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Abstract

Diffusion processes that evolve according to linear stochastic differential equations1

are an important family of continuous-time dynamic decision-making models.2

Optimal policies are well-studied for them, under full certainty about the drift3

matrices. However, little is known about data-driven control of diffusion processes4

with uncertain drift matrices as conventional discrete-time analysis techniques are5

not applicable. In addition, while the task can be viewed as a reinforcement learning6

problem involving exploration and exploitation trade-off, ensuring system stability7

is a fundamental component of designing optimal policies. We establish that8

the popular Thompson sampling algorithm learns optimal actions fast, incurring9

only a square-root of time regret, and also stabilizes the system in a short time10

period. To the best of our knowledge, this is the first such result for Thompson11

sampling in a diffusion process control problem. We validate our theoretical results12

through empirical simulations with real parameter matrices from two settings13

of airplane and blood glucose control. Moreover, we observe that Thompson14

sampling significantly improves (worst-case) regret, compared to the state-of-the-15

art algorithms, suggesting Thompson sampling explores in a more guarded fashion.16

Our theoretical analysis involves characterization of a certain optimality manifold17

that ties the local geometry of the drift parameters to the optimal control of the18

diffusion process. We expect this technique to be of broader interest.19

1 Introduction20

One of the most natural reinforcement learning (RL) algorithms for controlling a diffusion process21

with unknown parameters is based on Thompson sampling (TS) [1]: a Bayesian posterior for the22

model is calculated based on its time evolution, and a control policy is then designed by treating23

a sampled model from the posterior as the truth. Despite its simplicity, guaranteeing efficiency24

and whether sampling the actions from the posterior could lead to unbounded future trajectories is25

unknown. In fact, the only known such theoretical result for control of a diffusion process is for an26

epsilon-greedy type policy that requires selecting purely random actions at a certain rate [2].27

In this work, we consider a p dimensional state signal {xt}t≥0 that obeys the (Ito) stochastic28

differential equation (SDE)29

dxt = (A0xt +B0ut)dt+ dWt , (1)

where the drift matrices A0 and B0 are unknown, ut ∈ Rq is the control action at any time t ≥ 0,30

and it is designed based on values of xs for s ∈ [0, t]. The matrix B0 ∈ Rp×q models the influence31

of the control action on the state evolution over time, while A0 ∈ Rp×p is the (open-loop) transition32

matrix reflecting interactions between the coordinates of the state vector xt. The diffusion term in (1)33

consists of a non-standard Wiener process Wt that will be defined in the next section. The goal is to34
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study efficient RL policies that can design ut to minimize a quadratic cost function, defined in the35

next section, subject to uncertainties around A0 and B0.36

At a first glance, this problem is similar to most RL problems since the optimal policy must balance37

between the two objectives of learning the unknown matrices A0 and B0 (exploration) and optimally38

selecting the control signals ut to minimize the cost (exploitation). However, unlike most RL39

problems that have finite or bounded-support state space, ensuring stability, that xt stays bounded, is40

a crucial part of designing optimal policies. For example, in the discrete-time version of the problem,41

robust exploration is used to protect against unpredictably unstable trajectories [3–6].42

Related literature. The existing literature studies efficiency of TS for learning optimal decisions43

in finite action spaces [7–12]. In this stream of research, it is shown that, over time, the posterior44

distribution concentrates around low-cost actions [13–15]. TS is also studied in further discrete-time45

settings with the environment represented by parameters that belong to a continuum, and Bayesian and46

frequentist regret bounds are shown for linear-quadratic regulators [16–19]. However, effectiveness47

of TS in highly noisy environments that are modeled by diffusion processes remains unexplored to48

date, due to technical challenges that will be described below.49

For continuous-time linear time invariant dynamical systems, infinite-time consistency results are50

shown under a variety of technical assumptions, followed by alternating policies that cause (small)51

linear regrets [20–24]. From a computational viewpoint, pure exploration algorithms for computing52

optimal policies based on multiple trajectories of the state and action data are studied as well [25–27],53

for which a useful survey is available [28]. However, papers that study exploration versus exploitation,54

and provide non-asymptotic estimation rates or regret bounds are limited to a few recent work about55

offline RL or stabilized processes [29, 2, 30].56

Contributions. This work, first establishes that TS learns to stabilize the diffusion process (1).57

Specifically, in Theorem 1 of Section 3, we provide the first theoretical stabilization guarantee58

for diffusion processes, showing that the probability of preventing the state process from growing59

unbounded grows to 1, at an exponential rate that depends on square-root of the time length devoted60

to stabilization. As mentioned above, for RL problems with finite state spaces, the process is by61

definition stabilized, regardless of the policy. However, for the Euclidean state space of xt in (1),62

stabilization is necessary to ensure that the state and the cost do not grow unbounded.63

Then, efficiency of TS in balancing exploration versus exploitation for minimizing a cost function64

that has a quadratic form of both the state and the control action is shown. Indeed, we establish65

in Theorem 2 of Section 4 that the regret TS incurs, grows as the square-root of time, while the66

squared estimation error decays with the same rate. It is also shown that both the above quantities67

grow quadratically with the dimension. To the authors’ knowledge, the presented results are the first68

theoretical analyses of TS for learning to control diffusion processes.69

Additionally, through extensive simulations we illustrate that TS enjoys smaller average regret and70

substantially lower worst-case regret than the existing RL policies, thanks to its informed exploration.71

It is important to highlight that theoretical analysis of RL policies for diffusion processes is highly72

non-trivial. Specifically, the conventional discrete-time RL technical tools are not applicable, due73

to uncountable cardinality of the random variables involved in a diffusion process, the unavoidable74

dependence between them, and the high level of processing and estimation noise. To address these, we75

make four main contributions. First, non-asymptotic and uniform upper bounds for continuous-time76

martingales and for Ito integrals are required to quantify the estimation accuracy. For that purpose,77

we establish concentration inequalities and show sub-exponential tail bounds for double stochastic78

integrals. Second, one needs sharp bounds for the impact of estimation errors on eigenvalues of79

certain non-linear matrices of the drift parameters that determine actions taken by TS policy. To tackle80

that, we perform a novel and tight eigenvalue perturbation-analysis based on the approximation error,81

dimension, and spectrum of the matrices. We also establish Lipschitz continuity of the control policy82

with respect to the drift matrices, by developing new techniques based on matrix-valued curves. Third,83

to capture evaluation of both immediate and long-term effects of sub-optimal actions, we employ84

Ito calculus to bound the stochastic regret and specify effects of all problem parameters. Finally, to85

study learning from data trajectories that the condition number of their information matrix grows86

unbounded, we develop stochastic inequalities for self-normalized continuous-time martingales, and87

spectral analysis of non-linear functions of random matrices.88
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Organization. The organization of the subsequent sections is as follows. We formulate the problem89

in Section 2, while Algorithm 1 that utilizes TS for learning to stabilize the process and its high-90

probability performance guarantee are presented in Section 3. Then, in Section 4, TS is considered for91

learning to minimize a quadratic cost function, and the rates of estimation and regret are established.92

Next, theoretical analysis are provided in Section 5, followed by real-world numerical results of93

Section 6. Detailed proofs and auxiliary lemmas are delegated to the appendices.94

Notation. The smallest (the largest) eigenvalue of matrix M , in magnitude, is denoted by λ (M)95

(λ (M)). For a vector a, ||a|| is the `2 norm, and for a matrix M , ||M || is the operator norm that is96

the supremum of ||Ma|| for a on the unit sphere. N (µ,Σ) is Gaussian distribution with mean µ and97

covariance Σ. If µ is a matrix (instead of vector), thenN (µ,Σ) denotes a distribution on matrices of98

the same dimension as µ, such that all columns are independent and share the covariance matrix Σ. In99

this paper, transition matrices A ∈ Rp×p together with input matrices B ∈ Rp×q are jointly denoted100

by the (p + q) × p parameter matrix θ = [A,B]
>. We employ ∨ (∧) for maximum (minimum).101

Finally, a . b expresses that a ≤ α0b, for some fixed constant α0.102

2 Problem Statement103

We study the problem of designing provably efficient reinforcement learning policies for minimizing104

a quadratic cost function in an uncertain linear diffusion process. To proceed, fix the complete105

probability space (Ω, {Ft}t≥0 ,P), where Ω is the sample space, {Ft}t≥0 is a continuous-time106

filtration (i.e., increasing sigma-fields), and P is the probability measure defined on F∞.107

The state comprises the diffusion process xt in (1), where θ0 = [A0, B0]
> ∈ R(p+q)×p is the un-108

known drift parameter. The diffusion term in (1) follows infinitesimal variations of the p dimensional109

Wiener process {Wt}t≥0. That is, {Wt}t≥0 is a multivariate Gaussian process with independent110

increments and with the stationary covariance matrix ΣW, such that for all 0 ≤ s1 ≤ s2 ≤ t1 ≤ t2,111 [
Wt2 −Wt1
Ws2 −Ws1

]
∼N

([
0p
0p

]
,

[
(t2 − t1)ΣW 0p×p

0p×p (s2 − s1)ΣW

])
. (2)

Existence, construction, continuity, and non-differentiability of Wiener processes are well-known [31].112

It is standard to assume that ΣW is positive definite, which is a common condition in learning-based113

control [28, 29, 2, 30] to ensure accurate estimation over time.114

The RL policy designs the action {ut}t≥0, based on the observed system state by the time, as well as115

the previously applied actions, to minimize the long-run average cost116

lim sup
T→∞

1

T

T∫
0

[
x>t ,u

>
t

]
Q

[
xt
ut

]
dt, for Q =

[
Qx Qxu
Q>xu Qu

]
. (3)

Above, the cost is determined by the positive definite matrix Q, where Qx ∈ Rp×p, Qu ∈ Rq×q,117

Qxu ∈ Rp×q . In fact, Q determines the weights of different coordinates of xt,ut in the cost function,118

so that the policy aims to make the states small, by deploying small actions. The cost matrix Q is119

assumed known to the policy. Formally, the problem is to minimize (3) by the policy120

ut = π̂
(
Q, {xs}0≤s≤t , {us}0≤s<t

)
. (4)

Without loss of generality, and for the ease of presentation, we follow the canonical formulation121

that sets Qxu = 0; one can simply convert the case Qxu 6= 0 to the canonical form, by employing a122

rotation to xt,ut [32–35]. It is well-known that if, hypothetically, the truth θ0 was known, an optimal123

policy πopt could be explicitly found by solving the continuous-time algebraic Riccati equation. That124

is, for a generic drift matrix θ = [A,B]
>, finding the symmetric p× p matrix P (θ) that satisfies125

A>P (θ) + P (θ)A − P (θ)BQ−1u B>P (θ) +Qx = 0. (5)

This means, for the true parameter θ0 = [A0, B0]
>, we can let P (θ0) solve the above equation, and126

define the policy127

πopt : ut = −Q−1u B>0 P (θ0)xt, ∀t ≥ 0. (6)
It is known that the linear time-invariant policy πopt minimizes the average cost in (3) [32–35].128
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Definition 1 The process in (1) is stabilizable, if all eigenvalues of A = A0 +B0K have negative129

real-parts, for a matrix K. Such K,A are called a stabilizer and the stable closed-loop matrix.130

We assume that the process (1) with the drift parameter θ0 is stabilizable. Therefore, P (θ0) exists,131

is unique, and can be computed using continuous-time Riccati differential equations similar to (5),132

except that the zero matrix on the right-hand side will be replaced by the derivative of P (θ) [32–35].133

Furthermore, it is known that real-parts of all eigenvalues of A0 = A0 − B0Q
−1
u B>0 P (θ0) are134

negative, i.e., λ
(
exp

(
A0t
))
< 1, which means the matrix exp

(
A0t
)

decays exponentially fast as t135

grows [32–35]. In the sequel, we use (5) and refer to the solution P (θ) for different stabilizable θ.136

More details about the above optimal feedback policy can be found in the aforementioned references.137

In absence of exact knowledge of θ0, a policy π̂ collects data and leverages it to approximate πopt138

in (6). Therefore, at all (finite) times, there is a gap between the cost of π̂, compared to that of πopt.139

The cumulative performance degradation due to this gap is the regret of the policy π̂, that we aim to140

minimize. Technically, whenever the control action ut is designed by the policy π̂ according to (4),141

concatenate the resulting state and input signals to get the observation zt(π̂) =
[
x>t ,u

>
t

]>
. If it is142

clear from the context, we drop π̂. Similarly, zt(πopt) denotes the observation signal of πopt. Now,143

the regret at time T is defined by:144

Regπ̂ (T ) =

T∫
0

(∣∣∣∣∣∣Q1/2zt(π̂)
∣∣∣∣∣∣2 − ∣∣∣∣∣∣Q1/2zt(πopt)

∣∣∣∣∣∣2)dt.
A secondary objective is the learning accuracy of θ0 from the single trajectory of the data generated145

by π̂. Letting θ̂t be the parameter estimate at time t, we are interested in scaling of
∣∣∣∣∣∣θ̂t − θ0∣∣∣∣∣∣ with146

respect to t, p, and q.147

3 Stabilizing the Diffusion Process148

This section focuses on establishing that Thompson sampling (TS) learns to stabilize the diffusion149

process (1). First, let us intuitively discuss the problem of stabilizing unknown diffusion processes.150

Given that the optimal policy in (6) stabilizes the process in (1), a natural candidate to obtain151

a stable process under uncertainty of the drift matrices A0, B0, is a linear feedback of the form152

ut = Kxt. So, letting A = A0 + B0K, the solution of (1) is the Ornstein–Uhlenbeck process153

xt = eAtx0 +
t∫
0

eA(t−s)dWs [31]. Thus, if real-part of an eigenvalue of A is non-negative, then154

the magnitude of xt grows unbounded with t [31]. Therefore, addressing instabilities of this form is155

important, prior to minimizing the cost. Otherwise, the regret grows (super) linearly with time. In156

particular, if A0 has some eigenvalue(s) with non-negative real-part(s), then it is necessary to employ157

feedback to preclude instabilities.158

In addition to minimizing the cost, the algebraic Riccati equation in (5) provides a reliable and159

widely-used framework for stabilization, as discussed after (6). Accordingly, due to uncertainty160

about θ0, one can solve (5) and find P
(
θ̂
)

, only for an approximation θ̂ of θ0. Then, we expect to161

stabilize the system in (1) by applying a linear feedback that is designed for the approximate drift162

matrix θ̂. Technically, we need to ensure that all eigenvalues of A0 − B0Q
−1
u B̂>P

(
θ̂
)

lie in the163

open left half-plane. To ensure that these requirements are met in a sustainable manner, the main164

challenges are165

(i) fast and accurate learning of θ0 so that after a short time period, a small error θ̂−θ0 is guaranteed,166

(ii) specifying the effect of the error θ̂ − θ0, on stability of A0 −B0Q
−1
u B̂>P

(
θ̂
)

, and167

(iii) devising a remedy for the case that the stabilization procedure fails.168

Note that the last challenge is unavoidable, since learning from finite data can never be perfectly accu-169

rate, and so any finite-time stabilization procedure has a (possibly small) positive failure probability.170

Algorithm 1 addresses the above challenges by applying additionally randomized control actions, and171

using them to provide a posterior belief D about θ0. Note that the posterior is not concentrated at172

θ0, and a sample θ̂ from D approximates θ0, crudely. Still, the theoretical analysis of Theorem 1173
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indicates that the failure probability of Algorithm 1 decays exponentially fast with the length of the174

time interval it is executed. Importantly, this small failure probability can shrink further by repeating175

the procedure of sampling from D. So, stabilization under uncertainty is guaranteed, after a limited176

time of interacting with the environment.177

To proceed, let {wn}κn=0 be a sequence of independent Gaussian vectors with the distribution178

wn ∼ N
(
0, σ2

wIq
)
, for some fixed constant σw. Suppose that we aim to devote the time length τ179

to collect observations for learning to stabilize. Note that since stabilization is performed before180

moving forward to the main objective of minimizing the cost functions, the stabilization time length181

τ is desired to be as short as possible. We divide this time interval of length τ to κ sub-intervals182

of equal length, and randomize an initial linear feedback policy by adding {wn}κn=0. That is, for183

n = 0, 1, · · · ,κ − 1, Algorithm 1 employs the control action184

ut = Kxt + wn, for
nτ

κ
≤ t < (n+ 1)τ

κ
, (7)

where K is an initial stabilizing feedback so that all eigenvalues of A0 + B0K lie in the open185

left half-plane. In practice, such K is easily found using physical knowledge of the model, e.g.,186

via conservative control sequence for an airplane [39, 40]. However, note that such actions are187

sub-optimal involving large regrets. Therefore, they are only temporarily applied, for the sake of188

data collection. Then, the data collected during the time interval 0 ≤ t ≤ τ will be utilized by the189

algorithm to determine the posterior belief Dτ , as follows. Recalling the notation z>t =
[
x>t ,u

>
t

]
,190

let µ̂0, Σ̂0 be the mean and the precision matrix of a prior normal distribution on θ0 (using the191

notation defined in Section 1 for random matrices). Nonetheless, if there is no such prior, we simply192

let µ̂0 = 0(p+q)×p and Σ̂0 = Ip+q . Then, define193

Σ̂τ = Σ̂0 +

τ∫
0

zsz
>
s ds, µ̂τ = Σ̂−1τ

Σ̂0µ̂0 +

τ∫
0

zsdx
>
s

 . (8)

Using Σ̂τ ∈ R(p+q)×(p+q) together with the mean matrix µ̂τ , Algorithm 1 forms the posterior belief194

Dτ = N
(
µ̂τ , Σ̂

−1
τ

)
, (9)

about the drift parameter θ0. So, as defined in the notation, the posterior distribution of every column195

i = 1, · · · , p of θ0, is an independent multivariate normal with the covariance matrix Σ̂−1τ , while the196

mean is the column i of µ̂τ . The final step of Algorithm 1 is to output a sample θ̂ from Dτ .

Algorithm 1 : Stabilization under Uncertainty
Inputs: initial feedback K, stabilization time length τ
for n = 0, 1, · · · ,κ − 1 do

while nτ κ−1 ≤ t < (n+ 1)τ κ−1 do
Apply control action ut in (7)

end while
end for
Calculate Σ̂τ , µ̂τ according to (8)
Return sample θ̂ from the distribution Dτ in (9)

197

Next, to establish performance guarantees for Algorithm 1, let us quantify the ideal stability by198

ζ0 = − log λ
(
exp

[
A0 −B0Q

−1
u B>0 P (θ0)

])
. (10)

By definition, ζ0 is positive. In fact, it is the smallest distance between the imaginary axis in the199

complex-plane, and the eigenvalues of the transition matrix A0 = A0 − B0Q
−1
u B>0 P (θ0), under200

the optimal policy in (6). Since θ0 is unavailable, it is not realistic to expect that after applying201

a policy based on θ̂ given by Algorithm 1, real-parts of all eigenvalues of the resulting matrix202

A0 − B0Q
−1
u B̂>P

(
θ̂
)

are at most −ζ0. However, ζ0 is crucial in studying stabilization, such203

that stabilizing controllers for systems with larger ζ0 can be learned faster. The exact effect of this204

quantity, as well as those of other properties of the diffusion process, are formally established in the205

following result. Informally, the failure probability of Algorithm 1 decays exponentially with τ 1/2.206
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Theorem 1 (Stabilization Guarantee) For the sample θ̂ given by Algorithm 1, let Eτ be the failure207

event that A0 −B0Q
−1
u B̂>P

(
θ̂
)

has an eigenvalue in the closed right half-plane. Then, if κ & τ 2,208

we have209

logP(Eτ ) . − λ (ΣW) ∧ σ2
w

λ (ΣW) ∨ σ2
w

1 ∧ ζ0p

1 ∨ ||K||3

√
τ

p3q
. (11)

The above result indicates that more heterogeneity in coordinates of the Wiener noise renders210

stabilization harder. Moreover, using (10), the term 1∧ζ0p reflects that less stable diffusion processes211

with smaller ζ0, are significantly harder to stabilize under uncertainty. Also as one can expect, larger212

dimensions make learning to stabilize harder. This is contributed by higher number of parameters213

to learn, as well as higher sensitivity of eigenvalues for processes of larger dimensions. Finally, the214

failure probability decays as τ 1/2, mainly because continuous-time martingales have sub-exponential215

distributions, unlike sub-Gaussianity of discrete-time counterparts [36–38].216

4 Thompson Sampling for Efficient Control: Algorithm and Theory217

In this section, we proceed towards analysis of Thompson sampling (TS) for minimizing the quadratic218

cost in (3), and show that it efficiently learns the optimal control actions. That is, TS balances the219

exploration versus exploitation, such that its regret grows with (nearly) the square-root rate, as time220

grows. In the sequel, we introduce Algorithm 2 and discuss the conceptual and technical frameworks221

it relies on. Then, we establish efficiency by showing regret bounds in terms of different problem222

parameters and provide the rates of estimating the unknown drift matrices.223

In Algorithm 2, first the learning-based stabilization Algorithm 1 is run during the time period224

0 ≤ t < τ 0. So, according to Theorem 1, the optimal feedback of θ̂0 stabilizes the system with a225

high probability, as long as τ 0 is sufficiently large. Note that if growth of the state indicates that226

Algorithm 1 failed to stabilize, one can repeat sampling from Dτ0 . So, we can assume that the227

evolution of the controlled diffusion process remains stable when Algorithm 2 is being executed. On228

the other hand, the other benefit of running Algorithm 1 at the beginning is that it performs an initial229

exploration phase that will be utilized by Algorithm 2 to minimize the regret.230

Then, in order to learn the optimal policy πopt with minimal sub-optimality, RL algorithms need231

to cope with a fundamental challenge, commonly known as the exploration-exploitation dilemma.232

To see that, first note that an acceptable policy that aims to have sub-linear regret, needs to take233

near-optimal control actions in a long run; ut ≈ −Q−1u B>0 P (θ0)xt. Although such policies exploit234

well and their control actions are close to that of πopt, their regret grows large since they fail to235

explore. Technically, the trajectory of observations {zt}t≥0 is not rich enough to provide accurate236

estimations, since in z>t =
[
x>t ,u

>
t

]
, the signal ut is (almost) a linear function of the state signal237

xt, and so does not contribute towards gathering information about the unknown parameter θ0.238

Conversely, for sufficient explorations, RL policies need to take actions that deviate from those of239

πopt, which imposes large regret (as quantified in Lemma 7). Accordingly, the above trade-off needs240

to be delicately balanced; what we show that TS does.241

Algorithm 2 is episodic; the parameter estimates θ̂n are updated only at the end of the episodes at242

times {τn}∞n=0, while during every episode, actions are taken as if θ̂n =
[
Ân, B̂n

]>
is the unknown243

truth θ0. That is, for τn−1 ≤ t < τn, using P
(
θ̂n

)
in (5), we let ut = −Q−1u B̂>n P

(
θ̂n

)
xt.244

Then, for each n = 1, 2, · · · , at time τn, we use all the observations collected so far, to find Σ̂τn
, µ̂τn

245

according to (8). Next, we use them to sample θ̂n from the posterior Dτn
in (9).246

The episodes in Algorithm 2 are chosen such that their end points satisfy247

0 < α ≤ inf
n≥0

τn+1 − τn
τn

≤ sup
n≥0

τn+1 − τn
τn

≤ α <∞, (12)

for some fixed constants α, α. Broadly speaking, (12) lets the episode lengths of Algorithm 2 scale248

properly to avoid unnecessary updates of parameter estimates, while at the same time performing249

sufficient exploration. To see that, first note that since Σ̂τ grows with τ , the estimation error θ̂n−θ0250

decays (at best polynomially fast) with τn. So, until ensuring that updating the posterior yields to251
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significantly better approximations, it will not be beneficial to update it, sample from it, and solve252

(5). So, the period τn+1 − τn that the data up to time τn is utilized, is set to be as long as ατn.253

On the other hand, the above period cannot be too long, since we aim to improve the parameter254

estimates after collecting enough new observations; τn+1 ≤ (1 + α) τn. A simple setting is to let255

α = α, which yields to exponential episodes τn = τ 0 (1 + α)
n. Note that for TS in continuous time,256

posterior updates should be limited to sufficiently-apart time points. Otherwise, repetitive updates are257

computationally impractical, and also can degrade the performance by preventing control actions258

from having enough time to effectively influence.259

Algorithm 2 : Thompson Sampling for Efficient Control of Diffusion Processes
Inputs: stabilization time τ 0

Calculate sample θ̂0 by running Algorithm 1 for time τ 0

for n = 1, 2, · · · do
while τn−1 ≤ t < τn do

Apply control action ut = −Q−1u B̂>n−1P
(
θ̂n−1

)
xt

end while
Letting Σ̂τn

, µ̂τn
be as (8), sample θ̂n from Dτn

given in (9)
end for

We show next that Algorithm 2 addresses the exploration-exploitation trade-off efficiently. To see260

the intuition, consider the sequence of posteriors Dτn . The explorations Algorithm 2 performs by261

sampling θ̂n from Dτn , depends on Σ̂τn . Now, if hypothetically λ
(

Σ̂τn

)
is not large enough, then262

Dτn
does not sufficiently concentrate around µ̂τn

and so θ̂n will probably deviate from the previous263

samples
{
θ̂i

}n−1
i=1

. So, the algorithm explores more and obtains richer data zt by diversifying the264

control signal ut. This renders the next mean µ̂τn+1
a more accurate approximation of θ0, and also265

makes λ
(

Σ̂τn+1

)
grow faster than before. Thus, the next posterior Dτn+1

provides a better sample266

with smaller estimation error θ̂n+1−θ0. Similarly, if a posterior is excessively concentrated, in a few267

episodes the posteriors adjust accordingly to the proper level of exploration. Hence, TS eventually268

balances the exploration versus the exploitation. This is formalized below.269

Theorem 2 (Regret and Estimation Rates) Parameter estimates and regret of Algorithm 2, satisfy270 ∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2 .
λ (ΣW)

λ (ΣW)
log (1 + α) (p+ q) p τ−1/2n log τn ,

Reg (T ) . λ (ΣW) τ 0 +
λ (ΣW)

2

λ (ΣW)

α||P (θ0)||6

log(α+ 1)λ (Q)
6 (p+ q) p T 1/2 log T .

In the above regret and estimation rates, and similar to Theorem 1, λ (ΣW) /λ (ΣW) reflects the271

impact of heterogeneity in coordinates of Wt on the quality of learning. Also, larger log(1 + α)272

corresponds to longer episodes which compromises the estimation. Further, p(p+q) shows that larger273

number of parameters linearly worsens the learning accuracy. In the regret bound, ||P (θ0)||/λ (Q)274

indicates effect of the true problem parameters θ0, Q. Finally, λ (ΣW) τ 0 captures the initial phase275

that Algorithm 1 is run for stabilization, which takes sub-optimal control actions as in (7).276

5 Intuition and Summary of the Analysis277

The goal of this section is to provide a high-level roadmap of the proofs of Theorems 1 and 2, and278

convey the main intuition behind the analysis. Complete proofs and the technical lemmas are provided279

in Appendices A and B, respectively.280

Summary of the Proof of Theorem 1. The main steps involve analyzing the estimation (Lemma 4),281

studying its effect on the solutions of (5) (Lemma 12), and characterizing impact of errors in entries282

of parameter matrices on their eigenvalues (Lemma 5). Next, we elaborate on these steps.283
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We show that the error satisfies
∣∣∣∣∣∣θ̂ − θ0∣∣∣∣∣∣ . p(p+ q)1/2τ−1/2 (Lemma 4). More precisely, the error284

depends mainly on total strength of the observation signals zt, which are captured in the precision285

matrix Σ̂τ , as well as total interactions between the signal zt and the noise Wt in the form of the286

stochastic integral matrix
τ∫
0

ztdW>t . However, we establish an upper bound λ
(

Σ̂−1τ

)
. τ−1, that287

indicates the concentration rate of the posteriorDτ (Lemma 3). Similarly, thanks to the randomization288

signal wn, the signals zt are diverse enough to effectively explore the set of matrices θ = [A,B]
>,289

leading to accurate approximation of θ0 by the posterior mean matrix µ̂τ . Then, to bound the error290

terms caused by the Wiener noise Wt, we establish the rate p(p + q)1/2τ 1/2 (Lemma 2). Indeed,291

we show that the entries of this error matrix are continuous-time martingales, and use exponential292

inequalities for quadratic forms and double stochastic integrals [37, 36] to establish that they have a293

sub-exponential distribution.294

Moreover, the error rate of the feedback satisfies a similar property;
∣∣∣∣∣∣B̂>P (θ̂)−B>0 P (θ0)

∣∣∣∣∣∣ .295

p(p + q)1/2τ−1/2 (Lemma 12). So, letting A = A0 − B0Q
−1
u B̂>P

(
θ̂
)

and A0 = A0 −296

B0Q
−1
u B>0 P (θ0), it holds that

∣∣∣∣A −A0

∣∣∣∣ . p(p + q)1/2τ−1/2. Next, to consider the effect297

of the errors on the eigenvalues of A, we compare them to the eigenvalues of A0, which are bounded298

by −ζ0 in (10). To that end, we establish a novel and tight perturbation analysis for eigenvalues of299

matrices, with respect to their entries and spectral properties (Lemma 5). Using that, we show that300

the difference between the eigenvalues of A and A0 scales as
(
1 ∨ r1/2

∣∣∣∣A −A0

∣∣∣∣)1/r , where r is301

the size of the largest block in the Jordan block-diagonalization of A0. Therefore, for stability of302

A, we need
∣∣∣∣A −A0

∣∣∣∣ . p−1/2 (1 ∧ ζ0p), since r ≤ p. Note that if A0 is diagonalizable, r = 1303

implies that we can replace the above upper bound by 1 ∧ ζ0. Putting this stability result together304

with the estimation error in the previous paragraph, we obtain (11).305

Summary of the Proof of Theorem 2. To establish the estimation rates, we develop multiple306

intermediate lemmas quantifying the exact amount of exploration Algorithm 2 performs. First, we307

utilize the fact that the bias of the posterior distribution Dτn
depends on its covariance matrix Σ̂τn

,308

as well as a self-normalized continuous-time matrix-valued martingale. For the effect of the former,309

i.e., λ
(

Σ̂
−1/2
τn

)
, we show an upper-bound of the order τ−1/4n (Lemma 9). To that end, the local310

geometry of the optimality manifolds that contain drift parameters θ that has the same optimal311

feedback as that of the unknown truth θ0 in (6) are fully specified (Lemma 6), and spectral properties312

of non-linear functions of random matrices are studied. Then, we establish a stochastic inequality for313

the self-normalized martingale, indicating that its scaling is of the order p(p+ q) log τn (Lemma 8).314

Therefore, utilizing the fact that θ̂n − µ̂τn has the same scaling as the bias matrix µ̂τn − θ0, we315

obtain the estimation rates of Theorem 2.316

Next, to prove the presented regret bound, we establish a delicate and tight analysis for the dominant317

effect of the control signal ut on the regret Algorithm 2 incurs. Technically, by carefully examining318

the infinitesimal influences of the control actions at every time on the cost, we show that it suffices319

to integrate the squared deviations
∣∣∣∣∣∣ut +Q−1u B̂>n P

(
θ̂n

)
xt

∣∣∣∣∣∣2 to obtain Reg (T ) (Lemma 7). We320

proceed toward specifying the effect of the exploration Algorithm 2 performs on its exploitation321

performance by proving the Lipschitz continuity of the solutions of the Riccati equation (5) with322

respect to the drift parameters:
∣∣∣∣∣∣P (θ̂n)− P (θ0)

∣∣∣∣∣∣ . ∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣ (Lemma 12). This result is a very323

important property of (5) that lets the rates of deviations from the optimal action scale the same as the324

estimation error, and is proven by careful analysis of integration along matrix-valued curves in the325

space of drift matrices, as well as spectral analysis for approximate solutions of a Lyapunov equation326

(Lemma 10). Thus, the regret bound is achieved, using the estimation error result in Theorem 2.327

6 Numerical Analysis328

We empirically evaluate the theoretical results of Theorems 1 and 2 under three control problems. The329

first two are for the flight control of X-29A airplane at 2000 ft [39] and for Boeing 747 [40]. The third330
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simulation is for blood glucose control [41]. We present the results for X-29A airplane in this section,331

and defer the other two examples to the appendix. The true drift matrices of the X-29A airplane332

are A0 =

 −0.16 0.07 −1.00 0.04
−15.20 −2.60 1.11 0.00
6.84 −0.10 −0.06 0.00
0.00 1.00 0.07 0.00

 , B0 =

−0.0006 0.0007
1.3430 0.2345
0.0897 −0.0710
0.0000 0.0000

. Further, we let ΣW = 0.5 Ip,333

Qx = Ip, and Qu = 0.1 Iq where In is the n by n identity matrix. To update the diffusion process xt334

in (1), time-steps of length 10−3 are employed. Then, in Algorithm 1, we let σw = 5,κ = bτ 3/2c,335

while τ varies from 4 to 20 seconds. The initial feedback K is generated randomly. The results336

for 1000 repetitions are depicted on the left plot of Figure 1, confirming Theorem 1 that the failure337

probability of stabilization, decreases exponentially in τ .338

On the right hand side of Figure 1, Algorithm 2 is executed for 600 second, for τn = 20× 1.1n. We339

compare TS with the Randomized Estimate algorithm [2] for 100 different repetitions. Average- and340

worst-case values of the estimation error and the regret are reported, both normalized by their scaling341

with time and dimension, as in Theorem 2. The graphs show that (especially the worst-case) regret of342

TS substantially outperforms, suggesting that TS explores in a more robust fashion. Simulations for343

Boeing 747 and for the blood glucose control, in the appendix, corroborate the above findings.

Figure 1: For the X-29A flight control problem, percentage of stabilization for 1000 runs of Algo-
rithm 1 is plotted on the left. The graphs on the right depict the performance of Algorithm 2 (blue)
compared to Randomized Estimate policy (red) [2]. The top graph plots the normalized squared

estimation error
∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣2, divided by p(p + q)τ

−1/2
n log τn, versus time, while the lower one

showcases the regret Reg (T ), divided by p(p + q)τ
1/2
n log τn. Curves for the worst-case among

100 replications are provided for both quantities, as well as for the averages over all replicates.
344

7 Concluding Remarks and Future Work345

We studied Thompson sampling (TS) RL policies to control a diffusion process with unknown drift346

matrices. First, we proposed a stabilization algorithm for linear diffusion processes, and established347

that its failure probability decays exponentially with time. Further, efficiency of TS in balancing348

exploration versus exploitation for minimizing a quadratic cost function is shown. More precisely,349

regret bounds growing as square-root of time and square of dimensions are established for Algorithm 2.350

Empirical studies showcasing superiority of TS over state-of-the-art are provided as well.351

As the first theoretical analysis of TS for control of a continuous-time model, this work implies352

multiple important future directions. Establishing minimax regret lower-bounds for diffusion process353

control problem is yet unanswered. Moreover, studying the performance of TS for robust control354

of the diffusion processes aiming to simultaneously minimize the cost function for a family of drift355

matrices, is also an interesting direction for further investigation. Another problem of interest is356

efficiency of TS for learning to control under partial observation where the state is not observed and357

instead a noisy linear function of the state is available as the output signal.358
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