". For node i at iteration l, we have

$$\boldsymbol{h}_{i}^{(l+1)} = U^{(l)}(\boldsymbol{h}_{i}^{(l)}, \boldsymbol{m}_{i}^{(l)}),$$
(2)

where $U^{(l)}$ is the update function at iteration l.

Readout (optional). After *L* aggregation and update iterations, depending on the downstream tasks, the MPNN will either output node representations directly or generate a graph representation

via a readout phase, $g = R(\{h_i^{(L)} | i \in \mathbb{V}\})$. Just like the aggregation function, the readout function also needs to be permutation invariant and differentiable.

This paper focuses on the *Update* step. More precisely, we would like to find the answer to the question: *What is the impact of the Update step on the performance of GNNs?*

It is clear that the MPNN framework divides its learning procedure into two parts: the *Aggregation* step that utilises graph structure and the *Update* step, the main source of model parameters while being completely agnostic to graph structure. Thus, understanding the importance of the *Update* step could have a great impact on the design of parsimonious GNNs.

Note that various choices of *Aggregation*, *Update* and *Readout* functions are proposed in the literature. To avoid shifting from the subject of this paper, we work with the simplest and most widely used function choices, such as sum, mean and max aggregators for *Aggregation*, the Multi-Layer Perceptron (MLP) for the *Update* step and summation for the *Readout*. As an example to visualise our model in the subsequent sections we use the following matrix representation of the GCN computations,

$$\boldsymbol{H}^{(L)} = \sigma(\hat{\boldsymbol{A}} \dots \sigma(\hat{\boldsymbol{A}} \boldsymbol{H}^{(1)} \boldsymbol{W}^{(1)}) \dots \boldsymbol{W}^{(L)}), \tag{3}$$

where σ denotes a nonlinear activation function, $W^{(i)}$ contains the trainable weights of the linear transform in the update step and $\hat{A} = \tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}$ is the symmetric normalised adjacency matrix with $\tilde{A} = A + I$ denoting the adjacency matrix with added self-loops and \tilde{D} being the corresponding degree matrix.

Now we proceed to define the class of expander graphs, which serves as necessary background knowledge for our chosen sparsification mechanism in the *Update* step.

3.1.2 EXPANDER GRAPHS

Expander graphs are a well studied class of graphs which can be informally defined as being highly connected and sparse (Hoory et al., 2006; Lubotzky, 2012). Formally, expander graphs can be characterised by the *expansion ratio*, which we will now define.

Definition 1 (Expander Graph). For $0 < \delta \in \mathbb{R}$, \mathcal{G} is an δ -expander graph if for all $\mathbb{S} \subset \mathbb{V}$ such that $|\mathbb{S}| \leq \frac{|\mathbb{V}|}{2}$ we have $\frac{|\partial \mathbb{S}|}{|\mathbb{S}|} \leq \delta$, where $\partial \mathbb{S}$ is the boundary set of \mathbb{S} , i.e., the set of all vertices, which are connected to a vertex in \mathbb{S} by an edge but are not in \mathbb{S} . Then, the expansion ratio $h(\mathcal{G})$ is defined to be the minimal δ such that \mathcal{G} is an δ -expander graph.

Expander graphs have been successfully applied in communication networks where communication comes at a certain cost and is to be used such that messages are spread across the network efficiently (Lubotzky, 2012). We believe that expander graphs have a promising future in the neural network literature. Training each parameter (corresponding to an edge in the NN architecture) incurs some training and inference, computational. Using the expander graph concept we sparsify this graph reducing thus cost and it is the aim to utilise each parameter, i.e., edge, to its greatest efficiency.

3.2 Sparsifying the Update step: Expander GNN

In order to study the influence of the *Update* step in GNNs, we propose an experiment design, where its linear transform (of the MLPs) is gradually sparsified. By observing the trend of model performance change (on downstream tasks) with respect to the sparsity of the linear transform layer, we measure the impact of the *Update* step.

Linear Layer as a graph The fully-connected linear transform layer in MLPs can be considered to be a bipartite graph $\mathcal{B}(\mathbb{S}_1, \mathbb{S}_2, \mathbb{E})$, where \mathbb{S}_1 and \mathbb{S}_2 are two sets of nodes and \mathbb{E} the set of edges that satisfy $\forall u \in \mathbb{S}_1, \forall v \in \mathbb{S}_2, \exists (u, v) \in \mathbb{E}; \quad \forall u, v \in \mathbb{S}_1(\text{resp}.\mathbb{S}_2), \nexists(u, v) \in \mathbb{E}$. The number of connections, or number of parameters, is $|\mathbb{S}_1||\mathbb{S}_2|$ and the connections can be written in matrix form as $W \in \mathbb{R}^{|\mathbb{S}_1| \times |\mathbb{S}_2|}$, which is the weight matrix in Equation (3).

3.2.1 EXPANDER LINEAR LAYER

The aim of sparsifying a linear layer is to remove redundant connections and to only keep the important weights. Following Prabhu et al. (2018), we choose expander graphs as the sparsifiers for

the linear transform layer. When compared to pruning algorithms which sparsify neural network layers by iteratively removing parameters according to certain metric during training, the expander sparsifiers have two advantages:

- (1) Good properties of *expander structures* allow consecutive linear layers to be highly connected when only a smaller number of edges is present. The expander design assures that paths exist between consecutive layers, avoiding the risk of *layer-collapse* that is common in many pruning algorithms, where the algorithm prunes all parameters (weights) in one layer and cuts down the flow between input and output (Tanaka et al., 2020).
- (2) The expander sparsifier removes parameters at initialisation and keeps the sparsified structures fixed during training, which avoids the expensive computational cost stemming from iterations in pruning algorithms.

Given a linear transform layer $\mathcal{B}(\mathbb{S}_1, \mathbb{S}_2, \mathbb{E})$ with adjacency matrix A, we follow the design of Prabhu et al. (2018) to construct the sparsifier by sampling its subgraph of specific expander structure.

Definition 2. Without loss of generality, we suppose $|\mathbb{S}_1| \leq |\mathbb{S}_2|$. For each vertex $u \in \mathbb{S}_1$, we uniformly sample d vertices $\{v_i^u\}_{i=1,...,d}$ from \mathbb{S}_2 to be connected with u. Then, the constructed graph $\mathcal{B}'(\mathbb{S}_1, \mathbb{S}_2, \mathbb{E}')$ with corresponding adjacency matrix A' is the subgraph of \mathcal{B} with $A'_{i,j} = 1$ if and only if $(i, j) \in \{(u, v_i^u)\}_{u \in \mathbb{S}_1; i=1,...,d}$.

Remark (Prabhu et al. (2018)). A graph sampled according to the sampling scheme in Definition 2 has an expansion ratio $h(\mathcal{G}') \approx d$ and a diameter $D \leq O(\log |\mathbb{S}_1|)$.

Definition 3 (layer density). We refer to the *density* of the expander linear layer as the ratio of the number of sampled connections to the number of connections in the original graph. For example, the fully-connected layer has density 1. The sampling scheme in Definition 2 returns an expander linear layer of density $\frac{d}{|S_n|}$.

When we replace all linear layers in the *Update* steps of a GNN with expander linear layers constructed by the sampling scheme in Definition 2, we get the *Expander* GNN. An illustration can be found in Appendix B.

3.2.2 IMPLEMENTATION OF EXPANDER LINEAR LAYER

The most straightforward way of implementing the expander linear layer is to store the weight matrix W as a sparse matrix. However, due to the known issue of inefficiency of hardware acceleration on sparse matrices (Wen et al., 2016), we use masks, similar to those of pruning algorithms, to achieve the sparsification. A mask $M \in \{0,1\}^{|\mathbb{S}_1| \times |\mathbb{S}_2|}$ is of the same dimension as weight matrix and $M_{u,v} = 1$ if and only if $A'_{u,v} = 1$. An entrywise multiplication is then applied to the mask and the weight matrix so that undesired parameters in the weight matrix are removed, i.e., Equation (3) can be rewritten as,

$$\boldsymbol{H}^{(L)} = \sigma(\hat{\boldsymbol{A}} \dots \sigma(\hat{\boldsymbol{A}} \boldsymbol{H}^{(1)} \boldsymbol{M}^{(1)} \odot \boldsymbol{W}^{(1)}) \dots \boldsymbol{M}^{(L)} \odot \boldsymbol{W}^{(L)}),$$
(4)

where \odot denotes the Hadamard product.

Theoretically, replacing fully connected linear layers by expander linear layers should both save memory cost and speed up computation. However, this practical implementation, which is adapted to current hardware constraints, while saving memory as it requires fewer parameters both in forward and backward passes, does not improve computation time, and indeed worsen it slightly by adding new operations. More details can be found in Section 4.2.

3.3 AN EXTREME CASE: ACTIVATION-ONLY GNN

A natural extension for the *Expander* GNN is to consider the extreme case where the density of expander linear layer becomes zero, i.e., removing the trainable weight matrix W from the update step.

This case is worth investigating because of the special role which non-linear activation functions take in GNNs. Gama et al. (2020) argue that the non-linearity present in GNNs, in form of the activation functions, has the effect of frequency mixing in the sense that "part of the energy associated with large eigenvalues" is brought "towards low eigenvalues where it can be discriminated by stable graph

filters." This theoretical insight that activation functions help capture information stored in the high energy part of graph signals is strong motivation to consider the extreme case, which we refer to as the *Activation-Only* GNN models, in which each message-passing step is immediately followed by a pointwise activation function and the linear transformation of the update step is forgone. Hence, in a *Activation-Only* GNN, Equation (3) will be rewritten as,

$$\boldsymbol{H}^{(L)} = \sigma(\hat{\boldsymbol{A}} \dots \sigma(\hat{\boldsymbol{A}} \boldsymbol{H}^{(1)})).$$
(5)

This proposed simplification is applicable to a wide variety of GNN models, whose extract formulations can be found in Appendix C.3. For comparison we display the model equation of the SGC (Wu et al., 2019),

$$\boldsymbol{H}^{(L)} = \hat{\boldsymbol{A}}^L \boldsymbol{H}^{(1)} \boldsymbol{\Theta},$$

where $\Theta = W^{(1)} \dots W^{(L)}$. Here the nonlinear activation functions have been removed and the linear transformations have been collapsed into a single linear transformation layer. Interestingly, we observe that the repeated application of the symmetric matrix \hat{A} to the input data X is equivalent to an unnormalised version of the power method approximating the eigenvector corresponding to the largest eigenvalue of \hat{A} . Hence, if sufficiently many layers L are used then inference is drawn in the SGC model simply on the basis of the first eigenvector of \hat{A} .

4 EXPERIMENTS AND DISCUSSION

In this section, we evaluate the influence of sparsifying the linear transform layer in the *Update* steps by comparing the performance of the proposed models on different downstream graph learning tasks and datasets with their vanilla counterparts. Specifically, in Section 4.1 we provide an overview of the experimentation setup and the vanilla GNNs we compare against. Then, in Sections 4.2, 4.3 and 4.4, we observe the performance of the proposed benchmark models on the tasks of graph classification, graph regression and node classification, respectively.

4.1 GENERAL SETTINGS AND BASELINES

We experiment on ten datasets from areas such as chemistry, social networks, computer vision and academic citation, for three major graph learning tasks. Specifically, we work with four TU datasets (Kersting et al., 2016) and two Image datasets (Knyazev et al., 2019) for graph classification; the ZINC dataset for graph regression (Irwin et al., 2012) and three Citation datasets (Sen et al., 2008) for node classification. Detailed statistics of these datasets can be found in Appendix C.

For each dataset on each task, we compare the performance of the vanilla GNN models, the *Expander* GNN models with different densities (10%, 50%, 90%), the *Activation-Only* GNN models with different activation functions (ReLU, PReLU, Tanh), as well as the simplified model, the SGC for the GCN models.

To ensure that our inference is not specific to a certain GNN architecture only, we evaluate the performance across 4 representative GNN models of the literature state-of-the-art. The considered models are the Graph Convolutional Network (GCN, Kipf & Welling (2017)), the Graph Isomorphism Network (GIN, Xu et al. (2019)), the GraphSage Network (Hamilton et al., 2017), and the Principle Neighborhood Aggeragation (PNA, Corso et al. (2020)), along with a MLP baseline that only takes the node features into account while ignoring the graph structure. For the MLP baseline, we only consider the vanilla and *Expander* variants.

Other experiment details, such as the choice of loss functions for different tasks, dataset splits, hyperparameters as well as the extact message-passing formulation of the models we studied and their variants can be found in Appendix C.

4.2 GRAPH CLASSIFICATION

Figure 1(a), (b), (c) and (e) show the experiment results of the GCN, GIN and MLP models and their *Expander* and *Activation-Only* variants on the ENZYMES, DD, PROTEINS and IMDB-BINARY

Figure 1: (a,b,c,e): Accuracy of different model types for GCN, GIN and MLP on ENZYMES/DD/PROTEINS/IMDB-BINARY datasets; (f,g) Accuracy of different model types for GCN, GIN and MLP on MNIST/CIFAR10 datasets; (d) Training time (per epoch) of different model type for GCN on PROTEINS dataset; (h) Number of parameters required for GCN on PROTEINS dataset.

datasets for graph classification. The evaluation metric is classification accuracy, where the average accuracy, obtained from a 10-folder cross validation, is used.

One direct observation from Figure 1(a), (b), (c) and (e) is that the *Expander* GNN models perform on par with the vanilla models, despite their altered densities. Even the expander-sparsified network with only 10% edges being present achieves comparable results with the vanilla models. Surprisingly, the same is true for the *Activation-Only* model on the ENZYMES, DD and PROTEINS datasets. IMDB-BINARY is our only graph classification dataset where the node attributes are initialised to all be equal. This uninformative initialisation, surprisingly, seems to lead to an increased performance if the linear update step is present, visible in the performance gap of the *Activation-Only* models and the *Expander* GNN models. Different activation functions often do not cause significantly different results. However, in a few cases the influence of the activation functions is not negligible, as can be observed in Figure 1(c) in the comparison of the PReLU activation and the Tanh activation on the PROTEINS dataset. The SGC performs either on par or worse than the *Activation-Only* model.

As we can see from Figure 1(d) and (h), which are the plots of the training time per epoch and number of model parameters of GCN and its variants on the PROTEINS dataset, the *Activation-Only* model is comparable to the SGC on running time and in the scale of model parameters. Both models are significantly more efficient than vanilla and *Expander* models. As stated in Section 3.2.2, the time efficiency of the *Expander* GNN models is slightly less than that of the vanilla models due to our implementation, while theoretically, it should enjoy higher speed.

Figure 1(f) and (g) show the graph classification results on the MNIST and CIFAR10 datsets. Similar conclusions can be drawn: the *Expander* GNN models are as good as the vanilla model in terms of performance, no matter how sparse they are. The *Activation-Only* models, perform slightly worse than their vanilla counterparts. Interestingly the GCN *Activation-Only* model outperforms the SGC by a larger margin than what we observed on the TU datasets. It seems that especially for these computer vision datasets the presence of activation functions in the GCN architecture has a large positive impact on model performance in the graph classification task. In Figure 1(f) and (g) we also notice that the MLP matches the performance of the GNN models even though the MLP does not utilise the graph structure which Knyazev et al. (2019) extracted from these datasets.

Figure 2: (a): Mean Absolute Error of different model types for GCN/GIN/GraphSage/PNA/MLP on ZINC dataset; (b,c,d): Accuracy of different model types for GCN/GIN/GraphSage/PNA/MLP on CORA/CITESEER/PUBMED datasets.

4.3 GRAPH REGRESSION

We can find the results of our studied and proposed models on the ZINC dataset for graph regression in Figure 2(a). The evaluation metric, displayed on the y-axis in Figure 2(a), is the Mean Absolute Error (MAE). Similar to the graph classification task, the *Expander* GCN and GraphSage models are on the same level with vanilla models, regardless of their densities. The performance of the *Expander* GIN and PNA models exhibits greater variance accross the different densities, especially in the case of the PNA models the performance is increasing as the network gets denser indicating that the density of the *Update* step does positively contribute to the model performance of the PNA for the task of graph regression on the ZINC dataset. The *Activation-Only* models perform worse than their *Expander* counterparts on this task, again confirming the insight from the results of the *Expander* GNNs that the linear transform in the update step does improve performance in this graph regression task. Again we see that *Activation-Only* GCNs outperform the SGC benchmark in this set of experiments.

4.4 NODE CLASSIFICATION

Results from the node classification experiments on three citation graphs (CORA, CITESEER and PUBMED) can be found in Figure 2(b), (c) and (d). In contrast to the graph classification and graph regression tasks discussed in Sections 4.2 and 4.3, the *Expander* model with 10% density shows a non-negligible drop in performance compared to the vanilla model on node classification task; while the 50% and 90% dense *Expander* models remain comparable to the vanilla one. The *Activation-Only* models also perform as well as or even better than (on CITESEER) the vanilla model. The performance of the GCN *Activation-Only* model and SGC are equally good across all three datasets.

5 CONCLUSION

With extensive experiments across different GNN models and graph learning tasks, we are able to confirm that the *Update* step can be sparsified heavily without a significant performance cost. In fact for six of the ten tested datasets across a variety of tasks we found that the linear transform can be removed entirely without a loss in performance, i.e., the *Activation-Only* models performed on par with their vanilla counterparts. The *Activation-Only* GCN model consistently outperformed the SGC model and especially in the computer vision datasets we witnessed that the activation functions seem to be crucial for good model performance accounting for an accuracy difference of up to 59%. These findings partially support the hypothesis by Wu et al. (2019) that the update step can be simplified significantly without a loss in performance. Contrary to Wu et al. (2019) we find that the nonlinear activation functions result in a significant accuracy boost and the linear transfromation in the update step can be removed or heavily sparsified.

The *Activation-Only* GNN is an effective and simple benchmark model framework for any message passing neural network. It enables practitioners to test whether they can cut the large amount of model parameters used in the linear transform of the update steps. If the linear transfrom does contribute postitively to the model's peformance then the *Expander* GNNs provide a model class of tunable sparsity which allows efficient parameter usage.

REFERENCES

- Alfred Bourely, John Patrick Boueri, and Krzysztof Choromonski. Sparse neural networks topologies. arXiv:1706.05683, 2017.
- Ting Chen, Song Bian, and Yizhou Sun. Are powerful graph neural nets necessary? a dissection on graph classification, 2020.
- Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal neighbourhood aggregation for graph nets. *arXiv:2004.05718*, 2020.
- David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular fingerprints. In *Advances in neural information processing systems*, pp. 2224 2232, 2015.
- Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Benchmarking graph neural networks. arXiv:2003.00982, 2020.
- Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In *ICLR Workshop on Representation Learning on Graphs and Manifolds*, 2019.
- Fernando Gama, Alejandro Ribeiro, and Joan Bruna. Stability of graph neural networks to relative perturbations. In *International Conference on Acoustics, Speech, and Signal Processing (ICASSP)*, pp. 9070 – 9074. IEEE, 2020.
- Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural message passing for quantum chemistry. In *Proceedings of the 34th International Conference on Machine Learning (ICML)*, pp. 1263 1272, 2017.
- Alessandra Griffa, Benjamin Ricaud, Kirell Benzi, Xavier Bresson, Alessandro Daducci, Pierre Vandergheynst, Jean-Philippe Thiran, and Patric Hagmann. Transient networks of spatio-temporal connectivity map communication pathways in brain functional systems. *NeuroImage*, pp. 490 – 502, 2017.
- William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), pp. 1025 – 1035. Curran Associates Inc., 2017.
- Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn: Simplifying and powering graph convolution network for recommendation. *arXiv preprint arXiv:2002.02126*, 2020.
- Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. *Bulletin* of the American Mathematical Society, pp. 439 561, 2006.
- John J Irwin, Teague Sterling, Michael M Mysinger, Erin S Bolstad, and Ryan G Coleman. Zinc: a free tool to discover chemistry for biology. *Journal of chemical information and modeling*, pp. 1757 1768, 2012.
- Jeremy Kepner and Ryan Robinett. Radix-net: Structured sparse matrices for deep neural networks. In 2019 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 268 – 274. IEEE, 2019.
- Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Benchmark data sets for graph kernels, 2016. http://graphkernels.cs.tu-dortmund.de.
- Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations (ICLR), 2017.
- Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization in graph neural networks. In *Advances in Neural Information Processing Systems 32*, pp. 4202 4212. Curran Associates, Inc., 2019.
- Alexander Lubotzky. Expander graphs in pure and applied mathematics. *Bulletin of the American Mathematical Society*, pp. 113 162, 2012.

- Andrew WE McDonald and Ali Shokoufandeh. Sparse super-regular networks. In 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1764 – 1770. IEEE, 2019.
- Federico Monti, Fabrizio Frasca, Davide Eynard, Damon Mannion, and Michael M Bronstein. Fake news detection on social media using geometric deep learning. *arXiv:1902.06673*, 2019.
- Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander networks: Efficient deep networks from graph theory. In *Proceedings of the European Conference on Computer Vision* (*ECCV*), pp. 20 35, 2018.
- Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Keep it simple: Graph autoencoders without graph convolutional networks. In *Advances in Neural Information Processing Systems* (*NeurIPS*), 2019.
- Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Simple and effective graph autoencoders with one-hop linear models. In *European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD)*, 2020.
- Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collective classification in network data. *AI magazine*, pp. 93 93, 2008.
- Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks without any data by iteratively conserving synaptic flow. *arXiv:2006.05467*, 2020.
- Vikram Waradpande, Daniel Kudenko, and Megha Khosla. Deep reinforcement learning with graph-based state representations. *arXiv preprint arXiv:2004.13965*, 2020.
- Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural networks. In *Advances in neural information processing systems*, pp. 2074–2082, 2016.
- Felix Wu, Amauri H Souza Jr, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q Weinberger. Simplifying graph convolutional networks. In *7th International Conference on Machine Learning* (*ICLR*), 2019.
- Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive survey on graph neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, pp. 1–21, 2020.
- Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In 7th International Conference on Learning Representations (ICLR), 2019.
- Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text classification. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 7370 7377, 2019.

APPENDIX

A COMPLETE EXPERIMENT RESULTS

A.1 GRAPH CLASSIFICATION

Table 1: Full results of GCN/GIN/MLP on Four TU Datasets

				ENZYMES			DD	
			ACC	Time per Epoch(s)	#Parameters	ACC	Time per Epoch(s)	#Parameters
Simple	GCN	_	63.67 ± 8.06	0.2004	37853	75.90 ± 3.93	1.3841	43643
		lelu	66.67 ± 6.24	0.2073		74.79 ± 3.46	1.3979	
		prelu	66.67 ± 6.71	0.2486		75.39 ± 3.98	1.4643	43643
		relu	66.33 ± 5.31	0.2132		74.88 ± 3.41	1 3915	
	GCN	selu	66.17 ± 6.99	0.206	37853	75.64 ± 4.54	1 3948	
		softshrink	66.17 ± 7.11	0.2031		58.66 ± 0.30	1 4099	
		tanh	65.67 ± 7.04	0.2154		76.57 ± 5.20	1 391	
		linear	58.83 ± 8.53	0.2322	37000	73.77 ± 2.50	1.4246	43781
Activations		lalu	53.05 ± 6.05	0.2322	31999	75.77 ± 2.50	1.6544	45781
		neslu	52.17 ± 5.76	0.3219		70.12 ± 4.30	1.0044	
		pretu	53.17 ± 7.94	0.3531		09.19 ± 3.02	1.7255	10610
	CDI	reiu	51.00 ± 5.88	0.3122	5420	70.03 ± 3.27	1.0424	
	GIN	seiu	53.83 ± 7.34	0.3201		72.49 ± 4.30	1.6772	
		softshrink	54.83 ± 7.97	0.3165		71.22 ± 3.39	1.6558	
		tanh	62.83 ± 7.15	0.3073		71.32 ± 5.29	1.6443	
		linear	42.83 ± 7.57	0.3222	5970	76.65 ± 2.10	1.6726	11140
		10%	66.33 ± 6.78	0.2863	22775	74.53 ± 3.50	1.5731	21064
	GCN	50%	64.83 ± 8.64	0.285	58293	74.28 ± 2.52	1.5856	56960
		90%	64.83 ± 9.44	0.2917	93209	75.13 ± 4.69	1.5763	92215
		10%	65.83 ± 7.75	0.3798	8918	68.59 ± 2.70	1.6605	6730
Expander	GIN	50%	67.00 ± 6.05	0.3822	29070	70.03 ± 4.20	1.6427	28789
		90%	67.50 ± 5.74	0.3729	49222	68.93 ± 3.26	1.637	50335
		10%	71.50 ± 5.13	0.1653	26001	77.00 ± 3.39	1.0672	23858
	MLP	50%	74.67 ± 5.72	0.1783	59661	76.66 ± 2.69	1.07	58020
		90%	73.17 ± 7.65	0.1772	92811	76.24 ± 3.80	1.0621	91631
	GCN	-	66.50 ± 8.71	0.2557	102239	75.13 ± 3.44	1.5782	101189
Vanilla	GIN	-	67.67 ± 7.68	0.3692	54260	68.76 ± 5.55	1.6572	55978
	MLP	_	74.17 ± 6.34	0.1646	101481	77.43 ± 3.98	1.0523	100447
				PROTEINS			IMDB-BINARY	
			ACC	PROTEINS Time per Epoch(s)	#Parameters	ACC	IMDB-BINARY Time per Epoch(s)	#Parameters
Simple	GCN	_	ACC 67.65 ± 2.21	PROTEINS Time per Epoch(s) 0.3374	#Parameters 39311	ACC 61.30 ± 3.61	IMDB-BINARY Time per Epoch(s) 0.3297	#Parameters 31499
Simple	GCN		ACC 67.65 ± 2.21 75.20 ± 5.19	PROTEINS Time per Epoch(s) 0.3374 0.3464	#Parameters 39311	ACC 61.30 ± 3.61 61.30 ± 4.05	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418	#Parameters 31499
Simple	GCN	lelu prelu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654	#Parameters 39311	$\frac{ACC}{61.30 \pm 3.61}$ 61.30 ± 4.05 61.00 ± 3.92	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388	#Parameters 31499
Simple	GCN	lelu prelu relu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348	#Parameters 39311	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.348 0.3497	#Parameters 31499
Simple	GCN	lelu prelu relu selu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469	#Parameters 39311 39311	ACC 61.30 ± 3.61 61.30 ± 4.05 61.00 ± 3.92 61.90 ± 4.01 62.70 ± 3.32	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479	#Parameters 31499 31499
Simple	GCN	lelu prelu relu selu softshrink	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3469 0.3469 0.3462	#Parameters 39311 39311	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344	#Parameters 31499 31499
Simple	GCN	lelu prelu relu selu softshrink tanb	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452	#Parameters 39311 39311	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.347 0.344 0.3522	#Parameters 31499 31499
Simple	GCN	lelu prelu relu selu softshrink tanh lineer	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3469 0.3462 0.3452 0.3553	#Parameters 39311 39311 39457	ACC 61.30 ± 3.61 61.30 ± 4.05 61.00 ± 3.92 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.56 61.70 ± 4.05	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762	#Parameters 31499 31499 31637
Simple	GCN GCN	lelu prelu relu soltshrink tanh linear lelu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978	#Parameters 39311 39311 39457	ACC 61.30 ± 3.61 61.30 ± 4.05 61.00 ± 3.92 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.56 61.70 ± 4.05 68.10 ± 4.50	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.3762	#Parameters 31499 31499 31637
Simple	GCN	lelu prelu relu soltshrink tanh linear lelu prelu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3454 0.3489 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144	#Parameters 39311 39311 39457	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ 61.30 \pm 4.05 \\ 61.00 \pm 3.92 \\ 61.90 \pm 4.01 \\ 62.70 \pm 3.32 \\ 50.00 \pm 0.00 \\ 61.20 \pm 4.56 \\ 61.70 \pm 4.05 \\ 68.10 \pm 4.50 \\ 68.95 \pm 3.88 \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577	#Parameters 31499 31499 31637
Simple	GCN	lelu prelu relu selu softshrink tanh linear lelu prelu relu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4897	#Parameters 39311 39311 39457	ACC 61.30 ± 3.61 61.30 ± 4.05 61.00 ± 3.92 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.56 61.70 ± 4.05 68.10 ± 4.50 69.50 ± 3.88 67.90 ± 3.96	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262	#Parameters 31499 31499 31637
Simple	GCN GCN	lelu prelu relu selu softshrink tanh linear lelu prelu relu selu	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4899 0.4989	#Parameters 39311 39311 39457 4410	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 61.70 \pm 4.05 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.00 \pm 6.03 \\ \hline \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5345	#Parameters 31499 31499 31637 1282
Simple	GCN GCN GIN	lelu prelu relu softshrink tanh linear lelu prelu relu softshrijk	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 20.45 ± 3.66	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4897 0.4989 0.4020	#Parameters 39311 39311 39457 4410	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.70 \pm 4.56 \\ \hline 61.70 \pm 4.05 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.00 \pm 6.03 \\ \hline 69.00 \pm 6.03 \\ \hline 69.70 \pm 4.41 \\ \hline \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762 0.5722 0.577 0.5262 0.5345 0.5321	#Parameters 31499 31499 31637 1282
Simple	GCN GCN GIN	lelu prelu selu softshrink tanh linear lelu prelu relu selu softshrink	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 70.52 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 69.45 ± 3.66	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3469 0.3469 0.3462 0.3452 0.3452 0.4978 0.5144 0.4897 0.4989 0.4929 0.404	#Parameters 39311 39311 39457 4410	ACC 61.30 ± 3.61 61.30 ± 4.03 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.61 61.70 ± 4.05 68.10 ± 4.50 69.50 ± 3.88 67.90 ± 3.86 69.50 ± 3.86 69.50 ± 3.86 69.50 ± 3.86 69.70 ± 4.85 69.70 ± 4.56 69.70 ± 4.56 69.70 ± 4.56	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5345 0.5271 0.5233	#Parameters 31499 31499 31637 1282
Simple	GCN GCN GIN	lelu prelu selu softshrink tanh linear lelu relu selu softshrink tanh	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 69.45 ± 3.66 71.96 ± 4.26 60.72 ± 1.82	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4989 0.4989 0.4929 0.494	#Parameters 39311 39311 39457 4410	ACC 61.30 ± 3.61 61.30 ± 4.05 61.00 ± 3.92 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.56 61.70 ± 4.05 69.50 ± 3.88 67.90 ± 3.96 69.00 ± 6.03 69.70 ± 4.31 67.30 ± 5.62 68.80 ± 7.24	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5777 0.5262 0.5345 0.5271 0.5233 0.5420	#Parameters 31499 31499 31637 1282
Simple	GCN GCN GIN	lelu prelu selu softshrink tanh linear lelu prelu selu softshrink tanh linear	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 74.48 ± 4.61 75.92 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 69.45 ± 3.66 71.96 ± 4.26 69.72 ± 1.83 67.54 ± 1.00	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3488 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4887 0.4989 0.4929 0.494 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4524 0.51 0.4554 0.51 0.	#Parameters 39311 39311 39457 4410 4960 22791	ACC 61.30 ± 3.61 61.30 ± 4.05 61.00 ± 3.92 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.56 61.70 ± 4.05 69.50 ± 3.88 67.90 ± 3.96 69.90 ± 6.03 69.70 ± 4.31 67.30 ± 5.62 68.80 ± 7.24 88.80 ± 7.24	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.3479 0.3479 0.3479 0.3522 0.3762 0.5292 0.5777 0.5262 0.5777 0.5262 0.5345 0.5271 0.5233 0.5233 0.5439 0.4673	#Parameters 31499 31499 31637 1282 1812
Simple	GCN GCN GIN		$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 74.48 \pm 4.61 \\ 75.92 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.26 \pm 3.42 \end{array}$	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3459 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4897 0.4989 0.4929 0.494 0.5 0.4524 0.418	#Parameters 39311 39311 39457 4410 4960 22781 58048	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ 61.30 \pm 4.05 \\ 61.00 \pm 3.92 \\ 61.90 \pm 4.01 \\ 62.70 \pm 3.32 \\ 50.00 \pm 0.00 \\ 61.20 \pm 4.56 \\ 61.70 \pm 4.56 \\ 69.50 \pm 3.88 \\ 67.90 \pm 3.96 \\ 69.00 \pm 6.03 \\ 69.70 \pm 4.31 \\ 67.30 \pm 5.62 \\ 68.80 \pm 7.24 \\ 71.60 \pm 5.70 \\ 72.40 \pm 5.70 \\ \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5345 0.5271 0.5233 0.5439 0.4673 0.4770	#Parameters 31499 31499 31637 1282 1812 1812 19920 50898
Simple	GCN GCN GIN GCN		$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 74.48 \pm 4.61 \\ 75.92 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.36 \pm 3.43 \\ 76.55 \pm 4.01 \\ 75.8 \pm 4.01 \\ \end{array}$	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4897 0.4989 0.4929 0.494 0.5 0.4524 0.448 0.4475	#Parameters 39311 39311 39457 4410 4960 22781 58948 94572	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.70 \pm 4.31 \\ \hline 67.30 \pm 5.62 \\ \hline 68.80 \pm 7.24 \\ \hline 71.60 \pm 5.50 \\ 72.40 \pm 5.70 \\ \hline 72.30 \pm 6.65 \\ \hline \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.5242 0.577 0.5262 0.5271 0.5245 0.5271 0.5233 0.5439 0.4673 0.4779 0.4835	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303
Simple Activations	GCN GCN GIN GCN		ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 75.29 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 69.45 ± 3.66 71.96 ± 4.26 69.72 ± 1.83 76.55 ± 1.90 76.36 ± 3.43 75.38 ± 4.01	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3452 0.3523 0.4978 0.5144 0.4897 0.4989 0.4929 0.4929 0.494 0.5 0.4524 0.448 0.4476 0.5491	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6810	ACC 61.30 ± 3.61 61.30 ± 4.05 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.61 61.70 ± 4.05 68.10 ± 4.50 69.50 ± 3.88 67.90 ± 3.96 69.50 ± 3.88 67.90 ± 3.96 69.70 ± 4.31 67.30 ± 5.62 68.80 ± 7.24 71.60 ± 5.50 72.40 ± 5.70 72.00 ± 6.16	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5271 0.5262 0.5233 0.5233 0.5439 0.4673 0.4779 0.4835 0.4835	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5950
Simple Activations	GCN GCN GIN GCN	lelu prelu selu softshrink tanh linear lelu prelu selu softshrink tanh linear 10% 50% 90%	ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 70.52 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 69.42 ± 3.66 71.96 ± 4.26 69.72 ± 1.83 76.55 ± 1.90 76.36 ± 3.43 75.38 ± 4.01 70.83 ± 3.60	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4989 0.4929 0.4949 0.5 0.4524 0.4428 0.4476 0.5481 0.5482	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455	ACC 61.30 ± 3.61 61.30 ± 4.05 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.66 61.70 ± 4.05 68.10 ± 4.50 69.50 ± 3.88 67.90 ± 3.96 69.50 ± 3.88 67.90 ± 3.88 67.90 ± 3.88 67.90 ± 3.96 68.80 ± 7.24 71.60 ± 5.50 72.30 ± 6.65 72.00 ± 6.10	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5345 0.5271 0.5262 0.5345 0.5271 0.5233 0.5439 0.4673 0.4779 0.4835 0.6368	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24115
Simple Activations Expander	GCN GCN GIN GCN GIN	lelu prelu selu softshrink tanh linear lelu selu softshrink tanh linear 10% 50% 90%	$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 74.48 \pm 4.61 \\ 75.92 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.36 \pm 3.43 \\ 75.38 \pm 4.01 \\ 70.53 \pm 3.96 \\ 70.08 \pm 2.69 \\ 70.71 \pm 2.55 \end{array}$	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4989 0.4929 0.4929 0.4924 0.5 0.4524 0.4524 0.4488 0.4476 0.5483 0.5455	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48001	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 61.70 \pm 4.05 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.00 \pm 6.03 \\ \hline 69.70 \pm 4.31 \\ \hline 67.30 \pm 5.62 \\ \hline 68.80 \pm 7.24 \\ \hline 71.60 \pm 5.70 \\ 72.40 \pm 7.70 \\ 72.40 $	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.577 0.5262 0.5345 0.5271 0.5233 0.5435 0.5233 0.5439 0.4673 0.4779 0.4835 0.6368 0.6268 0.6268	#Parameters 31499 31637 31637 1282 1812 19920 50888 81303 5850 24125
Simple Activations Expander	GCN GCN GIN GIN		$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 74.48 \pm 4.61 \\ 75.92 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.36 \pm 3.43 \\ 75.38 \pm 4.01 \\ 70.53 \pm 3.96 \\ 70.08 \pm 2.69 \\ 70.71 \pm 2.55 \end{array}$	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.3488 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4989 0.4929 0.4948 0.5454 0.4488 0.4476 0.5481 0.5483 0.5455 0.2855 0.2856	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48091 25453	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 61.70 \pm 4.56 \\ \hline 69.70 \pm 3.96 \\ \hline 69.70 \pm 3.96 \\ \hline 69.70 \pm 4.31 \\ \hline 67.30 \pm 5.62 \\ \hline 68.80 \pm 7.24 \\ \hline 71.60 \pm 5.50 \\ 72.40 \pm 5.70 \\ 72.30 \pm 6.65 \\ \hline 72.00 \pm 6.16 \\ \hline 68.80 \pm 5.90 \\ \hline 70.00 \pm 7.39 \\ \hline 70.00 \pm 7.39$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.3479 0.342 0.3762 0.5292 0.5777 0.5262 0.5271 0.5262 0.5345 0.5271 0.5233 0.5439 0.4673 0.4673 0.4673 0.4779 0.4835 0.6368 0.6268 0.6268 0.6127 0.387	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24125 41975 22538
Simple Activations Expander	GCN GCN GIN GCN GIN		$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 74.48 \pm 4.61 \\ 75.92 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.36 \pm 3.43 \\ 75.38 \pm 4.01 \\ 70.53 \pm 3.96 \\ 70.08 \pm 2.69 \\ 70.71 \pm 2.55 \\ 69.00 \pm 4.99 \\ 70.01 \pm 2.55 \\ 69.00 \pm 4.92 \\ 64.15 \pm 4.22 \\ 64.15 $	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4897 0.4978 0.4989 0.4929 0.4944 0.5 0.4524 0.4488 0.4476 0.5481 0.5483 0.5485 0.2856 0.2855 0.2856 0.2855	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48091 25453 58028	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.70 \pm 3.96 \\ \hline 69.70 \pm 4.31 \\ \hline 67.30 \pm 5.62 \\ \hline 68.80 \pm 7.24 \\ \hline 71.60 \pm 5.50 \\ 72.40 \pm 5.70 \\ 72.00 \pm 6.16 \\ \hline 68.80 \pm 5.90 \\ 70.30 \pm 7.39 \\ \hline 50.00 \pm 0.00 \\$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.572 0.5262 0.5271 0.5262 0.5271 0.5245 0.5271 0.5233 0.5439 0.4673 0.4779 0.4835 0.6368 0.6268 0.6127 0.287	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24125 41975 22538 51244
Simple Activations Expander	GCN GCN GIN GCN GIN MLP		$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 70.59 \pm 2.70 \\ 67.38 \pm 2.70 \\ 67.38 \pm 2.20 \\ 67.74 \pm 4.82 \\ 70.89 \pm 2.70 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.36 \pm 3.43 \\ 75.38 \pm 4.01 \\ 70.53 \pm 3.90 \\ 70.68 \pm 2.69 \\ 70.71 \pm 2.55 \\ 69.00 \pm 4.99 \\ 64.15 \pm 4.32 \\ 65.61 \pm 2.26 \\ 65.61 \pm 2.25 \\ 65.61 \pm 2.26 \\ 75.61 $	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3452 0.4978 0.5144 0.4978 0.4978 0.4978 0.4978 0.4978 0.4978 0.4978 0.4978 0.4978 0.4989 0.4929 0.4924 0.4448 0.5483 0.5483 0.5483 0.5485 0.2855 0.2856 0.2852 0.2852 0.2851	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48091 27455 48091 25453 58928 91999	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.70 \pm 4.05 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 3.88 \\ \hline 7.90 \pm 5.50 \\ \hline 72.30 \pm 6.55 \\ \hline 72.00 \pm 6.16 \\ \hline 68.80 \pm 5.90 \\ \hline 70.30 \pm 5.90 \\ \hline 70.30 \pm 5.90 \\ \hline 50.00 \pm 0.00 \\ \hline 50.00 \pm 0$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5271 0.5262 0.5233 0.5233 0.5439 0.4673 0.4779 0.4835 0.6368 0.6268 0.6268 0.6127 0.2876 0.2876 0.2867	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24125 41975 22538 51244 70497
Simple Activations Expander	GCN GCN GIN GCN GIN MLP		ACC 67.65 ± 2.21 75.20 ± 5.19 75.29 ± 4.85 70.529 ± 2.88 70.53 ± 3.27 70.89 ± 2.70 67.38 ± 2.26 67.74 ± 4.82 70.34 ± 4.78 68.82 ± 5.97 72.40 ± 5.03 69.45 ± 3.66 71.96 ± 4.26 71.96 ± 4.26 70.53 ± 3.90 70.53 ± 3.96 70.53 ± 3.90 70.53 ± 3.96 70.53 ± 3.90 70.53 ± 3.90 70.53 ± 3.90 70.53 ± 3.90 70.53 ± 3.90 70.71 ± 2.55 69.00 ± 4.99 64.15 ± 4.32 63.61 ± 2.40	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3452 0.4978 0.5144 0.4989 0.4979 0.4989 0.4929 0.494 0.5 0.4524 0.4476 0.5483 0.5483 0.5485 0.2856 0.2856 0.2851 0.2851 0.2831 0.4738	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48091 25453 58928 91888 91888	ACC 61.30 ± 3.61 61.30 ± 4.05 61.90 ± 4.01 62.70 ± 3.32 50.00 ± 0.00 61.20 ± 4.61 61.70 ± 4.05 68.10 ± 4.50 69.50 ± 3.88 67.90 ± 3.88 67.90 ± 3.88 67.90 ± 3.88 67.90 ± 3.88 67.90 ± 4.31 67.30 ± 5.50 72.40 ± 5.50 72.40 ± 5.50 72.30 ± 6.65 72.00 ± 6.16 68.80 ± 5.90 70.30 ± 7.39 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00 50.00 ± 0.00	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5345 0.5271 0.5262 0.5345 0.5271 0.5233 0.5439 0.4673 0.4779 0.4835 0.6368 0.6268 0.6127 0.287 0.2896 0.2967 0.4432	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24125 41975 22538 51244 79487 2005
Simple Activations Expander	GCN GCN GIN GCN GIN MLP GCN GCN	lelu prelu selu softshrink tanh linear lelu prelu selu softshrink tanh linear 10% 50% 90% 10% 50% 90%	$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 74.48 \pm 4.61 \\ 75.92 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 76.55 \pm 1.90 \\ 76.55 \pm 1.90 \\ 76.55 \pm 1.90 \\ 70.53 \pm 3.96 \\ 70.08 \pm 2.69 \\ 70.71 \pm 2.55 \\ 69.00 \pm 4.99 \\ 64.15 \pm 4.32 \\ 63.61 \pm 2.40 \\ 76.73 \pm 3.85 \\ 75.$	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3523 0.4978 0.4978 0.4978 0.4989 0.4989 0.4989 0.4929 0.494 0.5 0.4524 0.4488 0.4476 0.5483 0.5455 0.2856 0.2856 0.2852 0.2831 0.4388 0.5300	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48091 25453 58928 91888 103697 52520	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 4.05 \\ \hline 61.00 \pm 3.92 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 61.70 \pm 4.05 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.50 \pm 5.50 \\ \hline 72.40 \pm 5.50 \\ \hline 72.00 \pm 6.65 \\ \hline 72.00 \pm 6.16 \\ \hline 68.80 \pm 5.90 \\ \hline 70.30 \pm 7.39 \\ \hline 50.00 \pm 0.00 \\ \hline 50.00 \pm 6.20 \\ \hline \end{array}$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.380 0.3497 0.3479 0.344 0.3522 0.3762 0.5292 0.577 0.5262 0.5345 0.5271 0.5262 0.5345 0.5271 0.5263 0.5439 0.4673 0.4673 0.4673 0.4673 0.4673 0.4673 0.287 0.287 0.2896 0.2967 0.4433 0.4135	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24125 41975 22538 51244 79487 89045
Simple Activations Expander Vanilla	GCN GCN GIN GIN GIN MLP GCN GIN		$\begin{array}{c} ACC \\ \hline 67.65 \pm 2.21 \\ 75.20 \pm 5.19 \\ 75.29 \pm 4.85 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 2.88 \\ 70.53 \pm 3.27 \\ 70.89 \pm 2.70 \\ 67.38 \pm 2.26 \\ 67.74 \pm 4.82 \\ 70.34 \pm 4.78 \\ 68.82 \pm 5.97 \\ 72.40 \pm 5.03 \\ 69.45 \pm 3.66 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 71.96 \pm 4.26 \\ 69.72 \pm 1.83 \\ 76.55 \pm 1.90 \\ 70.63 \pm 3.43 \\ 76.55 \pm 1.90 \\ 70.63 \pm 3.43 \\ 76.53 \pm 3.96 \\ 70.08 \pm 2.69 \\ 70.71 \pm 2.55 \\ 69.00 \pm 4.99 \\ 64.15 \pm 4.32 \\ 63.61 \pm 2.40 \\ 76.73 \pm 3.85 \\ 72.51 \pm 2.39 \\ 72.51 \pm 2.39 \\ \end{array}$	PROTEINS Time per Epoch(s) 0.3374 0.3464 0.3654 0.348 0.3469 0.3462 0.3452 0.3523 0.4978 0.5144 0.4897 0.4989 0.4929 0.4944 0.5 0.4524 0.4488 0.4476 0.5481 0.5483 0.5485 0.2855 0.2855 0.2852 0.2831 0.4388 0.5309 0.2572	#Parameters 39311 39311 39457 4410 4960 22781 58948 94502 6819 27455 48091 25453 58928 91888 103697 53250 10697	$\begin{array}{c} ACC \\ \hline 61.30 \pm 3.61 \\ \hline 61.30 \pm 3.62 \\ \hline 61.90 \pm 4.01 \\ \hline 62.70 \pm 3.32 \\ \hline 50.00 \pm 0.00 \\ \hline 61.20 \pm 4.56 \\ \hline 61.70 \pm 4.56 \\ \hline 68.10 \pm 4.50 \\ \hline 69.50 \pm 3.88 \\ \hline 67.90 \pm 3.96 \\ \hline 69.70 \pm 3.96 \\ \hline 69.70 \pm 3.96 \\ \hline 69.70 \pm 4.31 \\ \hline 67.30 \pm 5.62 \\ \hline 68.80 \pm 7.24 \\ \hline 71.60 \pm 5.50 \\ 72.40 \pm 5.70 \\ 72.40 \pm 5.70 \\ 72.30 \pm 6.65 \\ 72.00 \pm 6.16 \\ \hline 68.80 \pm 5.90 \\ 70.30 \pm 7.39 \\ \hline 50.00 \pm 0.00 \\ \hline 50.00 \pm 0.00 \\ \hline 50.00 \pm 0.00 \\ \hline 72.70 \pm 5.68 \\ \hline 69.00 \pm 6.25 \\ \hline 6$	IMDB-BINARY Time per Epoch(s) 0.3297 0.3418 0.388 0.3497 0.3479 0.344 0.3522 0.3762 0.5222 0.577 0.5262 0.5271 0.5245 0.5271 0.5233 0.5439 0.4673 0.4779 0.4835 0.6368 0.6268 0.6127 0.2896 0.2967 0.4433 0.6135 0.6355	#Parameters 31499 31499 31637 1282 1812 19920 50888 81303 5850 24125 41975 22538 51244 79487 89045 46650 91007

				MNIST			CIEAD10		
			ACC Time per Epoch(s)		#Parameters ACC		Time per Epoch(s)	#Parameters	
Simple	GCN	_	24.48	100.098	35811	27.90	143 721	36103	
	0011	lelu	83.52	101.554	55011	48.31	39.6657	50105	
		prelu	83.84	103.11		47.90	41 3494		
	GCN	relu	83.16	102.443	14349	48.27	40.2591	14641	
		tanh	77.67	102.975		43.89	40.6699		
		linear	24.73	107.673	14495	27.76	38.6787	14787	
		lelu	75.68	119.803		37.90	44.6216		
		prelu	71.60	115.862		36.48	46.0211	6210	
Activations	GIN	relu	75.73	119.081	5990	38.67	45.0776		
		tanh	79.49	119.729		39.71	45.0382		
		linear	31.99	119.386	6540	29.89	44.9312	6760	
		10%	89.00	124.411	22713	50.27	45.0057	22741	
	GCN	50%	90.75	124.075	57346	50.69	45.1236	57492	
		90%	90.87	124.166	91392	51.68	44.769	91654	
	GIN	10%	88.73	120.735	10973	35.93	44.4764	10995	
Expander		50%	92.31	119.554	30465	40.35	44.537	30575	
		90%	90.24	116.378	49957	42.25	44.401	50155	
		10%	94.97	67.2461	26980	57.96	31.6988	27012	
	MLP	50%	96.04	66.9236	61456	58.12	31.6178	61624	
		90%	96.17	66.7391	95425	58.85	31.6307	95727	
	GCN	_	90.77	124.091	100197	52.04	44.337	100489	
Vanilla	GIN	_	90.33	120.191	54830	42.46	45.2386	55050	
	MLP	_	96.17	66.125	104044	58.66	31.5435	104380	

Table 2: Full results of GCN/GIN/MLP on Computer Vision datasets (MNIST/CIFAR10)

A.2 GRAPH REGRESSION

				ZINC				
			MAE	Time per Epoch(s)	#Parameters			
Simple	GCN	_	0.6963	1.9847	34347			
		lelu	0.5947	1.8624				
		prelu	0.5855	1.9273				
		relu	0.5967	1.8407	12177			
	GCN	selu	0.6128	1.8581	131//			
		softshrink	0.6549	1.8574				
		tanh	0.6086	1.8639				
		linear	0.699	1.9033	13322			
		lelu	0.5368	2.8046				
		prelu	0.5743	2.8826				
		relu	0.5524	2.8009				
	GIN	selu	0.5424	2.8144	222			
		softshrink	0.5221	2.821				
		tanh	0.5354	2.8263				
		linear	0.643	2.8708	1105			
Activations		lelu	0.4937	4.1406				
		prelu	0.494	4.3778				
		relu	0.4907	4.1238				
	GraphSage	selu	0.5365	4.1293	5130			
	1 0	softshrink	1.5508	4.1428				
		tanh	0.5665	4.121				
		linear	0.5591	4.2496	5850			
		lelu	0.5181	27.9922				
		prelu	0.5038	28,1269				
		relu	0.4972	28.0074	3515			
	PNA	selu	0.5285	27.9645				
		softshrink	0.5374	28.0993				
		tanh	0.4493	27.9598				
		linear	0.6643	28.0911	5390			
		10%	0.3958	2.5833	21877			
	GCN	50%	0.3856	2.5793	55517			
		90%	0.3845	2.5578	89157			
		10%	0.4888	3.0905	5835			
	GIN	50%	0.5274	3.1125	25195			
		90%	0.4456	3.0852	44555			
		10%	0.4721	4.461	11970			
Expander	GraphSage	50%	0.4584	4.4495	37890			
1	1	90%	0.4579	4.4581	63810			
		10%	0.6931	2.1455	23775			
	MLP	50%	0.6898	2.1426	59775			
		90%	0.6873	2.1542	95775			
		10%	0.3798	32.0922	23735			
	PNA	50%	0.3384	32.148	102495			
		90%	0.2946	32,0666	181255			
	GCN		0.3823	2.5538	97857			
	GIN	_	0.4939	3.0569	49395			
Vanilla	GraphSage	_	0.4526	4.4149	70290			
	MLP	_	0.6916	2.1085	104775			
	PNA	_	0.3184	31.6077	201205			

Table 3: Full results of GCN/GIN/GraphSage/PNA/MLP on Molecule dataset (ZINC)

A.3 NODE CLASSIFICATION

			CORA CITESEER					PUBMED			
			ACC	Time per Epoch(s)	#Parameters	ACC	Time per Epoch(s)	#Parameters	ACC	Time per Epoch(s)	#Parameters
Simple	GCN	_	76.90	0.0554	32982	72.70	0.1289	81488	78.90	0.14	9519
_		lelu	76.90	0.0553		72.70	0.1302		78.90	0.141	
		prelu	76.90	0.057		72.70	0.1326		78.90	0.1432	
		relu	76.90	0.0556	10038	72.70	0.13	22224	78.90	0.141	1503
	GCN	selu	78.40	0.0558	10058	72.50	0.1303	22224	79.10	0.1411	1505
		softshrink	30.90	0.0557		23.10	0.1301		18.00	0.1411	
		tanh	76.90	0.0557		72.70	0.1303		78.80	0.1406	
		linear	73.80	0.0564	11471	63.50	0.132	25927	73.80	0.1424	2003
		lelu	67.80	0.0589		61.90	0.138		72.90	0.1477	
		prelu	67.80	0.0597		61.90	0.1388		72.90	0.1485	
		relu	67.80	0.0589	20114	61.90	0.1379		72.90	0.1473	4500
	GIN	selu	68.00	0.0589	30114	62.30	0.138	66672	72.70	0.1477	4509
		softshrink	54.30	0.0589		61.40	0.1379		73.30	0.1477	
		tanh	70.70	0.0589		63.80	0.1379		75.50	0.1477	
A		linear	61.40	0.0591	34413	50.80	0.1384	77781	72.40	0.1481	6009
Activations		lelu	76.90	0.0925		66.00	0.1701		73.40	0.2733	
		prelu	76.90	0.1194		66.00	0.2211		73.40	0.4124	1503
		relu	76.90	0.0934	10000	66.00	0.1703		73.40	0.2742	
	GraphSage	selu	76.90	0.0925	10038	65.70	0.1701	22224	73.40	0.274	
		softshrink	30.50	0.0922		23.10	0.1703		22.20	0.2744	
		tanh	78.10	0.0928		66.00	0.1706		74.30	0.2738	
		linear	62.30	0.1155	17203	54.70	0.2195	40739	65.90	0.4107	4003
	PNA	lelu	63.90	0.1883	23063	58.90	0.2413	59366	71.10	0.4561	8067
		prelu	67.90	0.1879		50.90	0.2395		72.00	0.454	
		relu	63.80	0.1861		58.80	0.2407		71.30	0.4432	
		selu	70.50	0.1891		63.80	0.2403		75.70	0.4551	
		softshrink	30.90	0.1874		23.10	0.2409		18.00	0.4566	
		tanh	64.80	0.1883		61.40	0.2403		73.30	0.4526	
		linear	66.40	0.1879	23111	63.40	0.2413	59414	66.00	0.4508	8115
		10%	68.20	0.0615	2423	57.10	0.1268	6038	75.70	0.1384	867
	GCN	50%	80.00	0.0573	11591	65.10	0.127	29734	77.60	0.1385	4067
		90%	81.40	0.0563	20759	68.30	0.1268	53430	77.60	0.1384	7267
		10%	66.20	0.0583	12612	53.70	0.1297	28396	74.50	0.1405	2453
	GIN	50%	77.00	0.0584	21892	59.30	0.1299	52204	76.90	0.1406	5765
		90%	78.90	0.0583	31156	64.80	0.1296	75996	77.40	0.1405	9061
		10%	46.60	0.0971	4823	45.40	0.167	12054	65.00	0.2755	1715
Expander	GraphSage	50%	64.80	0.0972	23175	59.30	0.1672	59462	72.50	0.2758	8115
•		90%	70.50	0.0964	41511	62.50	0.1673	106854	72.30	0.2747	14515
		10%	19.00	0.0626	2423	16.90	0.1311	6038	40.70	0.1439	867
	MLP	50%	35.20	0.0621	11591	16.00	0.1313	29734	45.10	0.1441	4067
		90%	32.90	0.0618	20759	16.90	0.1319	53430	42.20	0.1441	7267
		10%	74.10	0.1799	31271	58.40	0.2865	78278	75.60	0.4511	11043
	PNA	50%	77.50	0.1805	150503	63.50	0.2878	386374	76.30	0.4505	52643
		90%	77.30	0.1799	269735	62.10	0.2871	694470	77.40	0.4492	94243
	GCN	-	80.90	0.0566	23063	69.30	0.1264	59366	78.30	0.138	8067
	GIN	_	77.00	0.0575	33492	63.70	0.1289	81964	77.70	0.1398	9893
Vanilla	GraphSage	_	44.90	0.1294	46431	51.90	0.1937	119024	71.00	0.3363	16399
	MLP	_	25.10	0.0611	23063	16.10	0.1305	59366	27.70	0.1456	8067
	PNA	_	81.10	0.1769	299543	65.30	0.2817	771494	77.80	0.4525	104643

Table 4: Full results of GCN/GIN/GraphSage/PNA/MLP on Three Citations dataset

A.4 CONVERGE BEHAVIOR: AN EXAMPLE OF GCN ON PROTEINS DATASET

Figure 3: Train loss (cross-entropy) converging behaviour of different model type for GCN on Proteins dataset.

Figure 3 exhibits the loss convergence in training of GCN model class on PROTEINS dataset. We implement a learning rate decay scheme and terminate the training process when learning rate drops to a preset minimum value. Then if a model terminates ealier than its alternatives, it indicates that this model converges faster. As we can see from the figure, *Activation-Only* and SGC both terminate the process with less epochs than vanilla and *Expander* models. Similar to the main paper, we are able to draw the conclusion that *Activation-Only* and SGC do not only have fewer parameters but that their training also converges faster, hence more efficient in time.

B Illstration of Expander MPNNs

Figure 4: Illustration of *Expander* MPNNs. The right part is the *Aggregation* or graph propagation step and the left part is the *Update* step. The red lines on the left part represents reserved connections in MLPs sampled by expander sparsifier.

C EXTRA INFORMATION FOR EXPERIMENTS AND MODELS

C.1 DATASET DETAILS

	Dataset	#Graphs	#Nodes (avg.)	#Edges (avg.)	Task
	ENZYMES	600	32.63	62.14	
TII detecto	DD	1178	284.32	715.66	
I U datasets	PROTEINS	1113	39.06	72.82	Graph Classification
	IMDB-BINARY	1000	19.77	193.06	
Computer Vision	MNIST	70K	70.57	282.27	-
Computer vision	CIFAR10	60K	117.63	470.53	
	ZINC	12K	23.16	24.92	Graph Regression
Citations	CORA	1	2708	5278	
	CITESEER	1	3327	4552	Node Classification
	PUBMED	1	19717	44324	

Table 5: Properties of all datasets used in experiments.

In Table 5, we summarise the statistics of the ten datasets that we use in detail. We display their number of graphs, number of nodes and of edges, as well as the tasks that are performed on them. In the number of nodes and edges column we show the values, or the average of these values if there are multiple graphs.

C.2 EXPERIMENT SETTINGS

In order to ensure a fair comparison across different GNN models, we follow the recent benchmark proposed in Dwivedi et al. (2020). Specifically, we use their datasets on computer vision (MNIST/CIFAR10) and chemistry(TU datasets/ZINC dataset); we follow the same training procedure, such as train/valid/test dataset splits, choice of optimiser, learning rate decay scheme, etc., as well as the same hyper-parameters, such as initial learning rate, hidden feature dimensions, number of GNN layers, etc. We also implement the same normalisation tricks such as adding batch normalisation after non-linearity of each *Update* step. Their setting files (training procedure/hyperparameters) are made public and can be found in this repository.

For the node classification task on citation datasets, we follow the settings from Wu et al. (2019). Our experiments found that the node classification task on citation graphs of small/medium size can be easily overfit and model performances heavily depend on the choice of hyperparameters. Using the same parameters with Wu et al. (2019), such as learning rate, number of training epochs and number of GNN layers, helps us achieve similar results with the paper on the same model, which allows a fair comparison between the proposed *Activation-Only* models and the SGC.

C.3 MODEL DETAILS: GNNS UNDER THE MPNN FRAMEWORK

In Section 3, we present the message-passing GNN framework and explained the ideas which drive the *Expander* and *Activation-Only* models that we proposed. These ideas are illustrated by an example of GCN. In this section, we will recall the MPNN formulation. Normalisation layers such as batch normalisation are omitted in the formulation for the purpose of clarity. For each of the models, we present their vanilla version, *Expander* version and *Activation-Only* version. As stated in Section 3, we ignore the various variants of vanilla models and only work with variants of simple forms.

C.3.1 GRAPH CONVOLUTIONAL NETWORK

Vanilla GCN and *Expander* **GCN** We have shown the matrix form of *Aggregation* and *Update* iterations in GCN in the main paper. Here we are going to revisit the message-passing procedure in GCN from the angle of a single node. At iteration l,

$$\boldsymbol{m}_{i}^{(l)} = \frac{1}{\sqrt{\deg_{i}}} \sum_{j \in \mathcal{N}(i)} \boldsymbol{h}_{j}^{(l)} \frac{1}{\sqrt{\deg_{j}}},\tag{6}$$

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma(\boldsymbol{m}_{i}^{(l)}\boldsymbol{M}^{(l)} \odot \boldsymbol{W}^{(l)}), \tag{7}$$

where $W^{(l)}$ is the weight matrix of l^{th} linear transform layer and $M^{(l)}$ is its corresponding mask. For vanilla GCNs, all entry of $M^{(l)}$ is 1 while for *Expander* GNN $M^{(l)}$ is a sparse matrix. Equation (6) is the *Aggregation* step, which constructs "messgae" equivalent to a weighted average of neighbours' embeddings, then Equation (7) *Updates* node *i*'s representation based on constructed "message".

Activation-Only GCN The Activation-Only model can then simply be written as,

$$\boldsymbol{h}_i^{(l+1)} = \sigma \left(\frac{1}{\sqrt{\deg_i}} \sum_{j \in \mathcal{N}(i)} \boldsymbol{h}_j^{(l)} \frac{1}{\sqrt{\deg_j}} \right).$$

C.3.2 GRAPH ISOMORPHISM NETWORK

Vanilla GIN and *Expander* **GIN** The message-passing procedure of GIN is very similar to GCN, except that at the *Aggregation* step, it adds explicitly a learnable ratio of the central node's own representation, defined as,

$$m_i^{(l)} = (1+\epsilon)h_i^{(l)} + \sum_{j\in\mathcal{N}(i)}h_j^{(l)}.$$
 (8)

Its Update step is the same with Equation (7).

Activation-Only GIN Similar to GCN, the Activation-Only model can then be written as,

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma \left((1+\epsilon)\boldsymbol{h}_{i}^{(l)} + \sum_{j \in \mathcal{N}(i)} \boldsymbol{h}_{j}^{(l)} \right).$$

C.3.3 GRAPHSAGE NETWORK

Vanilla GraphSAGE and Expander GraphSAGE GraphSage also incorporates explicitly the central node's representation in the *Aggregation* step by concatenation. Their message-passing procedure is,

$$\boldsymbol{m}_{i}^{(l)} = \boldsymbol{h}_{i}^{(l)} \| \operatorname{MAX}_{j \in \mathcal{N}(i)} \sigma(\boldsymbol{h}_{j}^{(l)} \boldsymbol{M}_{1}^{(l)} \odot \boldsymbol{W}_{1}^{(l)}), \qquad (9)$$

$$\boldsymbol{h}_{i}^{(l+1)} = \frac{\hat{\boldsymbol{h}}_{i}^{(l+1)}}{\|\hat{\boldsymbol{h}}_{i}^{(l+1)}\|_{2}}, \quad \hat{\boldsymbol{h}}_{i}^{(l+1)} = \sigma(\boldsymbol{m}_{i}^{(l)}\boldsymbol{M}_{2}^{(l)} \odot \boldsymbol{W}_{2}^{(l)}), \tag{10}$$

where || denotes concatenation and MAX function takes maximum along each feature dimension.

Activation-Only GraphSAGE In Activation-Only models for GraphSage, we need to consider the issue of dimension incoherence after removing linear transforms. Since a simple removal of linear transforms will result in an exponential growth in the dimension of hidden representation. One convenient solution is to replace concatenation with a summation so that the dimension of either m or h remains unchanged after the iteration. The message-passing steps then become,

$$\boldsymbol{m}_{i}^{(l)} = \boldsymbol{h}_{i}^{(l)} + \operatorname{MAX}_{j \in \mathcal{N}(i)} \sigma(\boldsymbol{h}_{j}^{(l)}), \tag{11}$$

$$\boldsymbol{h}_{i}^{(l+1)} = \frac{\hat{\boldsymbol{h}}_{i}^{(l+1)}}{\|\hat{\boldsymbol{h}}_{i}^{(l+1)}\|_{2}}, \quad \hat{\boldsymbol{h}}_{i}^{(l+1)} = \sigma(\boldsymbol{m}_{i}^{(l)}).$$
(12)

A more complex way is to separate the propagation and update of "message" m and hidden representation h. More precisely,

$$\boldsymbol{m}_{i}^{(l)} = \operatorname{MAX}_{j \in \mathcal{N}(i)} \sigma(\boldsymbol{m}_{j}^{(l-1)}), \quad \boldsymbol{m}_{i}^{(0)} = \boldsymbol{h}_{i}^{(1)}, \tag{13}$$

$$\boldsymbol{h}_{i}^{(l+1)} = \frac{\hat{\boldsymbol{h}}_{i}^{(l+1)}}{\|\hat{\boldsymbol{h}}_{i}^{(l+1)}\|_{2}}, \quad \hat{\boldsymbol{h}}_{i}^{(l+1)} = \sigma(\boldsymbol{h}_{i}^{(l)}\|\boldsymbol{m}_{i}^{(l)}), \tag{14}$$

where the dimension of h_i grows proportionally to the number of iterations. Neither of the methods is out-weighted by the other based on evidence from our empirical experiments. However, from an economic view on developping parsimonious GNN, Equation 11 is our preferred method.

C.3.4 PRINCIPAL NEIGHBOURHOOD AGGREGATION

Vanilla PNA and *Expander* **PNA** The PNA model concatenates in its *Aggregation* step the "messages" obtained from different combinations of scalars and aggregators. This step can be written as (Fey & Lenssen, 2019),

$$\boldsymbol{m}_{i}^{(l)} = \bigoplus_{j \in \mathcal{N}(i)} \sigma(\boldsymbol{h}_{j}^{(l)} \boldsymbol{M}^{(l)} \odot \boldsymbol{W}^{(l)}),$$
(15)

where \bigoplus is defined as the outer product, denoted by \otimes , of the arrays of scalars and aggregators, with cardinality c_1 and c_2 , respectively, as follow,

$$\underbrace{\begin{bmatrix} 1\\ S(\mathbf{D}, \alpha = 1)\\ S(\mathbf{D}, \alpha = -1) \end{bmatrix}}_{\text{scalars}} \otimes \underbrace{\begin{bmatrix} \text{mean}\\ \text{std}\\ \text{max}\\ \text{min} \end{bmatrix}}_{\text{aggregators}}.$$

The *Update* step is the same as Equation (7).

Activation-Only PNA Similar to the Activation-Only GraphSage, the Activation-Only PNA also suffers from dimension incoherence issue, due to the concatenate operation. Instead of concatenation, we take the average of each representation obtained from one combination of scaler and aggregator in Activation-Only models. Then the message-passing procedure becomes,

$$\boldsymbol{h}_{i}^{(l+1)} = \sigma \left(\frac{1}{c_{1}c_{2}} \sum \boldsymbol{1}^{T} \left[\bigoplus_{j \in \mathcal{N}(i)} \sigma(\boldsymbol{h}_{j}^{(l)}) \right] \boldsymbol{1} \right),$$

where c_1 denotes the number of scalars and c_2 denotes the number of aggregators used in the PNA.

C.3.5 GRAPH-AGNOSTIC BASELINE: MULTI-LAYER PERCEPTRON

Vanilla MLP and Expander MLP The MLP baseline has no Aggregation steps. Its Update step is simply,

$$\boldsymbol{h}_i^{(l+1)} = \sigma(\boldsymbol{h}_i^{(l)} \boldsymbol{M}^{(l)} \odot \boldsymbol{W}^{(l)}).$$

C.4 LOSS FUNCTIONS FOR DIFFERENT TASKS

After *L* message-passing iterations, we obtain $H^{(L)} = [h_1^{(L)}, \dots, h_n^{(L)}]^T \in \mathbb{R}^{n \times d}$ as the final node embedding, where we denote *d* as its feature dimension. Depending on downstream tasks, we either keep working with $H^{(L)}$ or construct a graph-level representation *g* from $H^{(L)}$ by,

$$\boldsymbol{g} = \frac{1}{n} \sum_{i \in \mathbb{V}} \boldsymbol{h}_i^{(L)},$$

which is refer to as the *Readout* step in Section 3.

g or $H^{(L)}$ is then fed into a fully-connected network (MLP) to be transformed into the desired form of output for further assessment, i.e., a scalar value as prediction scores for graph regression. We denote this network as $f(\cdot)$, which, in our experiments, is fixed to be a three-layer MLP of the form

$$f(\cdot) = \sigma(\sigma(\cdot, \boldsymbol{W}_1)\boldsymbol{W}_2)\boldsymbol{W}_3,$$

where $W_1 \in \mathbb{R}^{d \times [\frac{d}{2}]}$, $W_2 \in \mathbb{R}^{[\frac{d}{2}] \times [\frac{d}{4}]}$, $W_3 \in \mathbb{R}^{[\frac{d}{4}] \times k}$ with k being the desired output dimension.

The final output, either f(g) or $f(H^{(L)})$, is compared to the ground-truth by a task-specific loss function. For graph classification and node classification, we choose cross-entropy loss and for graph regression, we use mean absolute error (or the L1 loss).