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ABSTRACT

We study few-shot prompting of pretrained large language models (LLMs) to-
wards solving PDDL planning problems. We are interested in two questions: (1)
To what extent can LLMs solve PDDL planning problems on their own? (2) How
and to what extent can LLMs be used to guide AI planners? Recent work by
Valmeekam et al. (2022) presents negative evidence for (1) in the classic blocks
world domain. We confirm this finding, but expand the inquiry to 18 domains and
find more mixed results with a few clear successes. For (2), we propose a simple
mechanism for using good-but-imperfect LLM outputs to aid a heuristic-search
planner. We also find that the LLM performance is due not only to syntactic pat-
tern matching, but also to its commonsense understanding of English terms that
appear in the PDDL.

1 INTRODUCTION

Figure 1: Few-shot LLM
prompting for PDDL.

We are interested in the applicability of pretrained large language mod-
els (LLMs) (Brown et al., 2020; Chen et al., 2021; Chowdhery et al.,
2022) to AI planning problems. Research in AI planning over the last
two decades has led to powerful domain-independent planners (Helmert,
2006) and a wide variety of real-world applications (Sohrabi, 2019). AI
planning problems are typically represented in PDDL (Fox & Long,
2003), a specification language with Lisp-like syntax. Given an initial
state, goal, and (partial) transition model written in PDDL, AI planners
are capable of generating actions that achieve the goal from the initial
state. Do LLMs have similar capabilities? Can LLMs and AI planners
be combined to outperform either individually?

Towards answering these questions, we consider a few-shot prompting
paradigm (Brown et al., 2020) where an LLM is queried with N exam-
ples of PDDL problems and solutions and 1 new problem from the same
domain (Figure 1). The hope is that the LLM will complete this prompt
with a valid solution to the new problem. There are several reasons to
immediately doubt the viability of this enterprise. First, since LLMs are
pretrained on natural language or general code, there is no guarantee
that their outputs will even be syntactically valid PDDL. This lack of
specificity to PDDL is a limitation that other learning-based approaches
to planning do not have (Yoon et al., 2008; Jiménez et al., 2019; Toyer
et al., 2020; Karia & Srivastava, 2021; Gehring et al., 2022). Second,
unlike planning-based approaches, the LLM does not have direct access
to the transition model (PDDL operators), since it is prompted only with
initial states, goals, and solutions1. Third, and perhaps most worryingly,
recent work by Valmeekam et al. (2022) presents compelling evidence
that “large language models still can’t plan” in the classic blocks world
PDDL domain.

1Preliminary experiments with including the operators (or English
descriptions of them) in prompts did not yield clear improvements.

1



Despite these grounds for caution, we are motivated to continue for a few reasons. First, pretrainined
LLMs have shown remarkable reasoning and problem-solving abilities in other contexts (Wei et al.,
2022; Drori et al., 2022; Lewkowycz et al., 2022). Second, even though LLMs do not have direct
transition model access, the example solutions may contain enough information for the LLM to
generalize to new problems. For example, PDDL typically contains English names that a human,
and perhaps the LLM, could use to understand the domain. The solutions may also exhibit a clear
pattern that the LLM could potentially extrapolate, as in few-shot imitation learning (Cropper, 2019;
Silver et al., 2020). Third, even if LLMs “still can’t plan” on their own, they may still provide useful
guidance to an AI planner.

In this work, we apply OpenAI’s Codex LLM (Chen et al., 2021) to 18 PDDL domains: 17 from
the Pyperplan benchmark collection (Alkhazraji et al., 2020) and 1 new PDDL domain. We find
preliminary evidence to support the following claims:

1. In certain PDDL domains, LLMs are capable of solving nontrivial problems.
2. However, in many other domains, LLMs cannot yet solve problems on their own.
3. LLMs are sensitive to the semantics of the English terms used in the PDDL problems.
4. LLMs can perform well in novel2 PDDL domains.
5. Even when LLMs cannot solve problems, they can still be useful for planning.

Beyond our empirical findings, we make two additional contributions. (1) We propose a simple but
effective mechanism to leverage the output of an LLM during planning. The main idea is to use
the LLM output to initialize the queue of a greedy best-first search planner. (2) We contribute3 an
open-source codebase that can be used to benchmark the planning performance of future LLMs, and
to develop new techniques for combining LLMs and planners.

2 RELATED WORK

There has been considerable recent interest in leveraging LLMs for decision making (Collins et al.,
2022; Cohen et al., 2021; Simon & Muise, 2022). For example, Sharma et al. (2022) fine-tune
a pretrained LLM to generate sequences of natural language instructions for robotic tasks in the
ALFRED household environment (Shridhar et al., 2020). Li et al. (2022) consider a similar fine-
tuning strategy in the VirtualHome environment (Puig et al., 2018) and additionally propose an
active data gathering process. Huang et al. (2022a) also consider VirtualHome, but with few-shot
prompting for instruction generation. They propose a mechanism for constraining the LLM output to
feasible action sequences, which we adopt in this work (Section 4). Huang et al. (2022b) incorporate
feedback into the prompts to recover from skill execution failures. Ahn et al. (2022) use LLM
embeddings and pretrained skill value functions to map natural language instructions to skills in a
large suite of robotics tasks.

Most relevant is recent work by Valmeekam et al. (2022), who consider solving PDDL blocks world
problems with LLM few-shot prompting and propose blocks world as a benchmark for improving
decision-making with LLMs. Their “plan generalization” setting is the most similar to ours. One
difference is that we prompt with the original PDDL syntax, rather than domain-specific natural
language encodings of the PDDL. Accordingly, we use Codex — a version of GPT-3 fine-tuned
on general code — instead of GPT-3 itself.4 Valmeekam et al. (2022) come to a largely negative
conclusion about LLM planning ability (“large language models still can’t plan”). In looking beyond
blocks world, we find evidence to support a more optimistic view. We also show that LLMs can be
useful to guide planning, even in domains where LLMs alone struggle to find complete plans on
their own.

2Since LLMs were pretrained on a large corpus of natural language and code, it is likely that some of
the benchmark PDDL domains that we study in this work appeared in training data. For this reason, we also
evaluate on a new domain (“Dressed”) that we created after the LLMs were pretrained.

3The code is released but de-anonymized. We will add a link to this document after double-blind review.
4However, preliminary experiments suggest that performance with GPT-3 is similar.
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3 BACKGROUND

We begin with a brief review of PDDL planning and LLMs. See Geffner & Bonet (2013) and Brown
et al. (2020) respectively for more detailed introductions.

3.1 PDDL PLANNING

We consider AI planning in a setting with discrete and fully-observable states, finite actions, deter-
ministic transitions, and goal-based problems with no other extrinsic feedback. In each state s ∈ S,
the agent can select an action a ∈ A from the set of applicable actions A(s) ⊆ A. A known transi-
tion model F : S×A → S determines the next state after an action is selected. The transition model
is partial: F (s, a) is defined if and only if a ∈ A(s). A problem consists of an initial state s0 ∈ S
and set of goal states g ⊆ S . A solution to a problem is a plan a = (a0, . . . , an−1) that results in a
goal state, that is, si+1 = F (si, ai) for all 0 ≤ i < n and sn ∈ g. A domain is characterized by a
state space, an action space, a transition model, and a problem distribution. In this work, our objec-
tive is to maximize the expected number of problems solved from a domain’s problem distribution
within a wall-clock timeout. We are thus concerned with satisficing, not optimal, planning; we wish
to find any solution, not necessarily a shortest one.

We consider domains encoded in the STRIPS subset of PDDL (Fox & Long, 2003). A state s is
represented by a set of objects and a set of ground atoms. Each ground atom (e.g., (on a b))
consists of a predicate (on) and ordered object arguments (a and b). The object set is constant for a
problem but changes between problems. Objects can also be typed (e.g., a - block). A problem
goal g is also represented by a set of ground atoms and the goal is achieved in state s if g ⊆ s. An
action a is represented by a ground operator (e.g., (unstack a b)), which consists of an opera-
tor (unstack) and ordered object arguments (a and b). A ground operator a has preconditions —
a set of ground atoms — and is applicable (a ∈ A(s)) if the preconditions are a subset of s. The
ground operator also has add effects and delete effects, each a set of ground atoms, which define the
transition model: the add effects are added to the state, and the delete effects are removed from it.
PDDL specifies a Lisp-like syntax for each of these representations.

An AI planner consumes a PDDL domain and problem as input and produces a solution. Most
state-of-the-art (SOTA) planners (Helmert, 2006; Hoffmann, 2001) are variants of heuristic-based
forward search, where the PDDL encodings are used to automatically derive a heuristic function. In
this work, we primarily use the Pyperplan planner with greedy best-first search (GBFS) and the hFF
heuristic (Alkhazraji et al., 2020). Pyperplan is not SOTA, but we prefer it in this work due to its
clean implementation and ease of extensibility. We also report results for the SOTA Fast Downward
planner for comparison (Helmert, 2006).

3.2 LARGE LANGUAGE MODELS (LLMS)

A large language model (LLM) is a model with a large number of parameters (on the order of 1011)
that is trained to represent a probability distribution over a large corpus of text (e.g. the webtext
corpora (Gao et al., 2020)). Though these models are trained simply to predict the likelihood of
text conditioned on some previous context, they exhibit impressive performance on a variety of
downstream tasks like 3-digit arithmetic and word problems (Lewkowycz et al., 2022). An LLM
takes a text query as input and predicts probabilities over following text. We use only the most
likely output5. In this work, we use the Codex LLM (Chen et al., 2021).

4 SOLVING PDDL PROBLEMS WITH FEW-SHOT PROMPTING

We now describe our approaches for using pretrained LLMs to solve PDDL problems. All ap-
proaches use few-shot prompting, where N training problems and solutions are generated once
offline per domain and prepended to each new evaluation problem from the domain that we wish
to solve. The LLM is then queried with this complete prompt and the resulting output is used to
construct a plan in one of several ways. We detail each of these steps in the following subsections.

5Sampling multiple LLM outputs (up to 10 with various temperatures) did not yield clear improvements.
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4.1 PROMPT CONSTRUCTION

To create examples for few-shot prompting, we reserve N training problems from the domain distri-
bution and use a planner6 to generate one solution per problem. In practice, we select the smallest7 N
problems for training from a benchmark set. Following previous work (e.g., (Kojima et al., 2022)),
we construct a prompt prefix by sequencing together Q: <problem> and A: <solution> for
each of the N examples. The problem and solution are encoded in PDDL syntax. For each new
evaluation problem in the domain, we independently create a prompt by concatenating the prefix
and Q: <new problem> A: . See Figure 1 for a simple example.

4.2 LLM OUTPUTS TO PDDL PLANS

Given a prompt, we query the LLM and record its response until Q: is encountered (the stop token)
or a maximum length is exceeded (the context window). We then attempt to parse the response into
a PDDL plan. Our parser is relatively naive and assumes that the response is a sequence of actions in
the form (<operator> <object> <object> . . .). Since the LLM is unconstrained, it is
certainly possible for the response to contain syntax errors, e.g., invalid names or operators with in-
valid arguments. It is also possible that the response represents a plan that violates the preconditions
of the action at some step or does not reach the goal.

We consider two strategies for dealing with malformed LLM outputs: No Auto(regressive) and LLM
Standard. In No Auto, we simply skip over any invalid action over during output parsing. In LLM
Standard, we use the technique of Huang et al. (2022a) to constrain the outputs to be valid PDDL
plans. In this autoregressive prompting technique, rather than generating an entire plan all at once,
we generate one action at a time. After each closed-parentheses expression is output by the LLM,
we check to see if it already represents a valid action. If not, we find the valid action that is “closest”
to the generated expression, where distance is defined via cosine similarity in a pretrained embed-
ding space. We use the Sentence-BERT embedding model (paraphrase-MiniLM-L6-v2) from
Hugging Face in experiments (Reimers & Gurevych, 2019). After each valid action is obtained, we
first check to see if the current plan is a solution. Otherwise, the valid action is appended to the
prompt and the LLM is re-queried.

4.3 USING LLM OUTPUTS TO GUIDE A PLANNER

LLM Standard and No Auto are designed to address the question of whether LLMs can solve PDDL
problems on their own. We are also interested in the questions of how and to what extent LLMs
can be used to guide a PDDL planner. To this end, we propose a simple approach — LLM Plan
Guidance — for using the LLM output with a search-based planner. Recall that heuristic search
algorithms maintain a priority queue of nodes, where each node contains a partial plan and a corre-
sponding state sequence. Given the LLM output, we first parse it into a plan a = (a0, . . . , an−1) by
either the autoregressive or non-autoregressive technique described in Section 4.2. We then use the
initial state s0 and the transition model F to generate the corresponding state sequence (s0, . . . , sn).
Then for each step i where 0 ≤ i < n, we add to the initialized priority queue a node with the partial
plan (a0, . . . , ai) and the corresponding state sequence (s0, . . . , si+1). We use the standard priority
function to order these nodes. For example, in GBFS, the priority is equal to the heuristic.

To motivate LLM Plan Guidance, consider first the case where the LLM output already encodes a
solution. Assuming a well-behaved heuristic, GBFS will immediately pop the full plan a node from
the priority queue and return the solution before expanding any other nodes. Consider instead a
case where the LLM outputs an almost complete plan, but it is missing one or a few actions at the
end. If the heuristic is a good approximation of the true cost-to-go, GBFS would again pop the full
plan and continue searching from the end, likely exploring fewer nodes than it would starting from
the initial state. The LLM would provide especially useful guidance in the case where its output is
sufficient for the planner to escape from some early local optima in the heuristic landscape. If the
LLM makes a “mistake” in the beginning of its output, rather than towards the end, we would not
expect the planner to benefit significantly from its guidance. However, we also should hope that the

6We use Fast Downward with the lama-first configuration to generate these example solutions.
7Problem length is measured by counting ground atoms in the initial state and goal.
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performance will be similar to planning with no guidance. The extent to which this LLM guidance
benefits the planner is ultimately an empirical question; to answer it, we now turn to experiments.

5 EXPERIMENTS AND RESULTS

We now investigate the extent to which LLMs can plan on their own and guide planning.

5.1 DOMAINS

We use the Pyperplan domains and problems for our main experiments (Alkhazraji et al., 2020).
Pyperplan includes 21 domains. We exclude 4 domains whose operators vary per problem (Airplane,
Openstack, Parcprinter, and PSR) and use the remaining 17 domains. We sort the problems by length
and use the first N = 2 problems for training and the next 10 problems for evaluation.

Since the Codex LLM was pretrained on open-source code (Chen et al., 2021), and since the Pyper-
plan benchmarks are open-source, it is possible that some or all of these domains appeared in the
training data 8. To mitigate the possibility that our results are due to memorization, we designed a
new “Dressed” PDDL domain that, to the best of knowledge, is qualitatively dissimilar to existing
PDDL domains. This domain involves planning for one or more people to get dressed for a casual
or formal event. Problems are procedurally generated and vary in the number of people, events, and
clothing. We again use N = 2 small train problems and 10 larger evaluation problems.

5.2 APPROACHES

We now describe the approaches and baselines that we evaluate on all domains.

5.2.1 STANDARD APPROACHES

Our first set of “standard” approaches are designed to address the question of whether LLMs can
plan on their own. These approaches include:

• LLM Standard: Our main approach with autoregressive prompting as described in Section 4.2.
• No Auto: Same as LLM Standard, but without autoregressive prompting.
• Ablate Names: Same as No Auto, but each operator, object, type, and predicate name is ran-

domly replaced with one of the 10,000 most common English words (Price, 2022).
• Random Actions: Selects a random applicable action for up to n steps or until the goal is

reached, where n is equal to the length of the LLM Standard output per problem.

5.2.2 PLANNING-BASED APPROACHES

Our second set of approaches are designed to address the question of whether LLMs can be useful
in guiding a heuristic search planner. We use Pyperplan’s GBFS search with the hFF heuristic
unless otherwise noted with a 300 second planning timeout (LLM query time not included). These
approaches include:

• LLM Plan Guidance: Our main approach (with autoregressive prompting) where the LLM
output is used to initialize the GBFS priority queue (Section 4.3).

• LLM Plan Guidance No Auto: Same as LLM Plan Guidance, but without autoregressive
prompting.

• Random Plan Guidance: The random plans generated by the Random Action baseline from
Section 5.2.1 are used to initialize the queue instead of the LLM outputs.

• Pure Planning: The Pyperplan planner with no additional guidance.
• Fast Downward: The Fast Downward planner with the lama-first configuration (Helmert,

2006). For space, these results are deferred to the appendix.

8Through prompt engineering, we have seen strong indications that Codex was trained on at least Blocks.
For example, prompting with the beginning of the PDDL domain file, Codex will complete the rest of the file.
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5.3 EXPERIMENTAL SETUP

All experimental results are reported over 5 random seeds. Variation between seeds is driven by
nondeterministism in Pyperplan’s implementation of hFF, random action selection in the baselines,
random object renaming in the Ablate Names ablation, and small variations in processor speed. All
LLM-based approaches use the code-davinci-002 Codex LLM (Chen et al., 2021). Queries
are made through the OpenAI API with temperature 0.0. Experiments were run on Ubuntu 18.04
using 4 CPU cores of an Intel Xeon Platinum 8260 processor.

5.4 RESULTS AND ANALYSIS

LLM No Ablate Random
Standard Auto Names Actions

Blocks 0.00 0.00 0.00 0.00
Depot 0.00 0.00 0.00 0.00

Dressed 1.00 0.80 0.00 0.00
Elevators 0.00 0.00 0.00 0.00
Freecell 0.00 0.00 0.00 0.12
Gripper 1.00 1.00 0.98 0.00

Logistics 0.00 0.00 0.00 0.00
Miconic 0.20 0.00 0.00 0.10
Movie 1.00 1.00 0.08 0.00
Pegsol 0.00 0.00 0.00 0.00
Rovers 0.10 0.00 0.00 0.04
Satellite 0.00 0.00 0.00 0.00

Scanalyzer 0.20 0.10 0.10 0.02
Sokoban 0.00 0.00 0.00 0.00

TPP 0.30 0.20 0.18 0.00
Transport 0.00 0.00 0.00 0.04

Woodworking 0.20 0.00 0.00 0.00
Zenotravel 0.00 0.00 0.00 0.00
Average 0.222 0.172 0.074 0.018

Table 1: Mean fraction of tasks solved by the standard
approaches. See Table 3 for standard deviations.

Table 1 reports the fraction of the 10 evalu-
ation problems solved by each of the stan-
dard (non-planning) approaches in each of
the domains, averaged over 5 seeds. Our
first conclusion is that in certain PDDL
domains, LLMs are capable of solving
nontrivial problems. Figure 1 shows one
case where the LLM generalizes from a
Gripper training problem with 4 balls to
an evaluation problem with 6 balls. This
is the easiest case; the LLM also general-
izes to all evaluation problems in the set,
including the largest with 26 balls and 77
required actions. The Gripper domain is
also the simplest in terms of the extrapo-
lation required, since all problems can be
solved by a sequence of repeating pick,
pick, move, drop, drop actions. Other do-
mains like Miconic, Rovers, Scanalyzer,
TPP, and Woodworking require consider-
ably more extrapolation, and in each of
these cases, the LLM Standard approach
achieves nontrivial performance.

Our second conclusion is that in many other domains, LLMs cannot yet solve problems on their
own. This is evident from the zero entries in the LLM Standard column, including in the Blocks
domain, which confirms the findings of prior work (Valmeekam et al., 2022). Upon inspection,
we find that gross syntax errors in the output of the LLM are very rare, but mistaken actions are
common, and occur both in the operators and object arguments. We also find that the LLM struggles
with certain spatial concepts, e.g., understanding that a block tower needs to be built from the bottom
up, or that an elevator should move up to reach higher floors and down to reach lower floors.

The difference in performance between No Auto and LLM Standard supports previous find-
ings (Huang et al., 2022a) that constraining the LLM output to valid plans can lead to substantially
better performance. However, it is worth noting that the autoregressive prompting required by LLM
Standard dramatically increases the approach run time, since there is significant latency in querying
the LLM. We also conducted preliminary experiments with the dynamic prompting method pro-
posed by Huang et al. (2022a), but did not find significant improvements in our setting, likely due to
a limited number of training problems from which we could select.

By comparing No Auto to Ablate Names, we see a sharp decline in performance, suggesting that
LLMs are sensitive to the semantics of the English terms used in the PDDL problems. If
the LLMs were instead using syntactic pattern matching to generalize from the prompts, we would
expect to see minimal performance decline when terms are substituted. Additional experiments with
random strings, rather than English words, supported the same conclusion.

The perfect evaluation performance of LLM Standard in the Dressed domain supports the claim that
LLMs can perform well in novel domains, not just in domains that may have existed in some form
in the LLM pretraining corpus.
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LLM Plan Guidance LLM No Auto Plan Guidance Random Plan Guidance

created expanded success created expanded success created expanded success

Blocks 8.09 -10.72 0.00 25.37 14.43 0.00 58.10 5.01 0.00
Depot -61.94 -60.11 17.39 -47.84 -48.88 -8.70 -2.16 -3.33 17.39

Dressed -99.96 -99.95 21.95 -99.96 -99.95 21.95 -17.73 -14.06 -2.44
Elevators -18.81 -25.48 0.00 -10.06 -12.49 0.00 -5.57 -11.38 0.00
Freecell -13.89 3.86 4.17 3.73 17.19 4.17 -12.69 39.70 4.17
Gripper -98.44 -99.74 0.00 -98.44 -99.74 0.00 -40.06 -34.95 0.00

Logistics -34.82 -45.08 0.00 -15.17 -18.42 0.00 -1.31 -16.61 0.00
Miconic -19.17 -36.32 0.00 -30.83 -48.83 0.00 -3.98 -42.63 0.00
Movie -71.88 -87.50 0.00 -71.88 -62.50 0.00 -67.38 -53.75 0.00
Pegsol 44.77 52.13 -4.35 24.34 25.89 6.52 16.75 19.61 2.17
Rovers -19.73 -16.78 0.00 -29.69 -29.23 2.04 -62.73 -65.51 2.04
Satellite -54.32 -64.51 0.00 -70.37 -70.77 0.00 -34.96 -38.21 -4.00

Scanalyzer -14.86 -16.71 -2.44 5.28 4.52 2.44 -48.28 -52.92 -4.88
Sokoban -19.95 -19.72 0.00 -5.46 -5.94 0.00 -16.55 -17.15 -2.78

TPP -89.55 -88.75 -2.00 -7.44 -4.85 0.00 -98.25 -98.01 0.00
Transport -0.44 -2.63 0.00 9.86 12.36 0.00 24.04 -20.06 0.00

Woodworking 312.42 347.66 0.00 0.27 -0.56 0.00 0.39 -0.92 0.00
Zenotravel 0.86 -9.54 0.00 -12.76 -22.26 0.00 -7.05 -27.99 0.00

Table 2: Performance of the planning guidance approaches. All numbers are a percentage increase
or decrease relative to the Pure Planning baseline. Green represents ≥10% better, red represents
≥10% worse, and black represents <10% change. The first two inner columns report the number of
nodes “created“ and “expanded.” The third reports the fraction of tasks solved. See text for details
and see the appendix for the absolute metrics, standard deviations, and additional results.

Table 2 reports three metrics for each of the planning-based approaches: the fraction of the 10
evaluation problems solved, the average number of nodes created during planning, and the number
of nodes expanded. All metrics are reported as a percentage increase or decrease relative to the
Pure Planning approach. For fair comparison, node creation and expansion results are averaged over
only the problems solved by all planning-based approaches. These results suggest that even when
LLMs cannot solve problems, they can still be useful for planning. For example, in the Depot,
Elevators, Logistics, Satellite, and Sokoban domains, LLM Standard does not solve any problems
alone, but LLM Plan Guidance strictly improves over Pure Planning. By comparing LLM Plan
Guidance and Random Plan Guidance, we also confirm that the improved performance is not simply
due to initializing the queue with arbitrary partial plans; the LLM is providing nontrivial guidance.

Limitations. Although these results are encouraging, note that SOTA AI planning remains far more
efficient than LLM Plan Guidance in terms of wall-clock time. There is high latency in querying
the LLM, and there is a marked gap between the Pyperplan planner and the SOTA Fast Downward
planner (see Table 7). Another limitation of current LLMs is their fixed-size context window for
prompts and responses (4096 tokens for Codex). This context window can be a major bottleneck
for PDDL. We experimented with prompt compression techniques, but found that using N > 2
examples consistently degraded overall performance because of exceeded context windows. We do
see that N = 2 is better than N = 1, which suggests that if the context window could be increased
to accommodate larger N , results may improve further. Despite these caveats, the results we present
here are promising and motivate further research in using LLMs for PDDL planning.

6 DISCUSSION AND CONCLUSION

In this work, we investigated the extent to which LLMs can plan on their own and be used to guide
planning in PDDL domains. We found that LLMs alone can solve some nontrivial PDDL problems,
but fail to solve many others. However, even in problems that LLMs cannot solve, we showed that
their outputs can be useful in guiding a heuristic-search planner. There remains a large gap between
SOTA and LLM-based planners, but our results suggest that further research is well-motivated. We
hope that our open-source code can serve as a benchmark for progress in planning with LLMs and
can help foster collaboration between the LLM and PDDL planning communities.
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A ADDITIONAL RESULTS

Here we report our full set of results with both means and standard deviations. Table 3 includes
all standard (non-planning) approaches. Table 4 reports LLM Plan Guidance results. Table 5 re-
ports Random Plan Guidance results. Table 6 reports Pure Planning results. Table 7 reports Fast
Downward results. Table 8 reports LLM Plan Guidance No Autoregress results.

LLM Standard No Auto Ablate Names Random Actions

Blocks 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Depot 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Dressed 1.00 (0.00) 0.80 (0.00) 0.00 (0.00) 0.00 (0.00)
Elevators 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Freecell 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.12 (0.04)
Gripper 1.00 (0.00) 1.00 (0.00) 0.98 (0.04) 0.00 (0.00)

Logistics 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Miconic 0.20 (0.00) 0.00 (0.00) 0.00 (0.00) 0.10 (0.09)
Movie 1.00 (0.00) 1.00 (0.00) 0.08 (0.07) 0.00 (0.00)
Pegsol 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Rovers 0.10 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.05)
Satellite 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Scanalyzer 0.20 (0.00) 0.10 (0.00) 0.10 (0.00) 0.02 (0.04)
Sokoban 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

TPP 0.30 (0.00) 0.20 (0.00) 0.18 (0.04) 0.00 (0.00)
Transport 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.04 (0.05)

Woodworking 0.20 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Zenotravel 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
Average 0.222 (0.0) 0.172 (0.0) 0.074 (0.008) 0.018 (0.015)

Table 3: Mean (standard deviation) fraction of evaluation tasks solved by standard (non-planning)
approaches, averaged over 5 seeds.

LLM Plan Guidance

created expanded success

Blocks 101.32 (14.91) 45.66 (8.34) 1.00 (0.00)
Depot 1639.02 (662.88) 636.86 (273.57) 0.54 (0.10)

Dressed 18.50 (0.00) 0.70 (0.00) 1.00 (0.00)
Elevators 454.06 (18.83) 32.34 (2.12) 1.00 (0.00)
Freecell 97.32 (11.32) 32.86 (8.12) 0.50 (0.00)
Gripper 51.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Logistics 140.82 (1.83) 15.74 (0.26) 1.00 (0.00)
Miconic 215.18 (1.12) 24.02 (1.53) 1.00 (0.00)
Movie 9.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Pegsol 2583.02 (2226.26) 2062.56 (1855.46) 0.88 (0.07)
Rovers 563.88 (35.34) 51.98 (4.76) 0.98 (0.04)
Satellite 1052.88 (99.57) 19.60 (2.47) 1.00 (0.00)

Scanalyzer 440.96 (43.12) 36.48 (4.32) 0.80 (0.06)
Sokoban 3508.88 (495.29) 2935.92 (405.77) 0.72 (0.04)

TPP 856.94 (143.11) 136.26 (30.93) 0.98 (0.04)
Transport 191.84 (28.27) 42.22 (8.43) 1.00 (0.00)

Woodworking 4183.52 (2651.84) 561.90 (365.81) 1.00 (0.00)
Zenotravel 485.00 (99.07) 25.60 (6.76) 1.00 (0.00)
Average 921.841 (362.931) 370.15 (165.481) 0.911 (0.019)

Table 4: Means (standard deviations) for the LLM Plan Guidance approach. See text for details.
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Random Plan Guidance

created expanded success

Blocks 148.20 (24.68) 53.70 (14.26) 1.00 (0.00)
Depot 4213.68 (2455.50) 1543.42 (994.07) 0.54 (0.05)

Dressed 34612.94 (4065.65) 1229.24 (134.15) 0.80 (0.06)
Elevators 528.10 (69.08) 38.46 (11.13) 1.00 (0.00)
Freecell 98.68 (37.17) 44.20 (34.88) 0.50 (0.00)
Gripper 1965.74 (140.68) 249.80 (14.26) 1.00 (0.00)

Logistics 213.24 (6.25) 23.90 (0.70) 1.00 (0.00)
Miconic 255.60 (4.31) 21.64 (0.67) 1.00 (0.00)
Movie 10.44 (0.48) 3.70 (0.22) 1.00 (0.00)
Pegsol 2083.10 (780.12) 1621.66 (639.95) 0.94 (0.05)
Rovers 261.82 (54.11) 21.54 (5.85) 1.00 (0.00)
Satellite 1499.24 (527.00) 34.12 (15.65) 0.96 (0.08)

Scanalyzer 267.88 (105.10) 20.62 (9.17) 0.78 (0.10)
Sokoban 3658.06 (478.95) 3030.10 (392.63) 0.70 (0.00)

TPP 143.16 (73.32) 24.10 (15.95) 1.00 (0.00)
Transport 239.00 (26.52) 34.66 (6.07) 1.00 (0.00)

Woodworking 1018.36 (50.12) 124.36 (6.32) 1.00 (0.00)
Zenotravel 446.98 (63.02) 20.38 (3.86) 1.00 (0.00)
Average 2870.234 (497.892) 452.2 (127.766) 0.901 (0.019)

Table 5: Means (standard deviations) for the Random Plan Guidance approach. See text for details.

Pure Planning

created expanded success

Blocks 93.74 (4.65) 51.14 (2.81) 1.00 (0.00)
Depot 4306.74 (1132.99) 1596.62 (433.75) 0.46 (0.08)

Dressed 42073.44 (3142.31) 1430.38 (118.71) 0.82 (0.04)
Elevators 559.24 (53.73) 43.40 (6.61) 1.00 (0.00)
Freecell 113.02 (20.83) 31.64 (18.51) 0.48 (0.04)
Gripper 3279.50 (0.00) 384.00 (0.00) 1.00 (0.00)

Logistics 216.06 (1.71) 28.66 (0.12) 1.00 (0.00)
Miconic 266.20 (1.36) 37.72 (1.24) 1.00 (0.00)
Movie 32.00 (0.00) 8.00 (0.00) 1.00 (0.00)
Pegsol 1784.18 (626.01) 1355.80 (499.54) 0.92 (0.04)
Rovers 702.46 (120.01) 62.46 (12.28) 0.98 (0.04)
Satellite 2304.94 (455.30) 55.22 (16.13) 1.00 (0.00)

Scanalyzer 517.90 (34.39) 43.80 (3.13) 0.82 (0.07)
Sokoban 4383.28 (356.86) 3657.18 (294.58) 0.72 (0.04)

TPP 8198.14 (501.09) 1211.42 (93.42) 1.00 (0.00)
Transport 192.68 (10.74) 43.36 (2.80) 1.00 (0.00)

Woodworking 1014.38 (44.49) 125.52 (5.84) 1.00 (0.00)
Zenotravel 480.86 (90.42) 28.30 (6.49) 1.00 (0.00)
Average 3917.709 (366.494) 566.368 (84.22) 0.9 (0.019)

Table 6: Means (standard deviations) for the Pure Planning approach. See text for details.
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Fast Downward

created expanded success

Blocks 39.50 (0.00) 38.50 (0.00) 1.00 (0.00)
Depot 595.70 (0.00) 595.30 (0.00) 0.90 (0.00)

Dressed 53.50 (0.00) 52.40 (0.00) 1.00 (0.00)
Elevators 96.60 (0.00) 95.60 (0.00) 1.00 (0.00)
Freecell 20.90 (0.00) 20.50 (0.00) 1.00 (0.00)
Gripper 75.50 (0.00) 74.50 (0.00) 1.00 (0.00)

Logistics 61.50 (0.00) 60.50 (0.00) 1.00 (0.00)
Miconic 82.80 (0.00) 81.80 (0.00) 1.00 (0.00)
Movie 9.00 (0.00) 8.00 (0.00) 1.00 (0.00)
Pegsol 623.70 (0.00) 455.70 (0.00) 1.00 (0.00)
Rovers 61.80 (0.00) 60.90 (0.00) 1.00 (0.00)
Satellite 36.80 (0.00) 36.00 (0.00) 1.00 (0.00)

Scanalyzer 43.50 (0.00) 42.90 (0.00) 1.00 (0.00)
Sokoban 4264.00 (0.00) 3685.90 (0.00) 0.90 (0.00)

TPP 196.10 (0.00) 195.20 (0.00) 1.00 (0.00)
Transport 48.90 (0.00) 47.90 (0.00) 1.00 (0.00)

Woodworking 833.20 (0.00) 485.60 (0.00) 1.00 (0.00)
Zenotravel 53.30 (0.00) 52.30 (0.00) 1.00 (0.00)
Average 399.794 (0.0) 338.306 (0.0) 0.989 (0.0)

Table 7: Means (standard deviations) for the SOTA Fast Downward planner. See text for details.

LLM Plan Guidance No Autoregress

created expanded success

Blocks 117.52 (9.28) 58.52 (5.89) 1.00 (0.00)
Depot 2246.22 (577.72) 816.22 (226.15) 0.42 (0.04)

Dressed 18.80 (0.00) 0.70 (0.00) 1.00 (0.00)
Elevators 502.98 (10.81) 37.98 (1.49) 1.00 (0.00)
Freecell 117.24 (28.71) 37.08 (19.66) 0.50 (0.00)
Gripper 51.00 (0.00) 1.00 (0.00) 1.00 (0.00)

Logistics 183.28 (1.81) 23.38 (0.24) 1.00 (0.00)
Miconic 184.14 (0.58) 19.30 (0.60) 1.00 (0.00)
Movie 9.00 (0.00) 3.00 (0.00) 1.00 (0.00)
Pegsol 2218.52 (1387.06) 1706.84 (1088.51) 0.98 (0.04)
Rovers 493.92 (72.36) 44.20 (8.71) 1.00 (0.00)
Satellite 682.94 (121.39) 16.14 (1.92) 1.00 (0.00)

Scanalyzer 545.22 (48.98) 45.78 (4.45) 0.84 (0.05)
Sokoban 4144.00 (389.72) 3439.78 (343.55) 0.72 (0.04)

TPP 7587.92 (537.90) 1152.66 (67.44) 1.00 (0.00)
Transport 211.68 (22.10) 48.72 (4.62) 1.00 (0.00)

Woodworking 1017.08 (33.38) 124.82 (4.52) 1.00 (0.00)
Zenotravel 419.50 (44.83) 22.00 (3.06) 1.00 (0.00)
Average 1152.831 (182.591) 422.118 (98.934) 0.914 (0.009)

Table 8: Means (standard deviations) for the LLM Plan Guidance No Autoregress approach. See
text for details.
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