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Abstract

In recent years, Transformer-based models have gained attention in the field of medical
image segmentation, with research exploring ways to integrate them with established ar-
chitectures such as Unet. However, the high computational demands of these models have
led most current approaches to focus on segmenting 2D slices of MRI or CT images, which
can limit the ability of the model to learn semantic information in the depth axis and
result in output with uneven edges. Additionally, the small size of medical image datasets,
particularly those for brain tumor segmentation, poses a challenge for training transformer
models. To address these issues, we propose 3D Medical Axial Transformer (MAT), a
lightweight, end-to-end model for 3D brain tumor segmentation that employs an axial
attention mechanism to reduce computational demands and -distillation to improve perfor-
mance on small datasets. Results indicate that our approach, which has fewer parameters
and a simpler structure than other models, achieves superior performance and produces
clearer output boundaries, making it more suitable for clinical applications.

Keywords: Deep learning, 3D brain tumor segmentation, 3D Transformer, axial attention,
self-distillation

1. Introduction

Medical image segmentation is a key component in computer-aided diagnosis and a funda-
mental procedure in medical image processing (Doi, 2007). It helps clinicians make more
accurate diagnoses and treatment decisions by segmenting organs or tumors in medical
scans. With the development of convolutional neural networks (CNNs), Unet (Ronneberger
et al., 2015) emerged as a popular medical image segmentation network with its simple
U-shaped structure and innovative skip connections design. Many variations of Unet have
been developed, including V-Net (Milletari et al., 2016), Res-Unet (Zhang et al., 2018),
H-Dense-Unet (Li et al., 2018) and 3D-Unet (Çiçek et al., 2016) for 3D medical image
segmentation. Specifically, the nnUnet (Isensee et al., 2021) model has demonstrated state-
of-the-art performance in a wide range of tasks, including brain tumor segmentation. CNNs
have achieved success in medical image segmentation, but struggle with long-range depen-
dencies and processing global context (Vaswani et al., 2017). This is especially problematic
in brain tumor images, where doctors need to combine information from multiple regions
for diagnosis (Valanarasu et al., 2021).

Transformer-based models, utilizing self-attention mechanisms, have become popular in
natural language processing and set state-of-the-art benchmarks in recent years (Devlin
et al., 2018; Brown et al., 2020). These models are able to efficiently compute dependencies
between sequential inputs, even when distant from each other, addressing the problem of
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long-range dependencies which traditional convolutional models struggle with. In computer
vision, the Vision Transformer (ViT) (Dosovitskiy et al., 2020) adapted the Transformer
for image classification tasks with successful results. Subsequently, Swin-Transformer (Liu
et al., 2021) has combined the sliding window concept of CNNs with self-attention mecha-
nisms to form the Transformer using shifted window methods, capable of handling down-
stream tasks such as classification, detection, and segmentation.

In the field of medical image segmentation, Trans-UNet (Chen et al., 2021) pioneered
the use of transformer-based models by integrating them into the traditional Unet architec-
ture. Another notable approach is Medical Transformer (MedT)(Valanarasu et al., 2021),
which uses gated axial attention for efficient semantic feature learning. Additionally, Swin-
Unet (Cao et al., 2021) leveraged the efficient structure of the Swin-Transformer to achieve
superior performance. However, the high computational cost of Transformer models with
3D inputs has limited their application to mainly 2D slices. UNETR(Hatamizadeh et al.,
2022b) and Swin-UNETR (Hatamizadeh et al., 2022a) are exception, achieving good results
on 3D medical images, but at the cost of high GPU memory consumption. To mitigate this,
CoTr (Xie et al., 2021) proposed dividing 3D images into smaller blocks, but this also sacri-
fices semantic information. AFTer-Unet (Yan et al., 2022) utilized several neighboring axial
slices as a 3D input image, reducing resource overhead but limiting global dependencies and
requiring extra pre-processing.

In this study, we propose the 3D Medical Axial Transformer (MAT) model for efficient
3D brain tumor segmentation. Building on the success of MedT (Valanarasu et al., 2021), we
introduce three one-dimensional gated axial attention mechanisms within the Transformer
module to decompose the three-dimensional attentions, reducing GPU resource consump-
tion and memory cost. Unlike AFTer-Unet, we focus on the entire depth axis rather than on
neighboring axial slices. Additionally, we use a self-distillation training technique to improve
performance on small datasets by using the model’s output on the previous mini-batch as a
soft target. Our main contributions are: (1) an end-to-end model that eliminates the need
for pre-processing and allows for the direct use of 3D images, (2) a 3D self-attention module
utilizing axial attention mechanism, which effectively reduces resource consumption, and
(3) the use of self-distillation with a warm-up schedule, a novel approach in medical image
processing, which helps the transformer module learn information with small-scale datasets.

2. Methodology

The proposed 3D Medical Axial Transformer (MAT) model utilizes a Transformer archi-
tecture with axial attention mechanisms in the encoder component, in combination with
CNNs. The encoder is connected to a decoder, composed of CNNs, through skip connec-
tions at various resolutions. It is noteworthy that, due to the constraints imposed by the
3D input on the mini-batch size, group normalization (GN) is employed as a regulariza-
tion technique in MAT, as opposed to batch normalization. The overall architecture of the
model is depicted in Figure 1(a). In this section, we present a thorough description of the
encoder and decoder of the proposed MAT model.
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Figure 1: (a) Architecture overview of MAT (b) designs of Axial Transformer Block
(c) Schematic diagram of the Axial Attention calculation method

2.1. CNN Encoder

MAT utilizes a minimal number of CNN blocks to extract features before passing the input
to the Transformer encoder, following the design of MedT (Valanarasu et al., 2021). This
approach allows the Transformer encoder to better learn semantic information and reduces
the number of model parameters. The CNN encoder consists of one (7×7×7) convolutional
block and two (5×5×5) convolutional blocks. The initial convolutional block (7×7×7) with
a stride of 2 improves feature extraction, as established in (Simonyan and Zisserman, 2014),
with a group normalization layer added between the convolutions. In contrast to MedT,
an average pooling layer of size (2×2×2) with stride 2 is implemented between the CNN
encoder and the Transformer encoder to extract further features while conserving memory
resources.

Suppose the input to the encoder is a 3D image x ∈ RC×D×H×W , where (D × H × W)
is the image resolution and C is the channel of the input (e.g. C = 4 channels for MRI).

After the CNN encoder, the output should be xCNN ∈ RCcnn×D
4
×H

4
×W

4 , where Ccnn is the
number of channels output from the last convolution layer.

2.2. Axial Transformer Encoder

After using CNNs to extract shallow image features, we introduce Transformer encoders to
facilitate the learning of deep semantic information. To reduce computational complexity,
we implement the Transformer blocks using 3D axial attention, known as Axial Trans-
former, which allows for self-attention computation in all three dimensions, resulting in a
comprehensive 3D modeling of the images, as illustrated in Figure 1(b). This design choice
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effectively reduces resource consumption while enabling the model to effectively process and
understand the full context of the medical images.

2.2.1. Axial Attention

In this work, we propose the use of three axial attention mechanisms in MAT for efficient
3D self-attention computation. This approach decomposes the 3D attention calculation
into three 1D calculations in the three dimensions, reducing computational complexity, as
illustrated in Figure 1(c). We also incorporate a learnable positional bias term and relative
positional encoding in the self-attention module to effectively capture positional information
in the 3D medical images. This approach builds upon previous research (Ho et al., 2019;
Wang et al., 2020) that have shown the effectiveness of axial attention in capturing semantic
information in 3D images. As an example, the output of the height axial attention is
illustrated as Eq (1), Where rq, rk, and rv are the relative position encoding for queries,
keys, and values respectively.

yheightijk =
H∑

h=1

Softmax
(
qTijkkihk + qTijkr

q
ihk + kTihkr

k
ihk

)
(vihk + rvihk) (1)

To address the challenge of training the Transformer on small datasets and ensuring
adequate position encoding, we incorporate a gating mechanism, as proposed in previous
research (Valanarasu et al., 2021). The gated axial attention on the height axis is as follows.

yheightijk =

H∑
h=1

Softmax
(
qTijkkihk + Gqq

T
ijkr

q
ihk + Gkk

T
ihkr

k
ihk

) (
G1

vvihk + G2
vr

v
ihk

)
(2)

Where Gq, Gk, G1
v, and G2

v are gates for queries, keys, and values, respectively. These
gates act as learnable parameters that effectively control the final output of attention. In
general, the gating mechanism limits the output of poor position encoding and gives higher
weights to those that have been learned relatively well (Valanarasu et al., 2021).

2.2.2. Architecture

Our Axial Transformer block is based on the traditional Transformer design and features
3D convolutional layers, group normalization, and axial attention for height, width, and
depth, as depicted in Figure 1(b). The output of the last GN layer is connected to the
input via a skip connection (Vaswani et al., 2017; He et al., 2016).

Medical images have been found to require higher accuracy rather than a complex
method for processing, based on research of various datasets (Isensee et al., 2021). To
address this, we have chosen to use a lightweight model with fewer blocks to avoid issues
such as overfitting or difficulty in practical application. We use 3 modules for axial attention
computation and divide it into three stages: S1, S2, and S3, with an average pooling layer
(strides = 2) behind each of the modules to reduce feature map resolution, except for T1
to prevent loss of important semantic information at an early stage.

The input is assumed to be xCNN ∈ RCcnn×D
4
×H

4
×W

4 (the output of the CNN encoder).
Each stage expands the number of channels by a factor of two through multi-headed atten-
tion, so the output of each stage turns to be

(
2Ccnn × D

4 × H
4 × W

4

)
,
(
4Ccnn × D

8 × H
8 × W

8

)
and

(
8Ccnn × D

16 × H
16 × W

16

)
.
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2.3. CNN Decoder

Our CNN decoder is designed using the Unet architecture (Ronneberger et al., 2015), with
a structure largely symmetric to the Axial Transformer encoder. It comprises five CNN-
interpolation blocks, where the first block has, a stride of 1, while the remaining blocks
have a stride of 2. The ReLU activation function is employed, and the image resolution
is gradually increased by a factor of two with each block on the last four blocks. A skip
connection is utilized to connect the encoder and decoder to restore details lost during
downsampling. Instead of the traditional four skip connections in the up-sampling blocks,
we used only three, discarding the topmost one as suggested by (Guo et al., 2022) to avoid
negative impact from noisy shallow layer semantic information.

Let the final output of Axial Transformer encoder be Xencoder with a resolution of(
D
16 × H

16 × W
16

)
, then the output after five CNN-interpolation blocks will be

(
D
16 × H

16 × W
16

)
,(

D
8 × H

8 × W
8

)
,
(
D
4 × H

4 × W
4

)
,
(
D
2 × H

2 × W
2

)
and (D × H × W ), which means that the

resolution reduction is completed. At the last, a convolutional layer is used for classification,
thus completing the downstream task of image segmentation.

2.4. Self-distillation for Regularization with warm-upped DLB

To address the challenge of training Transformer-based models on small datasets, we pro-
pose the use of self-distillation, a technique that utilizes the model’s own output as a soft
target for learning (Zhang et al., 2019). This approach allows for the optimization of
the model directly through the training schedule, without the need for extensive modifi-
cation of the architecture or the use of a large teacher model like traditional knowledge
distillation (Hinton et al., 2015). (Bhat et al., 2021; Gani et al., 2022) has shown that
self-distillation can be effective in improving performance on small datasets, and may also
act as a regularization-like effect to aid in model training(He et al., 2022). Recently, (Shen
et al., 2022) proposed a new method of implementing self-distillation, named DLB, where
the model from the previous iteration is used as the teacher for the current iteration. The
loss function for this method is formulated as:

LLB =
1

n

n∑
i=1

T 2 ·DKL

(
pT ,t−1
i ∥pT ,t

i

)
(3)

Where n is the number of samples in a batch, T is the temperature of the distillation, and
pi is the predicted distribution of each sample (Shen et al., 2022).

To date, there is a lack of literature on the application of self-distillation to the task of
medical image segmentation. We propose to integrate the DLB loss as an additional term
to the primary loss function in our model architecture, which is a combination of weighted
cross-entropy loss and Dice loss, commonly used in medical image segmentation tasks. The
overall loss function for our model is presented in Eq (4).

LMAT = 0.4 · LCE + 0.6 · LDice + α · LLB (4)

The implementation of our DLB follows the approach of the original DLB, with a con-
straint of maintaining half of the mini-batch consistency between consecutive iterations.
However,due to the Transformer models tending to converge more slowly and being more
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susceptible to instability during the early stages of training, the use of DLB may instead
lead to the problem of each iteration affecting each other and eventually being difficult
to converge. To mitigate these issues, we implement a dynamic warm-up schedule for the
distillation coefficient α and temperature T . Specifically, the value of α is set to 0 for the
first 50 training epochs, before being set to 1. In the following epoch, T is linearly increased
from 1 to 2, with the aim of placing more emphasis on the distribution of negative samples
during later stages of training.

3. Experiments

3.1. Setup

3.1.1. Dataset

The BraTS datasets from the MICCAI Brain Tumor Segmentation Challenge contain mul-
timodal 3D brain MRI scans annotated with ground truth segmentations of tumor regions
by physicians. The datasets consist of four MRI modalities per case (T1, T1ce, T2, and
FLAIR), with annotations of four tumor subregions consolidated into three sub-regions:
whole tumor (WT), tumor core (TC), and enhancing tumor (ET). BraTS2018 (Menze
et al., 2014a; Bakas et al., 2017c, 2018) was collected from 19 institutions and includes both
low-grade and high-grade gliomas. The study focuses on high-grade gliomas, as it provides
an opportunity to demonstrate the advantages of the model on small datasets. The HGG
group contains 210 samples randomly split into 180 training cases and 30 testing cases. In
comparison, BraTS2021 (Bakas et al., 2017c; Baid et al., 2021; Menze et al., 2014b; Bakas
et al., 2017a,b) is larger and randomly split into 1200 training cases and 200 testing cases
to enable a comparison of our method’s performance with larger datasets.

3.1.2. Evaluation Metrics

As in previous studies (Valanarasu et al., 2021; Yan et al., 2022), we also used the Dice
score and the 95% Hausdorff Distance to assess the overall accuracy of segmentation as well
as the surface accuracy. The formulas of Dice and HD95 are defined in appendix section .

3.1.3. Implementation details

The images in the BraTS 2018 and 2021 datasets were re-sized to (160×224×224) and
(128×160×160) for consistency and to fill empty slices. Data augmentation, including
random flips and rotations, was applied with a 50% probability to enhance the model’s
fitting ability. The hyperparameters of the model were tuned via 5-fold cross-validation on
the training set, and then applied to train the full training set, yielding the best model. The
AdamW optimizer (Loshchilov and Hutter, 2018) with a weight decay of 10-5 was utilized
with a warm-up schedule for the learning rate (Gotmare et al., 2018), where the learning rate
grows linearly from 0 to 10-3 for the first 10 epochs, followed by cosine anneal (Loshchilov
and Hutter, 2016) to complete the learning rate decay. In the Transformer encoder, we
employed 1, 2, and 4 blocks for stage S1, S2, and S3, respectively. For the sake of fairness,
in our experiments, all models were trained for an equal number of 250 epochs.
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3.2. Results on BraTS2018

Table 1: Dice scores and HD95 of different methods on the BraTS2018 dataset (testing).

Metrics Params
WT TC ET Mean

Dice HD95 Dice HD95 Dice HD95 Dice HD95

nnUnet(3D) 17.8M 85.61 4.33 78.72 6.59 70.23 4.91 78.19 5.28
Trans-Unet(2D) 96.1M 84.42 4.91 75.12 7.18 73.97 5.07 77.84 5.72
Swin-Unet(2D) 79.6M 90.64 6.01 80.78 7.07 75.54 5.98 82.32 6.35

Swin-UNETR(3D) 62.1M 88.36 4.32 86.89 6.51 80.21 4.28 85.16 5.04
AFTer-Unet(3D) 41.5M 91.93 4.15 87.15 6.76 81.58 3.91 86.89 4.94

MAT(3D) 11.7M 93.05 4.06 87.91 6.09 82.81 4.02 87.92 4.72

We compared our proposed 3D Medical Attention Transformer (MAT) model to other
medical image segmentation models on the BraTS2018 dataset in Table 1. We selected
several established models such as nnUnet (Isensee et al., 2021), Trans-Unet (Chen et al.,
2021), Swin-Unet (Cao et al., 2021), Swin-UNETR (Hatamizadeh et al., 2022a), AFTer-
Unet (Yan et al., 2022) for fair comparison. These models have shown state-of-the-art
results in various medical image segmentation tasks and are widely used in the field.

Table 1 shows that all models have good segmentation performance in the Whole Tumor
(WT) region, likely due to clear distinction between tumor and non-tumor regions and larger
relative segmentation volume. For the Enhancing Tumor (ET) region, the most challenging
to segment, 3D models incorporating the Transformer module achieved high Dice scores.
The inclusion of the depth axis and long-range dependencies improves the model’s under-
standing of the overall image, leading to better segmentation. 3D models outperformed 2D
models in HD95 metrics due to problematic jagged edges when combining 2D slices into
3D images. MAT leverages 3D convolution to extract features and inputs feature maps
with richer semantic information into the Axial Transformer module, achieving true global
long-range dependency modeling, which resulting in superior performance. Overall, MAT
achieved a mean Dice of 87.92% and a mean HD95 of 4.72 on the BraTS2018, surpassing
AFTer-Unet in nearly all metrics.

In addition, the comparison of parameters demonstrates the superiority of our 3D axial
attention algorithm as it reduces model complexity while preserving high segmentation
performance. The MAT model also has a lower computational cost and can be trained on
a single Tesla T4 (16GB) GPU, compared to other Transformer-based models.

3.3. Results on BraTS2021

Table 2 compares the performance of MAT with other medical image segmentation models
on the BraTS2021 dataset. The comparison includes nnUnet (Isensee et al., 2021), Trans-
Unet (Chen et al., 2021), Swin-Unet (Cao et al., 2021), Swin-UNETR (Hatamizadeh et al.,
2022a), and AFTer-Unet (Yan et al., 2022). It is important to note that BraTS2021 contains
more MRI data than BraTS2018, which may pose challenges for the lightweight MAT model.

Despite this, the results show that MAT’s performance is comparable to other larger
models. Notably, MAT performed significantly better than the other models in the TC
(tumor core) region, with a Dice score improvement of 1.27% and a reduction of 0.20
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Table 2: Dice scores and HD95 of different methods on the BraTS2021 dataset (testing).

Metrics
WT TC ET Mean

Dice HD95 Dice HD95 Dice HD95 Dice HD95

nnUnet(3D) 92.14 7.33 89.56 3.94 83.67 4.02 88.46 5.10
Trans-Unet(2D) 91.73 7.92 85.47 6.02 81.25 4.68 86.15 6.21
Swin-Unet(2D) 93.51 7.51 90.64 5.61 85.34 4.18 89.83 5.77

Swin-UNETR(3D) 94.74 7.02 89.91 3.75 85.41 3.41 90.02 4.73
AFTer-Unet(3D) 93.47 6.95 90.48 3.76 85.31 3.29 89.75 4.67

MAT(3D) 93.21 7.13 91.91 3.56 85.05 3.61 90.06 4.77

in HD95 score. This highlights MAT’s strong ability to learn with a limited number of
parameters. Furthermore, on average, MAT is the best model under the Dice metric, and
only slightly below the AFTer-Unet at 0.10 according to HD95.

3.4. Ablation study of warm-upped DLB

Table 3: Ablation study of DLB with warm-up schedule met hod on BraTS2018 and
BraTS2021 Datasets through dice score.

Mean Dice
BraTS 2018 BraTS 2021

Training Testing Training Testing

MAT without DLB 85.97±2.03 86.03±2.52 89.51±1.04 89.93±1.52

MAT with original DLB 77.13±2.49 79.22±2.64 82.76±1.49 82.92±1.48

MAT with warm-upped DLB 87.65±1.85 87.92±2.01 90.02±0.98 90.06±1.47

Table 3 presents the results of ablation experiments to evaluate the efficacy of the
proposed warm-upped DLB method on the BraTS2018 and BraTS2021 datasets. The pa-
rameters T and α were set to 3 and 1, respectively,as per the sets in (Shen et al., 2022). The
results show improved performance of the MAT model with the warm-upped DLB method,
with increases of 1.68% and 1.89% for the training and validation sets on the BraTS2018
dataset. The absence of warm-up led to decreased performance. The warm-upped DLB
method was still effective on the BraTS2021 dataset, but with smaller improvement, indi-
cating its greater efficacy for smaller datasets.

4. Conclusion

We propose 3D Medical Axial Transformer(MAT), a 3D end-to-end framework for brain
tumor image segmentation that utilizes the axial Transformer and self-distillation scheme.
The design of MAT enables efficient learning of semantic information while maintaining a
lightweight architecture, making it suitable for clinical applications. Our experiments on
brain tumor datasets demonstrate the superiority of MAT over previous related methods.

8



3D Medical Axial Transformer

References

Ujjwal Baid, Satyam Ghodasara, Suyash Mohan, Michel Bilello, Evan Calabrese, Errol
Colak, Keyvan Farahani, Jayashree Kalpathy-Cramer, Felipe C Kitamura, Sarthak Pati,
et al. The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and
radiogenomic classification. arXiv preprint arXiv:2107.02314, 2021.

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, and J. Kirby. Segmentation labels
and radiomic features for the pre-operative scans of the tcga-gbm collection. The Cancer
Imaging Archive, 2017a. doi: 0.7937/K9/TCIA.2017.KLXWJJ1Q.

S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, and J. Kirby. Segmentation labels
and radiomic features for the pre-operative scans of the tcga-lgg collection. The Cancer
Imaging Archive, 2017b. doi: 10.7937/K9/TCIA.2017.GJQ7R0EF.

Spyridon Bakas, Hamed Akbari, Aristeidis Sotiras, Michel Bilello, Martin Rozycki, Justin S
Kirby, John B Freymann, Keyvan Farahani, and Christos Davatzikos. Advancing the
cancer genome atlas glioma mri collections with expert segmentation labels and radiomic
features. Scientific data, 4(1):1–13, 2017c.

Spyridon Bakas, Mauricio Reyes, Andras Jakab, Stefan Bauer, Markus Rempfler, Alessan-
dro Crimi, Russell Takeshi Shinohara, Christoph Berger, Sung Min Ha, Martin Rozycki,
et al. Identifying the best machine learning algorithms for brain tumor segmentation, pro-
gression assessment, and overall survival prediction in the brats challenge. arXiv preprint
arXiv:1811.02629, 2018.

Prashant Bhat, Elahe Arani, and Bahram Zonooz. Distill on the go: Online knowledge
distillation in self-supervised learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 2678–2687, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural information processing systems,
33:1877–1901, 2020.

Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, and Man-
ning Wang. Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv
preprint arXiv:2105.05537, 2021.

Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L
Yuille, and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image
segmentation. arXiv preprint arXiv:2102.04306, 2021.
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Appendix A. Qualitative results on BraTS2018

Figure 2: Qualitative results of different methods on the BraTS2018 dataset. The first row
is sagittal, the second row is axial, and the third row is the coronal view. The red
bounding boxes serve to annotate regions of challenging segmentation, facilitating
qualitative comparison of model results.

Figure 2 presents qualitative results of different models on the BraTS2018 dataset,compared
withnnUnet (Isensee et al., 2021), Trans-Unet (Chen et al., 2021), Swin-Unet (Cao et al.,
2021), Swin-UNETR (Hatamizadeh et al., 2022a), and AFTer-Unet (Yan et al., 2022).

We presented slices of images from three views (sagittal, axial, and coronal) to facili-
tate the comparison of 3D segmentation results. The most challenging regions to segment
in brain tumor images are TC (yellow part + red part) and ET (red part) due to their
small distinction from other tumors and small volume. The design of MAT’s 3D Axial
Transformer module with DLB enables it to learn global information, resulting in excellent
segmentation ability for ET as seen in sagittal and coronal views. Additionally, as shown in
the axial view (second row) and sagittal view (first row), MAT’s predictions of gaps in tu-
mors are more accurate due to its pixel-level long-distance dependence in three dimensions,
in contrast to other models. Overall, MAT demonstrates a superior ability for multi-class
tumor segmentation compared to other models, for both overall tumor region and local
gaps.
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Appendix B. Additional Results on BraTS

Table 4: Mean and std of the Dice scores for various methods on the BraTS2021(testing).

Dice WT TC ET Mean

nnUnet(3D) 85.61±0.71 78.72±1.98 70.23±3.37 78.19±1.97

Trans-Unet(2D) 84.42±1.32 75.12±2.86 73.97±2.99 77.84±2.23

Swin-Unet(2D) 90.64±1.07 80.78±3.12 75.54±3.05 82.32±2.28

Swin-UNETR(3D) 88.36±0.89 86.89±2.75 80.21±2.84 85.16±1.92

AFTer-Unet(3D) 91.93±1.23 87.15±3.09 81.58±2.10 86.89±2.28

MAT(3D) 93.05±1.49 87.91±2.47 82.81±2.41 87.92±2.01

Table 5: Mean and std of the Dice scores for various methods on the BraTS2021(testing).

HD95 WT TC ET Mean

nnUnet(3D) 4.33±0.85 6.59±1.73 4.91±1.05 5.28±1.07

Trans-Unet(2D) 4.91±1.08 7.18±2.47 5.07±1.98 5.72±1.65

Swin-Unet(2D) 6.01±0.68 7.07±2.56 5.98±2.48 6.35±1.63

Swin-UNETR(3D) 4.32±0.71 6.51±1.91 4.28±1.87 5.04±1.40

AFTer-Unet(3D) 4.15±0.88 6.76±2.39 3.91±2.04 4.94±1.61

MAT(3D) 4.06±1.01 6.09±2.16 4.02±2.10 4.72±1.64

Table 6: Mean and std of the Dice scores for various methods on the BraTS2021(testing).

Dice WT TC ET Mean

nnUnet(3D) 92.14±0.69 89.56±1.83 83.67±2.39 88.46±1.41

Trans-Unet(2D) 91.73±1.01 85.47±1.37 81.25±2.19 86.15±1.40

Swin-Unet(2D) 93.51±0.87 90.64±1.97 85.34±2.12 89.83±1.53

Swin-UNETR(3D) 94.74±0.78 89.91±1.81 85.41±1.97 90.02±1.39

AFTer-Unet(3D) 93.47±0.93 90.48±2.01 85.31±2.14 89.75±1.58

MAT(3D) 93.21±0.93 91.91±1.92 85.05±1.98 90.06±1.47

Table 7: Mean and std of the Dice scores for various methods on the BraTS2021(testing)

HD95 WT TC ET Mean

nnUnet(3D) 7.33±1.37 3.94±1.08 4.02±1.32 5.10±1.11

Trans-Unet(2D) 7.92±1.22 6.02±1.30 4.68±1.47 6.21±1.20

Swin-Unet(2D) 7.51±1.02 5.61±1.19 4.18±1.28 5.77±1.10

Swin-UNETR(3D) 7.02±0.96 3.75±0.99 3.41±1.13 4.73±0.92

AFTer-Unet(3D) 6.95±1.00 3.76±1.34 3.29±0.98 4.67±1.02

MAT(3D) 7.13±1.10 3.56±1.38 3.61±1.29 4.77±1.08
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Appendix C. Formulas of evaluation metrics

Dice(T, P ) =
2
∑I

i=1 TiPi∑I
i=1 Ti +

∑I
i=1 Pi

(5)

HD
(
T ′, P ′) = max

{
max
t′∈T ′

min
p′∈P ′

∥∥t′ − p′
∥∥ , max

p′∈P ′
min
t′∈T ′

∥p′ − t′∥
}

(6)

Where Ti and Pi denote the ground truth and predicted values of voxel i, while T ′ and
P ′ denote the set of surface points of the ground truth and predicted values, respectively.
HD95 is based on the calculation of the 95th percentile of the distances between boundary
points in T’ and P’, in order to eliminate the effect of a very small subset of the outliers.

Appendix D. The output of axial attention for depth axis and width axis

ydepthijk =
D∑

d=1

Softmax
(
qTijkkdjk + qT(i,j,k)r

q
djk + kTdjkr

k
djk

) (
bdjk + rvdjk

)
(7)

ywidth ijk
=

W∑
w=1

Softmax
(
qTijkkijw + qT(i,j,k)r

q
ijw + kTijwr

k
ijw

) (
vijw + rvijw

)
(8)
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