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Abstract
Neural language models have attracted a lot001
of attention in the past few years. More and002
more researchers are getting intrigued by how003
language models encode commonsense, specif-004
ically what kind of commonsense they under-005
stand, and why they do. This paper analyzes006
neural language models’ understanding of com-007
monsense pragmatics (i.e., implied meanings)008
through human behavioral/neural data. Psy-009
cholinguistic tests are designed to draw conclu-010
sions based on predictive responses in context,011
making them very well suited to test word-012
prediction models such as BERT in natural013
settings. They can provide the appropriate014
prompts and tasks to answer questions about015
linguistic mechanisms underlying predictive re-016
sponses. This paper adopts psycholinguistic017
datasets to probe language models’ common-018
sense reasoning. Findings suggest that GPT-3019
and DistillBERT do seem to understand the020
(implied) intent that’s shared among most peo-021
ple. Such intent is implicitly reflected in the022
usage of conversational implicatures and pre-023
suppositions. I also show that fine-tuning with024
pragmatic inference datasets can improve lan-025
guage models’ performance in commonsense026
reasoning.027

1 Introduction028

In this paper, I focus on Language Models’ (LMs)029

performance in commonsense reasoning tasks. Dif-030

ferent from language semantics concerning logical031

relations between isolated sentence meanings, I032

take pragmatics to be sentences’ relations relying033

on conversational participants’ commonsense, such034

as the basic level intent that is commonly shared035

among most people. Humans reason about what036

their interlocutor could have said but chose not to,037

thereby drawing various inferences. The way hu-038

mans put linguistic meanings to use depends on039

social interaction and commonsense assumption.040

What about machines that do not involve social041

interaction? To what extent do they still have this042

pragmatic knowledge? How do they cooperate 043

without any forms of learning in Grice pragmatics 044

(Grice, 1975)? This paper attempts to answer these 045

questions by examining transformer LMs’ perfor- 046

mance in commonsense reasoning. 047

I focus on two commonsense pragmatics phe- 048

nomena: Presupposition (henceforth Presp; by us- 049

ing determiner “the” most people typically pre- 050

supposes the existence of such a thing in the con- 051

text), and Scalar Implicature (henceforth SI; by 052

using quantifier “some” most people generally im- 053

plies “not all”). I provide linguistic perspectives 054

about how humans compute and evaluate common- 055

sense pragmatics. I then assess the extent to which 056

LMs can understand the meanings pragmatically 057

enriched by speakers. Moreover, I fine-tuned LMs 058

with pragmatic inference datasets. Evaluation com- 059

parisons are reported and discussed. 060

2 Related work 061

Neural models’ knowledge about syntax and se- 062

mantics is relatively well studied (Warstadt et al., 063

2020; Liu, 2019; Tenney et al., 2019). Consider- 064

ably fewer studies have been done on speaker’s in- 065

tent: the implied meaning that’s commonly shared 066

among most people’s intention. This is called 067

Conversational Implicature in pragmatics literature 068

(Grice, 1975). Implicature phenomena like quan- 069

tifiers some and many are tested in recent studies 070

(Schuster et al., 2020; Jeretic et al., 2020). The 071

diagnostics in these studies are controlled. Most of 072

them incorporate offline human responses to words 073

in context, for example acceptability judgment sur- 074

vey. 075

Relatively few studies include online human re- 076

sponse in the assessment (Ettinger, 2020). On- 077

line measurement uses neurolinguistic equipment 078

Electroencephalogram (EEG) and Event-Related- 079

Potentials (ERP) to record brain activity (Luck, 080

2012). ERP components such as N400 occurs only 081

400 milliseconds into the processing of a word. On- 082
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Model nparams nlayers

DistillBERT-base-uncased 67M 6
GPT3/InstructGPT 175.0B 96

Table 1: (pre-trained LMs) Model card

line measurement differs from offline judgments083

survey and cloze test in that it shows human brain’s084

real-time incremental sensitivity. I examine LMs085

using human centered datasets that are collected086

through both offline and online experiments.087

Recent studies show that LMs are cognitively088

plausible. Goldstein et al. (2021) provides empiri-089

cal evidence that the human brain and GPT-2 share090

fundamental computational principles as they pro-091

cess natural language. In a sense that both are en-092

gaged in continuous next-word prediction, and both093

represent words as a function of the previous con-094

text. Against this background, I study cognitively095

plausible LMs’ performance in understanding the096

pragmatically enriched meaning, which are implied097

or presupposed among most people (i.e. conversa-098

tional participants) to convey their intentions.099

3 Experiments100

I design most of the tests in the form of cloze tasks,101

so as to test the pre-trained LMs in their most nat-102

ural setting, without interference from fine-tuning.103

The main schema I used in this study is called the104

minimal pair paradigm, in which two linguistic105

items are in contrastive distribution and they differ106

in only one aspect. Typically, one of the two items107

is pragmatically odd according to most people’s108

commonse knowledge (marked by #), relative to109

the other utterance in the minimal pair.110

The hypothesis and the accuracy calculation111

pipeline are as follows. If LMs understand com-112

monsense intent, which gets reflected in the usage113

of SI and Presp, LMs should endorse more often114

the pragmatically good sentence than the pragmati-115

cally odd one in a minimal pair. To quantify such116

“endorsement”, I calculated percentage mean for117

each sentence, derived from LMs’ raw tokeized118

log probability (henceforth logprob). The accuracy119

mean for each condition (good vs. bad/so-so) is120

then calculated per phenomenon (SI and Presp), us-121

ing the sum of percent mean divided by the number122

of sentences. DistillBERT (Sanh et al., 2019) is123

used, which has only the transformer encoder, It’s 124

necessary that models are able to use right-hand 125

context for word predictions. I compare Distill- 126

BERT with another type of LMs GPT-3 (Brown 127

et al., 2020), which has only the decoder. I present 128

model card in Table (1). 129

Study 1: Presupposition I extracted 82 items 130

from Singh et al. (2016) human experiments stim- 131

uli, which are freely available in their appendix. 132

Seth went to jail/ # a restaurant on Saturday night. 133

The guard spoke to him there for a while. pre- 134

supposes that there is a unique guard in the con- 135

text. Given commonsense world knowledge and 136

the close association of guard and jail, “Seth went 137

to jail” is a more likely and plausible context, thus 138

“a restaurant” is marked with #. Utterance Kristen 139

went to a restaurant/ # jail in the morning. The 140

waiter served her there quickly. presupposes the ex- 141

istence of a (unique) waiter in the context. “Kristen 142

went to a restaurant” is a better context in a sense 143

that it lays out a background where there is a waiter. 144

By contrast, jail is rarely associated with waiter, 145

“went to jail” is implausible and is marked with 146

#. Singh et al. (2016) reported that in the “stops- 147

making-sense paradigm” with self-paced reading, 148

human participants were near-ceiling in accepting 149

plausible conditions: at the last region of the sen- 150

tence, the acceptance rate was 95% in the plausible 151

condition. For implausible the, by the end of the 152

sentence, 50% dropped out since it “stops making 153

sense” and most people cannot accept it. 154

Built up on Sing et al.’s (2016) human exper- 155

iment, I evaluated LMs’ sensitivity to Presp. I 156

compared the accuracy mean of each condition, as 157

exemplified in John went to school on Monday af- 158

ternoon. The substitute teacher spoke to him there 159

briefly. versus John went to a concert on Monday 160

afternoon. The substitute teacher spoke to him 161

there briefly.. The two utterances differ in only one 162

element “school”/“concert”. The former is prag- 163

matically good relative to the latter, given that the 164

presupposes a context where there is a teacher, and 165

commonsense tells us that “teacher” and “shool” 166

are closer than “teacher” and “concert”. 167

GPT-3 is evaluated by the extent to which it 168

favors plausible cases over the implausible ones. 169

Sequential word-by-word logprob is generated and 170

transformed into percent. I take the sum of word 171

level logprob averaged by sentence length to be 172

a proxy to the sentence naturalness. Higher per- 173

cent indicates that GPT-3 evaluates the sentence 174
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to be natural. DistillBERT is evaluated through175

critical word prediction. Noun phrase in the initial176

sentence is masked and taken as the critical word.177

(e.g., ‘school’ is masked in “John went to school.178

The substitute teacher spoke to him there briefly.”,179

whereas ‘concert’ is masked in “John went to a180

concert. The substitute teacher spoke to him there181

briefly.”. Given that human data shows preference182

to the plausible over the implausible, DistillBERT183

is considered succeed if the critical word is in its184

topK (K=5) tokens for the plausible sentence. It’s185

also considered succeed if the critical word is NOT186

in BERT’s topK for the implausible sentence.187

Study 2: Scalar Implicature According to188

Nieuwland et al. (2010), relative clauses can make189

implicatures unnoticed by most people in sentence190

processing. Table (2) shows that there is a prag-191

matic violation in (a) if conversation participant192

actively draws pragmatic inference that “some (but193

not all)” office buildings have desks. However, this194

violation is left unnoticed in (a) due to the pres-195

ence of the relative clause. (c) is relatively bad196

and implausible compared to (d), and this violation197

is noticed due to the absence of a relative clause.198

Nieuwland et al. (2010) reported that only pragmat-199

ically skilled participants (i.e., lower autism scores)200

are sensitive to the pragmatic violation in (c) (r=-201

.53, p=0.003). For (a), in which the implicature is202

left unnoticed, so is the violation. There is no signif-203

icant difference between the pragmatically skilled204

participants and those who have high autism scores205

(r=-.29, p=0.13). Overall pragmatically skilled peo-206

ple are good at generating robust pragmatic infer-207

ences that some implies not all, which gives rise208

to larger N400 when the utterance is pragmatically209

bad. N400 is shown to be elicited by unexpected210

stimuli (Luck, 2012).211

I extracted 168 items from Nieuwland et al.212

(2010). GPT-3 is used for sequential word pre-213

diction. Using sum of token level logprob averaged214

by sentence length, I examine if there is a differ-215

ence with and without the SI being noticed. GPT-216

3 is considered succeed if the plausible sentence217

mean is higher (hence more favorable) than the218

soso/unacceptable sentence mean. I use masked219

language models like DistillBERT for critical word220

prediction. I masked quantifiers and take some as221

the critical word for (a,b,d). I take all as the crit-222

ical word for (c), because SI is noticed and all is223

commonsense intent. Now that (a,b,c,d) are all224

not implausible, BERT is marked as succeed if the225

critical word is in its top5 tokens list. 226

Sanity check One may wonder to what extent 227

LM is merely leveraging nouns joint-probability. 228

For instance, the co-occurrence of office-buildings 229

and desks in the SI good pair seems to be more 230

frequently seen than that of office-buildings and 231

plants in the bad pair, since plants are not essential, 232

but desks are. Similarly, for the Presp stimuli, it ap- 233

pears that humans tend to associate jail with guard 234

more frequently than they do so for restaurant and 235

guard. To address these confounding factors, I 236

use n-gram to calculate joint-probability (Yin et al., 237

2016). Results show that 70% of the SI and 50% 238

of the Presp stimuli show higher co-occurrence 239

probability in the ‘good’ sentence than in the ‘bad’ 240

sentence. 241

4 Finetuning DistillBERT with ImpPres 242

Dataset In order to examine how to improve 243

LMs’ accuracy in these downstream tasks, and to 244

further evaluate pre-trained LMs versus fine-tuned 245

LMs, I fine-tuned DistillBERT-base-uncased with 246

the ImpPress dataset (Jeretic et al., 2020). It con- 247

sists of >25k semi-automatically generated sen- 248

tence pairs illustrating well-studied commonsense 249

pragmatic inference types. 14100 tagged utterance 250

pairs were used in the training of Presp, and 1410 251

tagged pairs for testing. Here is the input represen- 252

tation: sentence 1 Victoria’s mall that has hurt Sam 253

might upset Helen.; sentence 2 Victoria doesn’t 254

have exactly one mall that has hurt Sam.; Label 255

contradiction. As to SI, 6000 tagged utterance pairs 256

were used for training and 600 for testing. Here 257

is the input representation: sentence 1 The teacher 258

resembles some sketches.; sentence 2 The teacher 259

doesn’t resemble all sketches.; Label entailment. 260

Implementation details I fine-tuned 261

DistillBERT-base-uncased on an Apple M1 262

CPU for 3 epochs. I used a batch size 64 of and 263

optimized using Adam (Kingma and Ba, 2014) 264

with betas=(0.9,0.999), with a learning rate of 265

2e-05. 266

5 Evaluations and discussion 267

Error bar in Fig.1 shows DistillBERT does not 268

seem to have difficulty detecting Presp, and fine- 269

tuning slightly decreases its performance. This is 270

likely due to the fact that Singh et al’s (2016) data 271

is not formated the same as the ImpPress training 272
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Plausibility Example Label

So-so (a) [Some] office buildings have desks that are covered with dust. SI unnoticed
Plausible (b) [Some] office buildings have plants that are covered with dust. SI unnoticed
Implausible (c) [Some] office buildings have desks and can become dusty. SI noticed
Plausible (d) [Some] office buildings have plants and can become dusty. SI noticed

Table 2: Datasets and examples used in SI evaluation (Nieuwland et al. 2010)

data. Fine-tuning might mislead DistillBERT. Re-273

garding SI, fine-tuning significantly increases LMs’274

performance, indicating that the ImpPress dataset275

is a good candidate for improving LMs’ sensitivity276

to commonsense SIs. Error bar in Fig.2 indicates277

that GPT-3 is slightly better in detecting SI than278

in Presp, but overall GPT-3 is not good at the psy-279

cholinguistic task. This maybe because GPT-3 has280

a different architecture. LMs performance aligns281

with n-gram baseline in that overall the SI dataset is282

less challenging than the Presp: 70% of SI dataset283

shows the favorable co-occurrence direction: the284

pair tagged as ‘good’ also shows higher nouns co-285

occurrence rate than the ‘bad’ pair does. The Presp286

dataset is less helpful (50%).287

Humans show no difficulty in using common-288

sense knowledge to reason about daily conversa-289

tions. By contrast, the extent to which LMs are290

sensitive to commonsense reasoning has remained291

an elusive research question in AI research for292

decades. Here, I provide a novel approach for com-293

monsense reasoning tasks: incorporating online294

and offline psycholinguistic datasets into LMs eval-295

uation. Through well-controlled task design and296

high resolution neurology equipment, psycholin-297

guistics studies implicit meanings in natural lan-298

guage, including commonsense reasoning. To ex-299

amine how ‘human-like’ LMs can be, human data300

is the key. These methods improve the interpretabil-301

ity and explainability of neural models for reason-302

ing about implied yet commonsense message. Re-303

garding LMs evaluation analysis, my study shows304

that in order to probe commonsense knowledge305

from LMs, understand their reasoning mechanisms,306

and identify their limitations for AI applications307

due to the lack of commonsense knowledge, we308

need to carefully consider how to prompt the pre-309

trained LMs. For masked LMs such as DistillBERT,310

my results suggest that an appropriate method to311

examine how ‘human-like’ LMs are is to mask the312

same token as psycholinguists do in their behav-313

ioral/neural experiments with humans, and keep314

Figure 1: Evaluate BERT with human data. DistillBERT
is used for critical word prediction. FT: fine-tuned.

Figure 2: Evaluate GPT with human data. GPT-3 is
used for sequential word prediction.

the same contextual information, so that the ex- 315

periment setting is as close to human experiments 316

as possible. As to unidirectional LMs like GPT-3, 317

they read in sentence using almost the same fun- 318

damental mechanisms as humans do, I thus took 319

sentence to be a unit to derive logprob. How much 320

GPT-3 like the sentence is directly reflected in its 321

sentence logprob. 322

To sum up, I analyze LMs using human data 323

(both online and offline). Findings show psycholin- 324

guistic datasets can help get a good grasp of LMs’ 325

accuracy in detecting commonsense reasoning. 326
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