
TA-MoE: Topology-Aware Large Scale
Mixture-of-Expert Training

Anonymous Author(s)
Affiliation
Address
email

Abstract

Sparsely gated Mixture-of-Expert (MoE) has demonstrated its effectiveness in1

scaling up deep neural networks to an extreme scale. Despite that numerous efforts2

have been made to improve the performance of MoE from the model design or3

system optimization perspective, existing MoE dispatch patterns are still not able to4

fully exploit the underlying heterogeneous network environments. In this paper, we5

propose TA-MoE, a topology-aware routing strategy for large-scale MoE trainging,6

from a model-system co-design perspective, which can dynamically adjust the7

MoE dispatch pattern according to the network topology. Based on communication8

modeling, we abstract the dispatch problem into an optimization objective and9

obtain the approximate dispatch pattern under different topologies. On top of10

that, we design a topology-aware auxiliary loss, which can adaptively route the11

data to fit in the underlying topology without sacrificing the model accuracy.12

Experiments show that TA-MoE can substantially outperform its counterparts13

on various hardware and model configurations, with roughly 1.01x-1.61x, 1.01x-14

4.77x, 1.25x-1.54x improvements over the popular DeepSpeed-MoE, FastMoE and15

FasterMoE systems.16

1 Introduction17

The scale of model parameters in neural networks has increased from millions to trillions in recent18

years, which promotes model accuracy in many domain, such as language processing [3, 4, 5] and19

computer vision [26, 22]. However, the limited hardware resources, e.g., memory capability and20

communication bandwidth, have constrained the model size to further scale up. To relieve this tension21

and improve the model performance, Mixture of Expert (MoE) with a sparsely gated structure was22

recently reintroduced [15, 25, 24]. The core structure of MoE is a group of small "expert" networks23

and a gate network. Guided by the gate result, input data is dynamically routed to only a sub-group24

of experts for computation. Compared with dense training methods, the sparsely activated feature25

of MoE can significantly reduce the computation burden, extend the model size, and achieve higher26

accuracy [6, 7, 11, 13].27

Since MoE plays a vital role in large-scale model training, efficient MoE parallel training has28

recently received much attention. As one of the most popular MoE training approaches (Figure 1),29

expert parallelism [11, 7] distributes experts to different devices, and each device is responsible for30

a different batch of training samples. Correspondingly, extra global communication is necessary31

for data exchanges among devices. Recent works aim to increase expert parallelism performance32

from two aspects. On the one hand, the dynamic pattern of MoE results in severe computation33
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load-imbalance problems that a small number of experts may receive, process, and send the majority34

of data. Several approaches were proposed to make full use of the available experts, such as adding35

an auxiliary loss [25], controlling expert capacity [11, 7], and optimizing the assignment scheme for36

a balanced load [12, 27, 21]. On the other hand, global communication is another main obstacle to37

efficient MoE training. Most of the recent works reduced the communication cost from a system38

perspective, such as computation and communication overlapping [9], customized communication39

operation acceleration [20, 17], and adaptive routing [16].40

In addition to the continuing efforts made to improve the performance of MoE, there are still two41

major challenges. With the development of the complicated distributed network environments, the42

existing even dispatch method may cause network contention in the slowest links, leading to poor43

communication performance, especially on heterogeneous networks. Although a few early works [9]44

have proposed methods to dispatch more data to slow links, these methods may make the expert load45

imbalanced and could influence the model accuracy. Efficient communication demands more delicate46

dispatch strategies. How to improve the training efficiency without sacrificing the model accuracy is47

still worth studying. Besides, most of the existing communication optimizations for MoE [20, 16] are48

studied with a specific hardware environment. How to develop methods that can adapt to a variety of49

hardware environments is also of great practical value.50

To tackle these challenges, we design TA-MoE, a topology-aware large scale MoE training method51

that can adaptively adjust the communication volume to fit the underlying network topology. By52

abstracting the dispatch problem into an optimization objective based on the communication mod-53

eling, we obtain the approximate dispatch pattern under different topologies. On top of that, an54

auxiliary topology loss with pattern-related coefficients is proposed, which can dynamically adjust55

the communication volume without interfering with the model convergence. TA-MoE can also be56

easily incorporated into the widely used MoE systems, such as DeepSpeed-MoE [20] and FastMoE57

[8].58

We conduct experiments on various typical network topologies and model configurations. Results59

show that TA-MoE can substantially outperform DeepSpeed-MoE and FastMoE with roughly 1.01x-60

1.61x speedup and 1.01x-4.77x speedup on different configurations without sacrificing the model61

accuracy. Compared with the recently proposed Hir gate of FasterMoE, our method can achieve62

1.25x-1.54x speedup on time to convergence. Besides, a more detailed analysis of communication63

and data dispatch pattern further demonstrates the effectiveness of the proposed data dispatch strategy.64

2 Related Work65

Several frameworks have featured sophisticated designs to support efficient MoE training. GShard66

[11] and DeepSpeed-MoE [20] subtly composed several einsum operators into the computation of67

MoE but introduced redundant zero computation and extra memory consumption. FastMoE [8]68

customized the essential computation kernels to improve resource utilization effectively. To further69

enhance the performance, most of the systems adopted an auxiliary loss [25] to achieve an even70

dispatch pattern and enforced the number of data processed by each expert below some uniform71

capacity. Based on these popular implementations, recent works aim to improve the MoE training72

performance from mainly two aspects: model structure design and communication optimization.73

From the perspective of model design, BASE Layer [12] and the work of expert choice routing [27]74

assigned an equal number of tokens to each expert by delicate designs of the gate. Instead of learning75

the weight of the gate, Hash Layers [21] adopted an efficient hash function to guide the dispatch.76

The hybrid structure of PR-MoE [20] improved the parameter efficiency by fixing one shared expert.77

BaGuaLu [14] re-distributed the data chunks evenly, damaging the model accuracy. However, almost78

all of these high-level algorithms are agnostic of the complicated underlying hardware effect on79

training performance.80

As for communication optimization, DeepSpeed-MoE [20] and HetuMoe [17] implemented a hierar-81

chical all-to-all communication kernel to improve network utilization. Tutle [16] designed adaptive82

routing techniques coupled with a specific network architecture. Despite of these delicate designs, the83
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improvement space of system-level optimization is significantly constrained by the dispatch patterns84

of MoE. Recently, FasterMoE [9] made an initial try to take the dispatch pattern into consideration85

by setting a compulsory ratio of intra-node to inter-node dispatch chunk sizes but sacrificed some86

model accuracy. In this paper, we propose a topology-aware routing strategy that enables an effi-87

cient communication pattern to fit into the underlying topology without sacrificing the convergence88

performance.89

3 Background90

3.1 MoE Model Structure91
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Figure 1: The popular expert parallelism method of MoE.

A MoE layer consists of a gate network G and a set of N expert networks E0, . . . , EN−1. For the gate92

module, the softmax activation function is widely used, reflecting each expert’s normalized fitness for93

dealing with an incoming sample. Usually, only the experts with the top k fit scores are selected to94

process the sample. The final output y of the MoE layer is the aggregation of computed results.95

Expert parallelism has been one of the most popular methods in existing MoE training systems [20, 8].96

As shown in figure 1, the N experts are evenly assigned to P devices, with each device i holding97

E = N/P experts Ei∗E , . . . , E(i+1)∗E−1. Besides, the input tokens are also evenly partitioned over98

multiple devices with different small batches of the same size S in a traditional data-parallel way. For99

each process, the shape of the dispatched data is [k ∗ S, d], where d represents the hidden size. Each100

expert receives a combined batch of tokens (Global Exchange) and then carries out the computation.101

During the global communication, the number of samples sent to Ee from process i is cie, and the102

shape of the transferred samples is [cie, d]. Afterward, the expert sends the calculated result back103

with a similar global exchange pattern.104

However, the number of the tokens processed by different experts may be highly imbalanced that105

a small group of experts may receive the majority of data, like Expert 2 in Figure 1. Therefore, a106

load-balance auxiliary loss term laux [25] is added to the train loss as an overall loss function:107

mi =
∑
x

G(x)/S, laux =

N−1∑
e=0

(mie ∗ (cie/S)) (1)

The auxiliary loss can dynamically adjust the value of cie into target k ∗ S/N . To further ensure108

load balance, a uniform data process capacity C is set for each expert in many MoE training109

systems. DeepSpeed-MoE [20] decomposes the expert capacity C evenly into the local capacity110

for each process and prunes the exchange size by the local capacity directly: cie ≤ Cie = C/P .111

FastMoE [8] efficiently uses the capacity with two extra all-to-all communication for exchange sizes:112 ∑P−1
i=0 cie ≤ C.113

3.2 Network Topology114

The network environments are very complicated for distributed training on modern GPU clusters. As115

shown in Figure 2, there are four kinds of typical network topologies: homogeneous, ring, symmetric116

tree and asymmetrical tree. Homogeneous and ring structures are frequently used topologies for the117

intra-node environment. For a homogeneous structure, devices are always connected by the network118
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Figure 2: Typical network topologies on modern GPU clusters. (a) A homogeneous node connected
with NVSwitch. (b) A typical ring topology connected with NVLinks [18]. (c) A 2-layer symmetric
tree topology of [2,2]. (d) A 3-layer asymmetrical tree topology of [[2,2],[2]].

with the same bandwidth, e.g., NVSwitch [19]. As for the ring topology, it is usually symmetrical.119

The bandwidths between adjacent devices may differ due to different numbers of connected links.120

The communication of nonadjacent devices has to hop through intermediate devices and the slowest121

link may become the bottleneck. Hierarchical tree is a common topology abstraction for multi-node122

distributed environments. Compared with the intra-node environment, inter-node links suffer from123

limited and volatile bandwidth (4∼25GB/s) and potentially degrade the communication performance.124

For convenience, we denote a tree topology as a nested list where the elements within the same125

sub-list are connected by the same switch. For a symmetric tree structure, we use Li to represent the126

number of the child nodes of each node in layer i. As for an asymmetrical tree structure, it is the127

most common topology for distributed training, which can be very irregular.128

3.3 Motivation129

The existing load-balanced data distribution of Equation 1 is unable fully exploit the complicated130

distributed environments. To demonstrate it, we set up an experiment on a [2, 2] symmetric tree131

topology cluster, where the devices are named 0, 1 (same node) and 0̂, 1̂ (same node), respectively.132

We dispatch 128MB data with two dispatch patterns: (1) even dispatch and (2) uneven dispatch133

that a greater proportion of data is exchanged with a neighbor device. Table 1 shows the detailed134

dispatch proportions and the corresponding performance. Compared with even dispatch, uneven135

dispatch improves the overall communication performance by roughly 30%. This is mainly because136

the communication stress on inter-node links is relieved by transferring a smaller proportion of data.137

With the variety of distributed network topologies and their continuous development, the existing138

static even dispatch pattern is not effective enough. There is an urgent need for a routing strategy that139

can dynamically adapt to the underlying network environments.140

Table 1: The communication performance of [[0,1],[0̂, 1̂]] network topology.
Dispatch Pattern 0 ↔ 0 0 ↔ 1 0 ↔ 0̂ 0 ↔ 1̂ All

Ratio of data Even 1/4 1/4 1/4 1/4 1
Uneven 1/4 1/2 1/8 1/8 1

Time (µs) Even 144 758 5609 5618 14019
Uneven 144 1492 2835 2861 10765

4 Topology Aware Routing Strategy141

In this section, we first abstract the data dispatch problem into an optimization objective based on the142

communication model. Through some analysis, we obtain the target dispatch pattern under different143

topologies, which can eliminate the communication bottleneck during MoE training. Guided by the144

target pattern, we design a topology-aware routing loss to adaptively adjust the dispatch volume.145

4.1 Communication Model146

We characterize the communication cost using the well-known α-β cost model, where α and β147

represent the fixed communication latency and the inverse bandwidth (i.e., transferring costs of148

each word), respectively. For convenience, αij and βij are used to denote the latency and inverse149

bandwidth between the i-th and j-th GPU. During the training of MoE, the amount of data transferred150
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from GPU i to Ee in GPU j is cie ∗ d ∗ b, where d ∗ b is the transferred element size. To reduce the151

overheads of multiple send-receives between two GPUs, we merge the multiple small data chunks152

into a larger data chunk for delivery. The total amount of data delivered from GPU i to GPU j153

is
∑E∗(j+1)−1

e=E∗j cie ∗ d ∗ b. A global data exchange consists of P ∗ P peer-to-peer data deliveries,154

among which the slowest delivery, as a lower-bound, constrains the final communication performance.155

Most of the global exchange implementations [20, 17, 23] are designed to approach the lower-bound.156

Therefore, our ultimate objective function is to minimize the slowest send-receive communication157

cost:158

min
c

max
i,j

(αij + βij ∗
E∗(j+1)−1∑

e=E∗j
cie ∗ d ∗ b) (2)

For efficient MoE training, two constraint conditions should be satisfied. First, for any process i, the159

sent data size, i.e., k ∗ S, should be equal to the sum of received data size of all experts:160

k ∗ S =
∑

e∈{0,...,N−1}

cie,∀i ∈ {0, ..., P − 1}. (3)

Second, to make full use of all the experts and pursue a better model accuracy, the data chunks161

dispatched to each expert should be balanced:162

k ∗ S
E

=
∑

i∈{0,...,P−1}

cie,∀e ∈ {0, ..., N − 1}. (4)

4.2 Model Optimization163

To get the target dispatch pattern, we need to solve the optimization problem in Equation 2. Nev-164

ertheless, Equation 2 contains plentiful parameters of a specific network, which complicates the165

solving process. Meanwhile, in some irregular topologies, some devices may suffer from quite limited166

bandwidth when communicating with other devices. According to Equation 2, the experts assigned167

to these devices may receive a quite small dispatch chunk size from the other processes, which may168

make the experts lack of sufficient data exchanges and lead to expert isolation phenomenon. To tackle169

these problems, we simplify the optimization problem to accelerate the solving process and smooth170

the values of αij , βij for an approximate result to prevent expert isolation. Since each send-receive171

communication shares the same α, β in homogeneous network, the target dispatch chunk size ĉie172

is equal to the load-balanced chunk size k∗S
N . In the following part, we focus on the analysis of the173

optimization problem under heterogeneous topologies.174

On a n-layer symmetric tree topology, for any device i, all the devices can be split into n sub-groups175

of Gi = {Gi
t|t < n}. Gi

t is the group of devices whose shortest path from device i are across t176

switches. Multiple hops in cross-switch communication will suffer from extra overheads and the177

most limited bandwidth in the hops dominates the final bandwidth. Therefore, we can simplify178

the original αij , βij into n value: αl =
∑

i<j I(j∈Gi
l)∗αij

(
∏l

k=0 Lk)∗(Ll−1)/2
, βl =

∑
i<j I(j∈Gi

l)∗βij

(
∏l

k=0 Lk)∗(Ll−1)/2
, which can179

precisely characterize the underlying topology and eliminate the noise of profiling. Then we get a180

hierarchical matrix α̂, β̂:181

α̂ij =
∑
l

I(j ∈ Gi
l) ∗ αl, β̂ij =

∑
l

I(j ∈ Gi
l) ∗ βl (5)

Take equation 3 and 4 as optimization constraint conditions, we simplify the optimization problem as182

follows:183

min
c

T lower
comm = min

c
max
i,j

(α̂ij + β̂ij ∗
E∗(j+1)∑
e=E∗j

cie ∗ d ∗ b)

s.t.
k ∗ S
E

=
∑

i∈{0,...,P−1}

cie ∗ d ∗ b,∀e ∈ {0, ..., N − 1},

k ∗ S =
∑

e∈{0,...,N−1}

cie ∗ d ∗ b,∀i ∈ {0, ..., P − 1},

c ≥ 0

(6)
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Then, we can get the optimal solution:184

ĉie =
k ∗ S

E ∗
∑

j
1
β̂ij

∗ β̂i⌊ e
E ⌋

(7)

The optimal data distribution of the above min-max problem is only related to the bandwidth: the185

volume of ĉie is linear to the bandwidth. The rationale behind the optimal result is that higher186

bandwidth links should bear more loads for an overall communication balanced workflow. The ring187

topology also shows a hierarchical characteristic and the solution for ring topology has the same188

pattern as symmetric trees.189

Under some irregular asymmetric topology, the optimal result of Equation 2 may result in some190

experts assigned to the devices of most limited bandwidth in lack of data exchanges with the rest191

of the devices. Compared to the data distribution of other experts, data chunks from local devices192

occupy a larger proportion of received data chunks in those isolated experts. For the fairness among193

the experts, we transform the asymmetric topology into a symmetric one by merging the separate194

nodes into the close symmetric sub-trees. For example, [[2,2][2]] in figure 2(d) can be merged as195

symmetric structure [[2,2,2]]. After that, we can optimize the lower bound of communication as the196

symmetric structure.197

4.3 Routing Strategy198

Once getting the target data dispatch volumes among processes, we can use it to guide the MoE199

training. To not sacrifice the model accuracy, instead of setting a compulsory dispatch ratio directly,200

we design a topology-aware adaptive routing loss.201

pi = Norm(1/ĉi), litopo = N ∗ P ∗
N−1∑
e=0

(pie ∗mie ∗ (cie)/S) ∀i ∈ {0, ..., P − 1} (8)

As shown in Equation 8, we set a penalty weight pi as the adjustment coefficients for the topology loss202

litopo of each process i. We set the normalized 1/ĉi as pi to make sure cie approximates the value of203

ĉie. Normalization functions that enlarge the penalty of the low-bandwidth transfer, e.g., softmax, are204

also preferable. As shown in the calculation of litopo, the data dispatched to Ee with limited bandwidth205

will suffer from a larger penalty weight pie. Despite of these penalty modifications, auxiliary loss206

occupies a small proportion of the final loss, and the value of the auxiliary loss decreases when207

experts’ number scales up. Therefore, our final topology loss is expanded N ∗ P times to keep the208

magnitude of loss value.209

There are a number of advantages of the proposed topology-aware strategy. On the one hand,210

compared to setting a compulsory dispatch ratio, the proposed loss can adjust the communication211

volume to fit in the underlying topologies in a mild way without damaging the convergence. A212

compulsory dispatch ratio has a high potential to overwhelm the influence of the train loss and213

sacrifice the model accuracy. With the topology loss, the train loss can still dominate in the final214

loss value. As a result, the dispatch results are mainly influenced by the train loss for a better model215

accuracy. Besides, the topology-aware strategy has more potential to utilize the token information for216

efficient sparse training. Guided by the topology-aware loss, the tokens nearby are more likely to be217

processed by the same expert. Since the correlation of adjacent tokens contains the vital information218

in sparse attention [10], the experts in sparsely gated routing structure may also be more likely to219

extract important information from adjacent tokens.220

In addition, the topology-aware loss can be easily incorporated to existing MoE systems, such as221

DeepSpeed-MoE and FastMoE. Taking FastMoE as an example, one just needs to directly replace222

the popular load-balanced loss laux with the proposed topology-aware loss ltopo. Since local capacity223

threshold Cie is adopted in DeepSpeed-MoE for load balance, one can modify the local capacity224

sizes to be consistent with the proposed dispatch pattern by setting Cie to be proportional to the225

target data chunk sizes ĉie. Instead of padding the data chunks with extra zeros to be the same size as226

DeepSpeed-MoE, one all-to-all communication is added to get the information of send-receive data227

chunk sizes and dispatch data chunks according to the sizes.228
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5 Evaluation229

Experiment setup To demonstrate the effectiveness of TA-MoE, we carry out a series of experi-230

ments on three typical NVIDIA GPU clusters with different network topology, and some represen-231

tative model configurations. Table 2 lists the cluster settings. The testbed is three typical clusters232

from the PaddleCloud1 platform. For cluster A, each node consists of 8 NVIDIA Tesla 40GB A100233

GPUs connected with NVSwitch, which shows high performance for both computation and network234

communication. Clusters B and C are equipped with 8 NVIDIA Tesla 32GB V100 GPUs in each235

node. The nodes in cluster B are connected by the same switch, while cluster C is composed of a large236

number of servers and switches that are interconnected through an internal network infrastructure.237

Besides, the software configurations are set as CUDA 11.0, NCCL 2.8.4 and CUDA 11.1, NCCL238

2.8.3, for cluster A and cluster B, C, respectively.239

Table 2: Cluster Setting.
Clusters GPU Intra-Node Inter-Node Symmetric Same switch

A 40G-A100 NVSwitch 100GB/s RoCE/4 x x
B 32G-V100 NVlink 100GB/s RoCE/8 ✓ ✓
C 32G-V100 NVlink 100GB/s RoCE/8 x x

Without loss of generality, we focus the experiments on problems related to language modeling, with240

GPT-3 Medium [3] as the base model and multi-layer perception as the expert. In our experiments,241

the number of the experts are chosen among {8, 16, 32, 48, 64} with each device deployed with242

one expert. Both the Switch top-1 [7] and the GShard top-2 gates [11] are tested with the weight243

of auxiliary loss set as 1.0. For the consistency of the experiment, we implement the models by a244

single framework Paddle [2] and train on the open-source openwebtext2 dataset [1]. More detailed245

specifications of model settings can be found in Table 3.

Table 3: Detailed specifications of the GPT models.
Gate Layers Hidden size Intermediate size Batch size Data type Capacity factor Clusters

Switch 12 1024 4096 6 FP16 1.0 A
GShard 12 1024 2048 6 FP16 2.0 A

Switch & GShard 12 1024 2048 4 FP32 1.2 B
Switch & GShard 12 1024 2048 4 FP32 1.2 C

246

Methodology We incorporate TA-MoE into widely used DeepSpeed-MoE [20] and FastMoE [8]247

implementations. Because TA-MoE modifies the gate structure, we first compare the validation loss248

w.r.t. steps to ensure that TA-MoE will not interfere with the convergence on various model scales.249
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Figure 3: Validation loss w.r.t. steps.

On top of that, we test the overall throughput and the250

speedup of TA-MoE over these two classical base-251

lines. To be more comprehensive, we also compare252

with the recently proposed FasterMoE Hir gate [9]253

on the metric of time to convergence performance.254

Besides, a detailed analysis of communication costs,255

as well as the distribution of the dispatch are also256

given.257

Accuracy and Performance We first compare the258

validation loss w.r.t steps of TA-MoE and the repre-259

sentative FastMoE on cluster C. As shown in Figure260

3, the loss curves of TA-MoE and FastMoE are consistent to converge under different training scales261

of 8 experts to 48 experts. These results demonstrate that the TA-MoE can adaptively adjust the data262

dispatch volume without sacrificing the model accuracy.263

1A Cloud Platform of Baidu Inc.
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Figure 4: Performance of TA-MoE over DeepSpeed-MoE and FastMoE under different hardware and
model settings.

To demonstrate the advantages of TA-MoE in terms of training performance, we compare it264

with both DeepSpeed-MoE and FastMoE on various hardware and model configurations. The265

performance indicators including throughout (tokens/s) and the speedups are depicted in Fig-266

ure 4. It is clear that TA-MoE can bring significant performance improvements over its coun-267

terparts under almost all the configurations. When compared with the DeepSpee-MoE, the268

achieved speedup is about 1.05x-1.61x. As for FastMoE, the performance improvement is around269

1.01x-4.77x. More speedups are achieved on FastMoE than DeepSpeed-MoE. This is because270

TA-MoE has a more dynamic dispatch pattern and larger adjustable space based on FastMoE.271
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Figure 5: Comparison with FasterMoE.

It is also observed that more improvements are ob-272

tained on Cluster C, which can reach 4.77x for some273

cases, due to the relief of its serious network con-274

tention of cross-switch communication. In addition,275

the comparison of the results of Switch and GShard276

gate reveals that TA-MoE can behave better in adjust-277

ing larger volume of data.278

To be more comprehensive, we make further com-279

parisons with the recently proposed FasterMoE [9].280

Because the compulsory dispatch strategy of Faster-281

MoE affects the convergence, we take the validation282
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loss w.r.t time as the comparison metric. Clusters C are selected as the representative testing clusters.283

As shown in Figure 5, TA-MoE can converge faster than FasterMoE. We evaluate the time to reach284

the validation loss values of 3.1, 2.9, and 2.8, and TA-MoE can converge faster by about 1.25x, 1.47x285

and 1.54x. The results further verify that the proposed adaptive routing loss is more effective than the286

compulsive dispatch method, which sacrifices model accuracy for training performance.287

Communication Analysis To better show the effects of the dynamical dispatch strategy, we further288

analyze communication and computation cost, and the distribution of data dispatch on cluster C. As289

shown in Figure 6(a), thanks to the proposed TA-MoE strategy, the communication cost is reduced290

rapidly, with roughly 1.16x to 6.4x speedups. It is also observed that the maximum speedup is291

achieved for 32 experts on four cross-switch nodes. This is because the four nodes are deployed292

under four different switches, and cross-switch links severely bottleneck the data exchange. Once293

the tension is relieved, the obtained benefits can be dramatic. In addition, we visualize the dispatch294

pattern of an example with 64 expert by depicting the number of the tokens of Rank 0-7 sending to295

other ranks. The dispatch distributions of other expert scales are attached to the appendix. In Figure296

6(b), as expected, most of the data of Rank 0-7 are dispatched to low-overheads nearby ranks, which297

further verifies the effectiveness of adaptive topology-aware loss.
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(a) Breakdown of communication and computation.
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(b) Distribution of data dispatch of Rank 0-7.

Figure 6: Analysis of communication and computation cost and the distribution of data dispatch.

298

6 Conclusion299

In this paper, a topology-aware routing strategy, TA-MoE, was proposed to stress the mismatch300

between the data dispatch pattern and the network topology. Based on communication modeling, we301

abstract the dispatch problem into an optimization objective and obtain the approximate dispatch302

pattern under different topologies. On top of that, a topology-aware auxiliary loss was designed,303

which can adaptively route the data to fit in the underlying topology without sacrificing the model304

accuracy. Experiments show that the proposed method can substantially outperform its counterparts305

on a variety of the hardware and model configurations, with roughly 1.01x-1.61x, 1.01x-4.77x,306

1.25x-1.54x improvements over the popular DeepSpeed-MoE, FastMoE and FasterMoE systems. In307

the future, we plan to take more delicate communication operators into consideration of dynamic308

dispatch pattern and extend our work to more hardware environments.309
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