
Greedy Equivalence Search in the Presence of Latent Confounders

Abstract

We present Greedy PAG Search (GPS) for score-
based causal discovery over equivalence classes,
similar to the famous Greedy Equivalence Search
algorithm [Chickering, 2002b], except now in the
presence of latent confounders. It is based on
a novel characterization of Markov equivalence
classes for MAGs, that not only improves on state-
of-the-art identification of Markov equivalence
between MAGs, but also allows for efficient tra-
versal over equivalence classes in the space of all
MAGs. The resulting GPS algorithm is evaluated
against several existing alternatives and found to
show promising performance, both in terms of
speed and accuracy.

1 INTRODUCTION

Ever since the advent in the early 90’s of modern, principled
methods for causal discovery from observational data, there
have been two main paradigms that have been widely em-
ployed: constraint-based and score-based methodologies.
Both start from the assumption that there is some under-
lying causal structure, typically in the form of a directed
acyclic graph (DAG), that is responsible for the observed
data distribution. The first class of methods then search for
(conditional) in/dependence constraints between variables
in the data, and use this information in combination with cer-
tain orientation rules to reconstruct the output causal model.
Key assumptions include the causal Markov assumption,
essentially stating that the structure of the underlying graph
induces independence constraints in the observed data ac-
cording to the d-separation criterion (see below), as well
as the causal faithfulness assumption, stating that these are
also the only observable independencies in the data. Other
simplifying model assumptions like acyclicity and causal
sufficiency (no latent confounders) can also be employed.

When causal sufficiency does not apply the target causal
model can be represented as a (maximal) ancestral graph
(MAG, see below). The output then represents the so-called
Markov equivalence class (MEC) of the underlying causal
model, in the form of a partial ancestral graph (PAG) repres-
enting all causal graphs that satisfy the same independence
model. Benchmark examples of algorithms in this tradition
include PC and FCI [Spirtes et al., 2000], where the lat-
ter is sound and complete even in the presence of latent
confounders and selection bias.

In contrast, score-based approaches define a metric that
quantifies how well a certain graph structure captures the
observed data, and then iteratively try to search for a graph
that maximizes this score. The score is typically based on
a (Bayesian) likelihood in combination with a penalty on
model complexity, and usually assumes an underlying DAG
structure with no unobserved confounders. A classic ex-
ample is the K2 algorithm by Cooper and Herskovits [1992],

In many cases, it is possible to choose a score in such a
way that all graphs in the same equivalence class obtain
the same score [Heckerman et al., 1995]. As there can be
a huge number of graph instances in the same equivalence
class, this opens up the possibility of significantly speed-
ing up the search by moving between equivalence classes
rather than between individual graphs. This was the mo-
tivation behind algorithms like GBPS [Spirtes and Meek,
1995], and its famous successor GES (Greedy Equivalence
Search) [Chickering, 2002b], as well as recent versions im-
proving scaling behaviour and statistical efficiency [Ramsey
et al., 2017, Chickering, 2020]. As a result, the output of
these algorithms is a graph representing the equivalence
class of the underlying causal model, similar to constraint-
based methods. However, due to the global nature of the
score, their output tends to be more robust than that of their
constraint-based counterparts. Unfortunately, like PC, they
also assume causal sufficiency, meaning that there is cur-
rently no available method that can employ the full potential
of score-based equivalence search in the presence of latent
confounders. Addressing this gap is the focus of this article.
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Towards equivalence search for MAGs

There have been several related score-based methods in re-
cent years that try to go beyond the standard DAG search.
For example Triantafillou and Tsamardinos [2016] consider
the relative performance of constraint-based methods vs.
MAG search using the BIC score for multivariate Gaussian
distributions from [Richardson and Spirtes, 2002]. Their GS-
MAG algorithm employed a greedy search over the space of
MAGs, where at each step all possible single edge modifica-
tions were evaluated. GSMAG was found to have promising
performance, albeit at much greater running times.

More recently an alternative approach was taken by Ogarrio
et al. [2016]. They managed to circumvent the MAG equi-
valence search by exploiting the original GES to first do
equivalence search in the space of DAGs, and then to add a
post-processing step using a modification of FCI that started
from the GES output in order to obtain the final PAG. The
result was a hybrid method (GFCI, short for Greedy FCI))
that showed promising performance over either method sep-
arately, but did not exploit the potential of full PAG search.

In the meantime many transformational characterizations
of MAGs have been developed, see e.g. [Tian, 2012, Zhang
and Spirtes, 2012], showing that we can reach all MAGs
within the same equivalence class by a series of (covered)
edge reversals to go from one MAG to the next where all
are part of the same MEC. But as these characterizations are
primarily concerned with transformations within the same
equivalence class, they are not easy to generalize into an
orthogonal search strategy between equivalence classes.

Our solution to this problem is based on a novel MEC char-
acterization for MAGs that does not rely on complicated
paths but on straightforward collider/noncollider triples.
Any change to these triples implies a new MEC, which
makes it easy to generate a collection of neighbouring
MECs. In combination with an appropriate score this then
forms the main engine in our Greedy PAG Search (GPS) al-
gorithm for score-based equivalence search in the presence
of latent confounders.

The rest of the article is organised as follows: section 2
introduces some basic concepts and terminology, section 3
describes the new characterization for Markov equivalence
between MAGs, section 4 discusses how to use this for
traversal between equivalence classes in the MAG space,
ultimately leading to the GPS algorithm in section 5. Section
6 then shows the performance of GPS in practice compared
to some state-of-the-art alternatives.

2 NOTATION AND TERMINOLOGY

A mixed graph G is a graphical model that can contain
three types of edges between pairs of nodes: directed (→),
bi-directed (↔), and undirected (−). In a mixed graph,

standard graph-theoretical notions, e.g. child/parent, an-
cestor/descendant, directed path, cycle, still apply, with
natural extension to sets. A vertex z is a collider on a path
π = 〈. . . , x, z, y, . . .〉 if there are arrowheads at z on both
edges from x and y, otherwise it is a noncollider. A triple
x− z− y on a path is unshielded if x and y are not adjacent
in G. An unshielded collider is known as v-structure.

A mixed graph G is ancestral iff an arrowhead at x on an
edge to y implies there is no directed path from x to y in
G, and there are no arrowheads at nodes with undirected
edges. As a result, arrowhead marks can be read as ‘is not an
ancestor of’. In a mixed graph G, a vertex x is m-connected
to y by a path π, relative to a set of vertices Z, iff every
noncollider on π is not in Z, and every collider on π is an
ancestor of Z. If there is no such path, then x and y are m-
separated by Z. An ancestral graph is maximal (MAG) if for
any two nonadjacent vertices there is a set that m-separates
them. A directed acyclic graph (DAG) is a special kind of
MAG, containing only → edges, for which m-separation
reduces to the standard d-separation criterion. For more
details, see [Koller and Friedman, 2009, Spirtes et al., 2000].

A causal DAG GC is a directed acyclic graph where the arcs
represent direct causal interactions [Pearl, 2009]. In general,
the independence relations between observed variables in
a causal DAG can be represented in the form of a MAG
[Richardson and Spirtes, 2002]. The (complete) partial an-
cestral graph (PAG) represents all invariant features that
characterize the equivalence class [G] of such a MAG, with
a tail ‘−’ or arrowhead ‘>’ end mark on an edge, iff it is
invariant in all [G], otherwise it has a circle mark ‘◦’, see
[Zhang, 2008].

3 CHARACTERIZING MARKOV
EQUIVALENCE CLASSES

In this section we introduce a modified characterization for
the Markov equivalence class (MEC) of (maximal) ancestral
graphs (MAGs), that will form the basis for the equivalence
search in the next section. It also leads to a simple method
to establish Markov equivalence between MAGs.

3.1 MECS OF MAGS

For Markov equivalence between MAGs we start from the
following characterization from Ali et al. [2009]:

Lemma 1 Two MAGs G1 and G2 belong to the same
Markov equivalence class if and only if they have the same
skeleton and the same colliders with order.

This reflects the well known characterization for DAGs
where two members are in the same equivalence class iff
they have the same skeleton and v-structures, with the latter
now generalized to ‘collider triples with order’:
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Definition 1 Let Ti(i ≥ 0) be the set of triples of order i
in a MAG G, defined recursively as:

- A triple 〈a, b, c〉 ∈ T0 if a ∗−∗ b ∗−∗ c is in G, with a
and b not adjacent.

- A triple 〈a, b, c〉 ∈ Ti≥1 if 〈a, b, c〉 /∈ Tj<i, and there
is a discriminating path 〈x, q1, .., qp, a, b, c〉 for b in G
(possibly q1 = a), where the p+ 1 colliders
〈x, q1, q2〉, ..., 〈qp−1, qp, b〉, 〈qp, a, b〉 ∈

⋃
j<i

Tj .

Note that triples 〈a, b, c〉 and 〈c, b, a〉 are equivalent, and
that triples with order i ≥ 1 are triangles in G. Also note
that the final condition is only needed to uniquely determ-
ine the order i, but that the characterization itself does not
depend on the actual value. This characterization leads to
an algorithm for testing Markov equivalence between two
MAGs with polynomial complexity O(ne4), with n the
number of vertices and e the number of edges in the graph
Ali et al. [2009].

More recently, Hu and Evans [2020] came up with an-
other characterization in terms of a parameterizing set S3(G)
based on so-called heads and tails of the districts (connec-
ted bi-directed components) in G, and the ‘3’ indicates only
sets of up to 3 nodes are required. In contrast with Ali et al.
[2009] it does not rely on the discriminating path, and as a
result leads to an even more efficient algorithm for checking
equivalence that runs in O(ne2) for sparse graphs (when
n = O(e)). Unfortunately, this characterization is difficult
to translate into a comprehensive search strategy between
equivalence classes.

However, it turns out that we can also circumvent the dis-
criminating path in definition 1 in another way.

3.2 A NEW ‘TRIPLES WITH ORDER’
CHARACTERIZATION

On closer inspection of the second part of Definition
1 we see that every discriminating path (see Figure 1)
can be viewed as a collection of collider and noncollider
triples with order. More importantly, to know that a path
〈x, q1, .., qp, z, y〉 is a valid discriminating path for z in G
it suffices to know that 〈x, q1, .., qp−1, qp, y〉 is a valid dis-
criminating path for noncollider qp along the path, and that
〈qp−1, qp, z〉 is a collider, and that z and y are adjacent in
G. But that also means we do not actually need the full dis-
criminating path, but we just need to know that 〈qp−1, qp, y〉
is a noncollider with order, and that 〈qp−1, qp, z〉 is a col-
lider with order. This results in the following alternative
characterization:

Definition 2 Let Ci resp. Di (i ≥ 0) be the set of collider-
resp. noncollider triples with order i in a MAG G, defined
recursively as:

Figure 1: MAG with discriminating paths A-B-C-(D)-E.

k C
0 A B C
0 B C D
0 B E D
1 C D E

k D
0 A B E
1 B C E

Table 1: Corresponding ‘triples with order’ lists.

- A triple 〈a, b, c〉 ∈ C0 (resp. D0), if a − b − c is an
unshielded collider (resp. noncollider) in G.

- A triple 〈a, b, c〉 ∈ Ci (resp. Di), with i ≥ 1, if
〈a, b, c〉 /∈ Cj<i (resp. Dj<i), and

1. a− b− c is a collider (resp. noncollider) in G,
2. ∃q : 〈q, a, b〉 ∈ Ck<i, and 〈q, a, c〉 ∈ Dj<i.

The connection to the original ’triple with order’ definition
follows from the next lemma (proof in the supplement):

Lemma 2 In a MAG G, a triple 〈a, b, c〉 is in Ci (resp. Di),
if and only if 〈a, b, c〉 ∈ Ti and 〈a, b, c〉 is a collider (resp.
noncollider) in G.

This motivates the following definition:

Definition 3 The MECM of a MAG G, denotedM(G), is
defined as the triplet 〈S,C,D〉, with S the (undirected) skel-
eton of G, and C and D the corresponding lists of collider
resp. noncollider triples with order from Definition 2.

Which leads to the straightforward implication:

Corollary 3 Two MAGs G1 and G2 are Markov equivalent
if and only ifM(G1) =M(G2).

From here on we will use the term MEC to denote this
particular representation of the Markov equivalence class of
a MAG G.

3.3 FROM MAG TO MEC

Definition 2 implies that after we established the unshielded
(non-)collider triples with order 0, we we only need to check
the already constructed lists and a specific non/collider triple
in the graph G in order to identify each higher order triple.
This leads to the following MAG-to-MEC procedure:
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Algorithm 1 MAG-to-MEC

Input: MAG G
Output: MEC {S,C,D}
phase 1: initialise, process unshielded triples
S ← Skeleton(G)
C0/D0 ← unshielded (non)colliders 〈x, z, y〉 ∈ G
for all 〈x, z, y〉 ∈ D0 do

if ∃q : 〈x, z, q〉 ∈ C0 and G(q, y) > 0 then
L← 〈z, q, y〉 {initialise process list L}

end if
end for
phase 2: process candidate triples until no more left
repeat
〈x, z, y〉 ← Pop(L)
if x ∗→z←∗ y in G then

add 〈x, z, y〉 to C
∀q : 〈x, z, q〉 ∈ D, G(q, y) > 0: add 〈z, y, q〉 to L

else
add 〈x, z, y〉 to D
∀q : 〈x, z, q〉 ∈ C, G(q, y) > 0: add 〈z, y, q〉 to L

end if
until L is empty
return S,C,D

Algorithm 1 gives a high-level overview of the correspond-
ing steps.1. It starts by identifying all unshielded triples
(order 0) and allocating them to the appropriate collider
or noncollider lists. After that all triples with order 1 are
collected in list L, and processed one by one depending on
whether they correspond to a collider or noncollider in the
graph. Each allocated triple may give rise to new triples
with order that are added to the end of the list L, until we
have found them all. For each processed triple (allocated to
C or D) we only need to consider the existence of matching
triples in the complementary list together with the pres-
ence of a specific edge in the MAG to find the new implied
(higher order) triples. Table 1 shows the output C and D
lists given the MAG in Figure 1.

3.4 FROM MEC BACK TO MAG

For the reverse MEC-to-MAG direction we can employ
a more direct version of the standard FCI orientation pro-
cedure, where we first directly map all triples with order
into specific (minimal) edge mark orientations to obtain
the so-called core PAG (definition 4), and then propag-
ate the remaining implied orientations using the rules
R1 − R3,R5 − R10 from Zhang [2008] to obtain the
completed PAG.

Definition 4 (core PAG) For a MECM = 〈S,C,D〉, the
core PAG P∗ is defined as the graph obtained from the

1All software will be made available on publication.

skeleton S with all ◦−◦ edges, in combination with

- ∀〈x, z, y〉 ∈ C0 : orient x ∗→z←∗ y in P∗

- ∀〈x, z, y〉 ∈ Ck≥1 : orient z←∗ y in P∗

- ∀〈x, z, y〉 ∈ Dk≥1 : orient z−−∗ y in P∗

Each collider with order 0 becomes a v-structure, and each
triple with order k ≥ 1 corresponds to exactly one invariant
edge mark (arrowhead or tail) in the graph. Note that in
processing triples 〈x, z, y〉 with order k ≥ 1, we rely on
the fact that they are stored in the lists such that the y entry
corresponds to the final node in a discriminating path, which
is easily done when constructing the MEC.

The justification for the notion of a‘core PAG’ is that the
resulting graph contains all invariant information needed
to uniquely establish the full, completed PAG, by only
propagating the graphical FCI orientation rules, i.e. without
the v-structure rule R0 and the discriminating path rules
R4a/b in [Zhang, 2008] that both require a specific inde-
pendence test result:

Algorithm 2 MEC-to-PAG

Input: MEC {S,C,D}
Output: completed PAG P
P ← P∗(S,C,D) (the core PAG from definition 4)
run orientation rulesR1−R3 on P (all arrowheads)
run orientation rulesR5−R10 on P (remaining tails)
return P

The following lemma ensures the output is indeed sound
and complete:

Lemma 4 For a valid MECM, algorithm 2 will output the
corresponding completed PAG P

Note that the orientation rules also remain sound for arbit-
rary subsets C′ ⊆ C, D′ ⊆ D of triples with order from
the MEC, provided that all colliders with order zero (v-
structures) are present in C′0.

Finally, once we have the completed PAG we can obtain a
matching MAG instance by following the arc-augmentation
procedure in Theorem 2 of [Zhang, 2008] which will result
in a fully oriented MAG in the same MEC with a minimum
number of (invariant) bi-directed and undirected edges.

3.5 ALGORITHMIC COMPLEXITY

Checking for Markov equivalence between two MAGs
simply corresponds to building the MEC for one, and verify-
ing that the same steps apply to the other. This will induce at
most a constant factor for each entry in the MEC (skeleton
or triple lists), and so the algorithmic complexity for increas-
ing graph sizes/densities is determined by the complexity of
building the MEC from a given MAG.
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To estimate the worst-case time complexity of algorithm 1
consider graphs over n nodes with e edges and max. node
degree d. For sparse graphs with d ≤ k we have e = O(n),
whereas in general we can have e = O(n2).

Now the first phase of the algorithm requires finding all
unshielded triples, which means selecting all pairs of two
nodes from the neighbours of every node in the graph, lead-
ing to n · d · (d− 1) = O(nd2) triples. For the initialization
of the temporary triple list L we need to check all triples
〈x, y, z〉 in C0, and compare with specific entries in the com-
plementary list D0 (or vice versa) for nodes adjacent to z
in G. With appropriate indexing that implies an additional d
candidates to check for each entry in the smaller of the two
lists bringing the total for phase 1 to O(nd3).

Each entry in the temporary list is then processed and com-
pared against d other candidates, each of which can be
handled in constant time as it involves only verifying pres-
ence in one of the non/collider triple lists, which can again
be done in constant time using appropriate indexing, and
the presence of a specific edge in G, also in constant time.
Each combination added corresponds to a triangle in the
graph, meaning there are at most O(nd2) triples to process,
where each requires checking d entries, again leading to a
combined total of O(nd3) steps for phase 2.

Together that means for sparse graphs we have worst case
linear complexity of O(n) (!), whereas in general this leads
to O(n4). This is actually a significant improvement over
the O(ne2) complexity reported by Hu and Evans [2020],
corresponding to O(n3) for sparse graphs and O(n5) for
arbitrary density (when e = O(n2)).

Note that these complexity results relate to the worst-case
scaling behaviour, and that in practice the typical perform-
ance may scale much better. For example the empirical com-
plexity for sparse graphs in Hu and Evans [2020] seemed
much closer to our linear result, meaning that in practice
the two characterizations may be expected to perform very
similar (see section 6.1). Apart from the nice-to-have worst-
case scaling guarantee, the main contribution of our new
representation therefore lies in the way it will allow us to
traverse the MEC space in the next section.

4 MOVING BETWEEN EQUIVALENCE
CLASSES

The main goal of this article is to find a search strategy that
will allow us to move directly from one equivalence class
to another as the basis for a score-based causal discovery
algorithm, analogous to GES for DAGs [Chickering, 2002a],
but now in the presence of latent confounders.

A natural line of attack might be to consider the complete
PAG representation of the Markov equivalence class of a
MAG, containing all invariant edge marks, and directly mak-

ing changes to that in order to obtain a new PAG. However,
this turns out to be less straightforward than maybe anticip-
ated. For example, many of the invariant edge marks in the
PAG are themselves implied by other invariant edge marks,
and cannot be changed in isolation without invalidating the
PAG. More tricky is the fact that it is not a priori clear
whether changing, say, an invariant arrowhead, would imply
an invariant tail or a circle mark. Alternatively, certain circle
marks cannot be changed into either an invariant tail or ar-
rowhead mark, whereas others can. Even then there may be
cases where a mark can only be changed when other marks
are also changed at the same time, but then the question
becomes how to determine which one(s).

Going to MAG instances of a specific PAG does not imme-
diately solve this problem, as for example certain invariant
marks can be changed in some MAG instances of the PAG,
but not others. This holds in particular for changes from
invariant to non-invariant edge marks and vice versa. So
even though it is possible to validate afterwards whether a
certain modified PAG is valid, it is not easy to guarantee or
verify whether all possible neighbouring instances are/can
be reached.

This is where the new ‘triples with order’ characterization
from section 3.2 comes in. It gives a characterization of
the MECM of a MAG G in terms of the triple 〈S,C,D〉
corresponding to the skeleton and the lists of collider resp.
noncollider triples with order. Any MAG with a different
skeleton S ′ or a triple that is not present in either C or D
corresponds to a different MEC, and so belongs to a different
equivalence class. Moreover, if for a given triple with order
the source collider and noncollider triples in point 2. of
Definition 2 are still present in the MEC, then changing the
triple corresponds to swapping the entry from C to D or vice
versa. Doing so cannot affect (invalidate) lower order triples
leading up to the changed triple, but it can in turn invalidate
and/or create other/new triples with (higher) order.

Therefore we can move directly between equivalence classes
by making single element changes to the MEC, provided
that these still correspond to a valid MAG/MEC.

4.1 OPERATORS FOR MEC SPACE TRAVERSAL

Analogous to GES [Chickering, 2002a] we define a set of
operators on a MECM = 〈S,C,D〉 that will allow us to
traverse MEC space directly. They are also complete in the
sense that they suffice to move from any MEC of a MAG
over n nodes to any other in a tight upper-bounded number
of steps.

- AddEdge - insert an edge between two nodes in S,

- DeleteEdge - remove a single edge from S,

- MakeNoncollider - move a triple 〈x, z, y〉 in C to D,

- MakeCollider - move a triple 〈x, z, y〉 in D to C.
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Figure 2: (a) Two colliders implying a third, (b) Core PAG with
potential ‘long distance’ inconsistency on changing triple F-E-G.

Each operator by definition leads to a new MEC. The first
two allow to move between MECs with different skeletons,
whereas the later two allow to move between equivalence
classes on the same skeleton. A single application of one
of the operators above can lead to many implied changes,
creating as well as destroying multiple ’triples with order’.
It means ‘neighbouring’ MECs can be very different, allow-
ing for large(r) steps to be taken, which should help avoid
getting stuck in local optima.

However, we also need to take care of some subtle complic-
ations. In particular we need to ensure that the result of each
step ultimately represents a valid MEC.

For example it is possible that one triple is implied by oth-
ers, e.g. in Figure 2(a) two v-structures imply the third,
and so one cannot be altered in isolation without being
overruled or introducing an inconsistency. The same holds
for changes that may be ok locally, but can lead to long-
distance conflicts, e.g. in Figure 2(b) changing noncollider
triple 〈F,E,G〉 into a collider implies that there must be
an additional collider somewhere in between. Also, cer-
tain combinations of collider/noncollider triples can imply
a MAG that is no longer ancestral, e.g. introducing arrow-
heads at nodes with undirected edges, or creating an (almost)
directed cycle. Finally, a newly created ‘triple with order’
can often be assigned as either collider or noncollider, and
so we have to choose on a default extension (noncollider),
or consider both options.

Inevitably it means that post-processing in the form of an
additional validity check is needed to ensure the changes
result in different but valid MECs.

4.2 USING THE CORE PAG TO GENERATE
NEIGHBOURING MECS

We can use the core PAG from 4 to simplify keeping track
of which changes to the MEC imply which others. As indic-
ated before, there is a one-to-one correspondence between
invariant edge marks in the core PAG and entries in the
collider/noncollider lists in the MEC. Each of the operators
corresponds to altering a specific element in the core PAG,
depending on the order of the triple:

Operator AddEdge(x, y) inserts a non-committed edge
x ◦ − ◦ y in the core PAG P∗, while DeleteEdge(x, y)

removes the edge between x and y from P∗. The
MakeCollider(x, z, y) operator orients x ∗→ z←∗ y in
P∗ if it is an unshielded triple in D0, or orients z ←∗ y
for triples in Dk≥1. Similarly, MakeNoncollider(x, z, y)
puts a tail mark at z−−∗ y in P∗. If 〈x, y, z〉 ∈ C0, it also
considers putting a tail mark at x ∗−− z (both destroying
the original collider in P∗). In addition, each time an arrow-
head is introduced at a node z with undirected edges in the
starting PAG, the tail marks at z on those edges are also
turned into arrowheads, as by definition a MAG cannot have
arrowheads at nodes with undirected edges (see section 2).

Each operator can create and/or destroy multiple other
triples with order. As a result, some of the invariant edge
marks in P∗ may no longer be invariant, or new invariant
edge marks may be introduced. To recognise which ones we
can simply rebuild the new MEC from the modified core
PAG. Doing so we have the option to either pick a single de-
fault (noncollider) for new, undetermined triples with order,
or add one new MEC for each possible option.

The result of each operator by default is a new candidate
MEC that needs to be validated to ensure it corresponds to
a valid MAG. For that we can use Algorithm 2 to rebuild
the corresponding completed PAG, which we can then ex-
pand into an arc-augmented MAG to check it is valid. The
overhead introduced by this entire validation step is signi-
ficant, but in practice still less than the contribution of the
subsequent scoring step (section 5.1).

For a given starting MEC we can therefore consider all pos-
sible operator applications: changing each edge in the skel-
eton S , and/or moving each single entry in C to D and vice
versa, to generate a collection of neighbouring MECs, that
each correspond to a valid MAG from a different equival-
ence class. The resulting procedure is shown in Algorithm
3.

Algorithm 3 MEC Candidate Neighbours

Input: MECM, active Operators
Output: collection of MEC {Neighbours}
P∗ ← core PAG forM
for all active Operators, target edges/triples do
P ′∗ ←Modify(P∗, operator, target) (generate)
M′ ← PAG_to_MEC(P ′∗)
P ′ ←MEC_to_PAG(M′) (validate)
G′ ← PAG_to_MAG(P ′) (arc-augmented)
if IsV alidMAG(G′) then
Neighbours{end+ 1} ← {M′,P ′,G′} add

end if
end for
return {Neighbours}

A key result for this approach is that the 4 operators suffice
to traverse the entire MEC space, where any MEC can be
reached from any other MEC over the same nodes in an
upper bounded number of steps, and where each intermedi-
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ate step corresponds to a different equivalence class, (see
Theorem 1 in Appendix B).

5 GREEDY PAG SEARCH

Having an efficient representation for equivalence classes in
the form of the MEC (2), in combination with a procedure to
obtain different neighbouring MECs (Algorithm 3), all that
remains to turn this into an effective search procedure is a
means to score individual MECs in order to find the optimal
PAG P that best describes the data. For simplicity, in this
article we will assume a multivariate Gaussian model.

5.1 SCORING MECS

When moving between MECs, algorithm 3 maps each
MEC to an arc-augmented MAG instance to verify validity.
Given that for multivariate Gaussian models Richardson and
Spirtes [2002] already introduced a well-established MAG
score, we will rely on that as an associated score for the
corresponding MEC.

Due to space limitations, and because it is already part of
the literature, we will relegate the description of the score
itself to Appendix C in the supplement. For details see also
[Nowzohour et al., 2017, Triantafillou and Tsamardinos,
2016].

5.2 THE GPS ALGORITHM

Having developed all the necessary tools we can now put
them together into the (baseline) Greedy PAG Search (GPS)
algorithm below, where the ‘PAG’ in the name signifies
it searches between equivalence classes. It starts from an
empty model and each time greedily tries to find different,
neighbouring MECs that will improve the score the most,
until no more improvements can be found.

Algorithm 4 Greedy PAG Search

Input: Gaussian covariance Σ over N variables
Output: optimal matching PAG P , top score s
Initialise:M← empty MEC over N variables, s← 0
repeat
{M} ← Candidate_Neighbours(M)
for allMi ∈M do
si ← Score(Mi)
if si > s then (M, s)← (Mi, si)

end for
until no more improvement
return P ←MEC_to_PAG(M), s

There are many ways to improve the search strategy it-
self, in particular to speed up the overall search, and/or
avoid getting stuck in (suboptimal) local maxima. Typical

strategies involve tabu-search, multiple restarts, simulated
annealing etc. Another option is to pursue the two-stage
GES approach in [Chickering, 2020], first expanding the
graph using insert operators, followed by a second, statistic-
ally efficient backward equivalence search to arrive at the
optimal model. Alternatively, we could start from the output
PAG of a constraint-based causal discovery algorithm like
FCI/FCI+ [Spirtes et al., 2000, Claassen et al., 2013], and
then run GPS to try and improve on that.

Many more options are available, however, due to space
limitations we will leave most of these and other strategies
as future work to explore.

Finally, note that the current GPS algorithm is only limited
to Gaussian models due to the choice for this particular
MAG score. However the search strategy itself applies to any
Markov equivalence class. In particular we want to mention
current work on incorporating a general equivalence score
that also handles selection bias and cyclic interactions.

6 EXPERIMENTAL EVALUATION

6.1 MAG-TO-MEC COMPLEXITY

Figure 3: Empirical complexity MAG-to-MEC.

A crucial part of the proposed methodology is the new
MEC characterization in terms of ‘triples with order’. In
Section 3.2, we derived that for sparse graphs the theoret-
ical complexity of the MAG-to-MEC algorithm is O(n).
Figure 3 confirms this via the empirical complexity on
random MAGs of size n = {10, 20, ..., 100}, each aver-
aged over 250 graphs. Similar to the simulation in Hu and
Evans [2020] the MAGs are generated to have approxim-
ately e = 3n edges, (corresponding to d = 6), while each
edge is (independently) either directed or bi-directed with
probability p = 0.5. The results demonstrate a strong linear
trend (even slightly better), both in terms of ‘elementary
operations’ (purple) and raw computational time (cyan).
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6.2 SIMULATION EXPERIMENTS

In this section, we evaluate the speed and accuracy of the
GPS algorithm. We compare our method against the GS-
MAG algorithm proposed by Triantafillou and Tsamardinos
[2016] and the GFCI algorithm proposed by Ogarrio et al.
[2016], while also showing the results obtained with FCI
as a baseline. We generated 100 MAGs for each graph size
n ∈ {5, 10, 15, 20}, such that the average node degree was
d = 3, the maximum node degree was dmax = 10, and
the probability of an edge being bi-directed (as opposed to
directed) was p = 0.2.

We used the following metrics to evaluate the algorithm
performance: 1. the Structural Hamming Distance (SHD),
counting the number of different edges and/or edge marks
between the output PAG and the ground truth PAG; 2. the
Bayesian information criterion (BIC) score for MAGs as
proposed by Triantafillou and Tsamardinos [2016]; and 3.
the accuracy of edge marks, obtained as a Jaccard similarity
coefficient, by dividing the number of correct edge marks
in the output PAG by the total number of edge marks in the
(skeleton) union of output and ground truth PAG.

Algorithm GPS GSMAG GFCI FCI

n metric empty FCI empty FCI N/A N/A

SHD 9.180 9.040 9.730 8.600 10.360 10.640
BIC 12.838 12.717 12.414 12.552 12.994 13.0525
accuracy 0.530 0.522 0.517 0.549 0.447 0.424

SHD 25.420 25.250 38.450 31.020 21.510 22.770
BIC 30.616 30.438 28.923 28.753 31.716 31.73510
accuracy 0.470 0.460 0.322 0.416 0.481 0.454

SHD 35.700 37.800 62.900 53.640 29.990 34.100
BIC 37.102 36.234 32.832 32.308 38.739 39.17715
accuracy 0.494 0.458 0.308 0.381 0.501 0.430

SHD 47.464 48.890 94.061 74.460 36.820 42.720
BIC 60.542 59.368 54.524 54.226 63.534 63.90420
accuracy 0.523 0.508 0.292 0.389 0.552 0.462

Table 2: Algorithm accuracy comparison

The accuracy results are summarized in Table 2. For both
GPS and GSMAG, we considered two different starting
points for the greedy search, namely the empty graph and
the PAG obtained by running the FCI algorithm. We used
the BIC score for MAGs [Triantafillou and Tsamardinos,
2016] as the objective function in the greedy optimization.
We ran FCI and GFCI using the Tetrad library [Glymour
et al., 2014] with default parameters, where Fisher’s z-test
was used for finding conditional independences, and the
BIC score was used for the score-based component of GFCI.
Even though GSMAG manages to achieve a better local
minimum for the objective function, the greedy PAG search
finds graphs that are closer to the ground truth, as shown by
the increased accuracy and lower SHD. On closer inspection
this turns out to result from unstable BIC scores in GSMAG
where the RICF fitting step fails to converge properly for

many graphs considered by GSMAG. In contrast the equi-
valence class candidates proposed in GPS tend to be easier
to compute leading to more reliable output. GPS performs
slightly worse relative to GFCI in terms of SHD and accur-
acy, while obtaining a better likelihood fit for the data. This
suggests further tweaks to the MEC score could be bene-
ficial. Likewise going beyond the current baseline search
for GPS (single run) should provide further improvements.
When it comes to speed, GPS arrives at a result much faster
than GSMAG due to the more efficient search through the
space of equivalence classes, as shown in 3. This difference
becomes more obvious when comparing the average time
needed to run each algorithm, as GSMAG considers (and
rejects) many more candidate graphs in each step of the
search.

Algorithm GPS GSMAG

n metric empty FCI empty FCI

iterations 8.430 2.410 8.280 3.000
5

time (s) 0.427 0.465 1.595 1.240

iterations 20.260 6.620 21.140 10.720
10

time (s) 15.970 16.192 50.659 55.060

iterations 28.480 11.090 33.040 17.980
15

time (s) 60.192 70.174 321.615 360.386

iterations 41.062 16.650 48.919 26.600
20

time (s) 201.906 213.508 926.256 863.413

Table 3: Algorithm speed comparison

7 CONCLUSION

In this article we presented GPS, the first score-based equi-
valence search algorithm in the presence of latent con-
founders. It was based on a simple new MEC character-
ization for MAGs that brings establishing Markov equi-
valence between sparse graphs down to linear complexity.
Experimental ‘proof of concept’ results on the baseline GPS
version, confirmed our hopes/expectations that equivalence
search could traverse the MAG space faster than single-edge
MAG modifications, while arriving at slightly better mod-
els. It also showed that computing the BIC score itself for
MAGs was in general considerably trickier than for DAGs,
and that additional gains can be expected by incorporating
more comprehensive search strategies like tabu-search and
multiple restarts. Looking forward, we are working on ex-
tending GPS by including a more robust equivalence score
that can also handle selection bias and cyclic interactions,
and investigating how to optimize the global search.
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A REMARK ON SIZE OF MECS

One may wonder whether searching between equivalence
classes is actually worth the trouble, given the famous con-
clusion from Gillispie and Perlman [2002] that the average
size of equivalence classes for DAGs is bounded below 4,
even as n goes to infinity. This was all the more surpris-
ing given that experimental findings from e.g. [Chicker-
ing, 2002b] reported encountering huge sized equivalence
classes.

As demonstrated by He et al. [2015], the main contribution
to this bound comes from graphs with a high average density
of around n/2 that account for the vast majority of graphs
over n nodes, and for which nearly every instance is al-
most fully determined. But for sparse graphs with a density
bounded by some constant d� n the size of each individual
equivalence class can become truly huge as n gets larger.
For example [He et al., 2015] report an average MEC size of
3.5e19 for DAGs over 50 nodes with average edge density
of 4. Therefore despite some potential overhead, searching
over equivalence classes rather than individual MAGs can
still bring a sizeable improvement in efficiency.

B PROOFS

Below the proof details for the theoretical results in the main
paper.

Lemma 2 In a MAG G, a triple 〈a, b, c〉 is in Ci (resp. Di),
if and only if 〈a, b, c〉 ∈ Ti and 〈a, b, c〉 is a collider (resp.
noncollider) in G.

Proof Clearly the definitions coincide for triples of order
0. First from old to new: if 〈a, b, c〉 ∈ T1 then there is a
discriminating path 〈x, a, b, c〉 in G for which 〈x, a, b〉 is
a collider triple with order 0, hence 〈x, a, b〉 ∈ C0, and
〈x, a, c〉 is a noncollider triple with order 0, 〈x, a, c〉 ∈ D0.
Therefore all conditions for order i = 1 in the new definition
are satisfied, and so 〈a, b, c〉 ∈ C1 resp. D1, depending
on whether the triple is a collider or noncollider in G. By
induction, suppose the mapping is valid up to order i, and
let 〈a, b, c〉 ∈ Ti+1. Then there is a discriminating path
〈x, q1, .., qp, a, b, c〉 in G for which 〈qp, a, b〉 is a collider
triple with order k ≤ i, hence 〈qp, a, b〉 ∈ Ck, and for which
〈qp, a, c〉 is a noncollider triple with order j ≤ i, hence
〈qp, a, c〉 ∈ Dj . Therefore all conditions for order i + 1
in the new definition are satisfied, and so 〈a, b, c〉 ∈ Di+1

resp. Ci+1), again depending on whether the triple is a
noncollider or collider in G.

For the reverse, from new to old: at order i = 1,
if 〈a, b, c〉 ∈ D1 then by definition there is a
∃x : 〈x, a, c〉 ∈ D0 as noncolllider triple, and also
as collider triple 〈x, a, b〉 ∈ C0. But that implies 〈x, a, b, c〉
is a discriminating path in G, and so 〈a, b, c〉 ∈ T1 as we

already saw 〈x, a, b〉 ∈ T0. Similarly when 〈a, b, c〉 ∈ C1.
Again by induction assuming the mapping is valid up to or-
der i, and let 〈a, b, c〉 ∈ Di+1. Then ∃qp : 〈qp, a, c〉 ∈ Dj≤i
and 〈qp, a, b〉 ∈ Ck≤i. If j > 0, then again there is a
qp−1 : 〈qp−1, qp, c〉 ∈ Dm<j and 〈qp−1, qp, a〉 ∈ Cn<k.
The same holds for all subsequent triples until we arrive
at some triple with order 0 for which 〈x, q1, c〉 ∈ D0

and 〈x, q1, q2〉 ∈ Cr. Then 〈x, q1, .., qp, a, b, c〉 is a
discriminating path, where all required collider triples are
of lower order than i and so also in

⋃
Cj<i. This implies

〈a, b, c〉 ∈ Ti, which proves the lemma.

Corollary 3 Two MAGs G1 and G2 are Markov equivalent
if and only ifM(G1) =M(G2).

Proof Lemma 2 implies a MEC M(G) is unique and
in a one-to-one correspondence with Lemma 1 which
guarantees ‘if and only if’ Markov equivalence.

Lemma 4 For a valid MECM, algorithm 2 will output the
corresponding completed PAG P .

Proof (Rules following the notation in [Zhang, 2008].)
Given the core PAG, all v-structures from rule R0 are
already included. In the eliminated discriminating path rule
R4, for the final 3 nodes 〈.., α, β, γ〉 along a discriminat-
ing path all invariant edge marks at β on the edge to γ are
also already covered in the core PAG via triples with order
k ≥ 1.

All other elements oriented by ruleR4 will get oriented by
R2. In particular: bothR4a/b will also orient an arrowhead
at γ on the edge to β, but this also follows directly fromR2b,
as 〈α, β, γ〉 together with already established arc α → γ
satisfy the precondition for R2b with the roles of α and β
reversed, leading to the invariant arrowhead β ∗→γ. For the
remaining arrowhead orientation at α ∗→β from ruleR4b,
the final three nodes also satisfy the precondition forR2a,
except now with the roles of β and γ reversed.

All other individual orientation rules remain sound, so
that all other rules triggered in creating the PAG by FCI
can/will also be triggered when starting from the MEC,
which means the output PAG is also sound and complete.

Theorem 1 The MEC operators (in combination with post-
validation) are sound and complete.

Proof Soundness is trivially ensured by the final validity
check on the resulting implied arc-augmented MAG.
Completeness follows from the fact that we can transform
any source MAG into an undirected MAG on the same
skeleton by iteratively turning all v-structures (colliders
with order zero) into non-colliders, each time choosing a
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v-structure with no other v-structures among its ancestors in
the current implied graph instance. Each step corresponds
to moving a triple with order zero from C to D until no
more colliders or higher order triples are left, and the MEC
consists of only noncolliders with order zero. After that
we can arbitrarily add and/or remove undirected edges
to obtain an undirected MAG on the target skeleton. In
the process of adding/removing edges, all newly created
triples-with-order default to ‘noncollider’, meaning that
the end result at each step remains an undirected graph,
corresponding to a MEC with the same skeleton and only
noncollider triples with order zero. Finally, starting with
the invariant undirected components in the PAG implied by
the current instance, we can iteratively turn noncolliders
with order zero into colliders matching the target MAG
(corresponding to moving an entry from D to C in the MEC,
possibly creating new, by default noncollider triples with
order k ≥ 1), and repeat for increasing order of k until we
reach the target MEC.

Naturally this is unlikely to be the optimal strategy, but
it does serve to show that the operators in themselves are
flexible enough to reach all possible instances of the entire
MEC space. Furthermore, it also gives a straightforward
upper bound on the number of steps required to transform
one MAG into another

Corollary 5 For two different MAGs G1 and G2, let M1

andM2 be the corresponding MECs in accordance with 2.
Let ∆E be the number of edge differences in the skeleton
between G1 and G2, then there is a sequence of at most
∆E + |C1(0)| + |C2| single step MEC operators that will
transformM1 intoM2 via a series of intermediate valid
MECs.

Proof Follows immediately from the strategy described
above, while noting that each step in each of the three
phases reduces the amount of differences for that stage
by at least one while not introducing new differences for
that stage, and at the end the two MECs should be equal.
This results in an upper bound of |C1(0)| steps for phase
1 to obtain the noncollider MEC (undirected skeleton of
M1), then exactly ∆E edge insertion/deletions in phase 2
(undirected skeleton of M2, followed by at most |C2| to
introduce the required collider triples in phase 3 to end up
at the target MEC.

In particular it also holds whenM1 is our starting empty
MEC, andM2 the target optimal/true MEC. Naturally again
it does not imply that any search strategy (incl. GPS) is
guaranteed to find that optimal solution in this amount of
steps, but merely that in theory it is possible to reach the
optimal solution within a reasonable number of steps. This
bound can be tightened even further by finding an improved

strategy that keeps as many of the shared collider triples as
possible (avoiding the intermediate fully undirected graph),
but that goes beyond the scope of the current article.

C SCORING MECS

This section describes the details behind the BIC score for
MAGs [Richardson and Spirtes, 2002], used to score MECs
as indicated in section 5.1.

To connect a MAG to a linear Gaussian model, we can
associate a MAG G over n = |V| variables with a col-
lection of n × n matrices of structural parameters B(G),
with Bij = 0 iff i = j or j → i /∈ G, and a collection of
positive definite covariance matrices of error/noise terms
Ω(G), where Ωij = 0 iff i 6= j and i←→ j /∈ G. Then the
system of (normal) linear equations V = BV + ε with
B ∈ B(G), ε ∼ N (0,Ω ∈ Ω(G)) implies a multivari-
ate Gaussian distribution over V with covariance matrix
Σ = (I −B)−1Ω(I −B)−T.

For any given choice of B and Ω we can compute the likeli-
hood of the observed sample covariance matrix S. But for
a given MAG G we only have the structure, not the para-
meters. As a reasonable approximation, for a given graph
G we therefore compute the parameters that maximize this
likelihood. For DAGs this boils down to straightforward
regression, but for MAGs in general no such expression ex-
ists, even though they are uniquely identifiable. Instead we
can employ the residual iterative conditional fitting (RICF)
method developed by Drton and Richardson [2008] which
iteratively finds the maximum likelihood solution for the
parameters in the model given the graph G and observed
sample covariance matrix S, and outputs the implied co-
variance matrix Σ̂, from which we can compute the (log)
likelihood of the sample covariance matrix S under the
model covariance Σ̂ for G.

An attractive property, as shown by Nowzohour et al. [2017],
is that this log-likelhood can be decomposed into a sum of
distinct contributions over the separate districts (connected
bi-directed components) in the graph G. With each district
Dk a so-called c-component Ck is associated, consisting of
the subgraph Gk of G over the nodes in Dk ∪ paG(Dk), but
with all edges between pa(Ck) ≡ paG(Dk)\Dk removed.
With this the log-likelihood given N samples becomes:

l(S|Σ̂G) = −N
2

∑
k

(
|Ck| log 2π+log

|ΣGk |∏
j∈ pa(Ck)

σ2
kj

+

N − 1

N
tr(Σ−1Gk SGk − | pa(Ck)|)

)
(1)

As a result, when computing the score for a modified MEC
we only need to recompute the score for the c-components
that changed relative to the source MEC, providing a signi-
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ficant speed improvement for the overall computational cost.
Note that here the use of the arc-augmented MAG extension
for a PAG minimizes the size of the districts, which also
benefits the speed and convergence of the RICF step for
each district in the computation of the score.

To avoid overfitting the negative log-likehood is typically
regularized by adding a complexity penalty for the number
of free parameters. For that we will use the BIC score for
MAGs from [Richardson and Spirtes, 2002], with n and
e resp. the number of variables and edges in G; see also
[Triantafillou and Tsamardinos, 2016].

BIC(Σ̂,G) = 2l(S|Σ̂G)− log(N)(2n+ e) (2)

Two final remarks: in practice, the score 2 is not guaranteed
to be a fully equivalent score, as different MAG instances in
the same equivalence class can have different sized districts,
making it harder for the RICF step in 1 to converge to the
same value. However, in theory in the large sample limit
any MAG instance from the true equivalence class should
obtain a higher score than any MAG that is not. Secondly,
the current likelihood score 1 is only defined for directed
graphs, meaning that MAGs with invariant undirected edges
(identifiable selection bias) cannot be scored and are there-
fore skipped in the evaluation. It is possible to extend the
score to include selection bias as well, but that is left to
another article.
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