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Abstract

It has been studied for centuries to predict the evolution of the Earth system1

due to its significant impact on human lives. Conventionally, Earth system (e.g.,2

weather and climate) forecasting models rely on numerical simulation of complex3

physical models and are hence expensive in both computational resources and4

domain expertise. With the explosive growth of Earth observation data in the5

past decade, data-driven models that apply Deep Learning (DL) are demonstrating6

impressive potential for various Earth system forecasting tasks. So far, these DL7

models mainly use Convolutional Neural Networks (CNNs) or Recurrent Neural8

Networks (RNNs) as the basic building blocks. The Transformer architecture,9

despite its broad success in other domains, has limited adoption for Earth system10

forecasting. In this paper, we propose Earthformer, a space-time Transformer11

for Earth system forecasting. Earthformer is based on a generic, flexible and12

efficient space-time attention block, named Cuboid Attention, which decomposes13

the data to cuboids and applies cuboid-level self-attention in parallel. These14

cuboids are further connected with a collection of global vectors. We conduct15

experiments on the MovingMNIST dataset and a newly proposed chaotic N -body16

MNIST dataset to verify the effectiveness of cuboid attention and figure out the17

best design for Earthformer. Experiments on two real-world benchmarks about18

precipitation nowcasting and El Niño/Southern Oscillation (ENSO) forecasting19

show Earthformer achieves state-of-the-art performance.20

1 Introduction21

Earth is a complex system. Variabilities of the Earth system, ranging from regular events like22

temperature fluctuation to extreme events like drought, hail storm, and El Niño/Southern Oscillation23

(ENSO), impact our daily life. Among all the consequences, Earth system variabilities can influence24

crop yields, delay airlines, cause floods and forest fires. Precise and timely forecasting of these25

variabilities can help people take necessary precautions to avoid crisis, or better utilize natural26

resources such as wind and solar energy. Thus, improving forecasting models for Earth variabilities27

(e.g. weather and climate) has a huge socioeconomic impact. Despite its importance, the operational28

weather and climate forecasting systems have not fundamentally changed for almost 50 years [30].29

These operational models, including the state-of-the-art High Resolution Ensemble Forecast (HREF)30

rainfall nowcasting model used in National Oceanic and Atmospheric Administration (NOAA) [28],31

relies on meticulous numerical simulation of complicated physical models based on extensive ground32

and satellite observations. Such simulation-based systems inevitably fall short in the ability to33

incorporate signals from newly emerging geophysical observation systems [12], or take advantage of34

the Petabytes-scale Earth observation data [36].35
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Figure 1: Example VIL observation sequence from the Storm EVent ImagRy (SEVIR) dataset.

As an appealing alternative, deep learning (DL) is offering a new approach for Earth system fore-36

casting [30]. Instead of explicitly incorporating physical rules, DL-based forecasting models are37

trained from the Earth observation data [31]. By learning from a large amount of observations, the38

DL model is able to figure out the system’s intrinsic physical rules and generate predictions that out-39

perform physics-centric models [9]. Such technique has demonstrated success in several applications,40

including precipitation nowcasting [28, 6] and ENSO forecasting [15]. Because the Earth system is41

chaotic [19], high dimensional, and spatiotemporal, designing appropriate DL architecture for model-42

ing the system is particularly challenging. Previous works relied on the combination of Recurrent43

Neural Network (RNN) and Convolutional Neural Network (CNN) [31, 32, 36, 13, 38]. These two44

architectures impose temporal and spatial inductive biases that help capturing spatiotemporal patterns.45

However, as a chaotic system, variabilities of the Earth system, such as rainfall and ENSO, are highly46

sensitive to the system’s initial condition and can respond abruptly to internal changes. It is unclear47

whether the inductive biases in RNN and CNN will still hold for such complex system.48

On the other hand, recent years have witnessed major breakthroughs in DL led by the wide adoption of49

Transformer. The model was originally proposed for natural language processing [35, 7], and has been50

later extended to computer vision [8, 20], multimodal text-image generation [27], graph learning [42],51

etc. Transformer relies on the attention mechanism to capture data correlations and is powerful at52

modeling complex and long-range dependencies, both of which appear in Earth systems (See Fig. 153

for an example of Earth observation data). Despite being suitable for the problem, Transformer sees54

limited adoption in Earth system forecasting. How to design a space-time Transformer that is good55

at predicting the future of the Earth systems is largely an open problem to the community. Naively56

applying the Transformer architecture is infeasible because the O(N2) attention mechanism is too57

computationally expensive for the high dimensional Earth observation data.58

In this paper, we propose Earthformer, a space-time Transformer for Earth system forecasting. To59

better explore the design of space-time attention, we propose Cuboid Attention, which is a generic60

building block for efficient space-time attention. The idea is to decompose the input tensor to non-61

overlapping cuboids and apply cuboid-level self-attention in parallel. Different types of correlations62

can be captured via different cuboid decompositions. Since we limit the O(N2) self-attention inside63

the local cuboids, the overall complexity is greatly reduced. By stacking multiple cuboid attention64

layers with different hyperparameters, we are able to subsume several previously proposed video65

Transformers [18, 21, 4] as special cases, and also come up with new attention patterns that was66

not studied before. A limitation of this design is the lack of mechanism for the local cuboids to67

communicate with each other. Thus, we introduce a collection of global vectors that attend to all the68

local cuboids, thereby gathering the overall status of the system. By attending to the global vectors,69

the local cuboids can grasp the general dynamics of the system and share information with each other.70

To verify the effectiveness of cuboid attention and figure out the best design under the Earth system71

forecasting scenario, we conducted extensive experiments on two synthetic datasets: the MovingM-72

NIST [31] dataset and a newly proposed N -body MNIST dataset. Digits in the N -body MNIST73

follow the chaotic 3-body motion pattern [22], which makes the dataset not only more challenging74

than MovingMNIST but more relevant to Earth system forecasting. The synthetic experiments reveal75

the following findings: 1) stacking cuboid attention layers with the Axial attention pattern is both76

efficient and effective, achieving the best overall performance, 2) adding global vectors provides77

consistent performance gain without increasing the computational cost, 3) adding hierarchy in the78

encoder-decoder architecture can improve performance. Based on these findings, we figured out79

the optimal design for Earthformer and made comparison with other baselines on the SEVIR [36]80

benchmark for precipitation nowcasting and the ICAR-ENSO dataset [15] for ENSO forecasting.81

Experiments show that Earthformer achieves the state-of-the-art (SOTA) performance on both tasks.82

2 Related Work83

Space-time Transformers for video modeling. Inspired by the success of ViT [8] for image84

classification, space-time Transformer is adopted for improved video understanding. In order to85
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bypass the huge memory consumption brought by joint spatiotemporal attention, several pioneering86

work propose efficient alternatives, such as divided attention [4], axial attention [18, 4], factorized87

encoder [23, 2] and separable attention [44]. Beyond minimal adaptation from ViT, some recent88

work introduce more vision prior to the design of space-time transformers, including trajectory [25],89

multi-scale [21, 11] and multi-view [40]. However, no prior work focuses on exploring the design of90

space-time Transformers for Earth system forecasting.91

Deep learning architectures for Earth system forecasting. Conventional DL models for Earth92

system forecasting are based on CNN and RNN. U-Net with either 2D CNN or 3D CNN have93

been used for precipitation nowcasting [36], Seasonal Arctic Sea ice prediction [1], and ENSO94

forecasting [15]. Shi et al. [31] proposed the ConvLSTM network that combines CNN and LSTM95

for precipitation nowcasting. Wang et al. [38] proposed PredRNN which adds the spatiotemporal96

memory flow structure to ConvLSTM. To better learn long-term high-level relations, Wang et al. [37]97

proposed E3D-LSTM that integrates 3D CNN to LSTM. To disentangle PDE dynamics from unknown98

complementary information, PhyDNet [13] incorporates a new recurrent physical cell to perform99

PDE-constrained prediction in latent space. Espeholt et al. [9] proposed MetNet-2 that outperforms100

HREF for forecasting precipitation. The architecture is based on ConvLSTM and dilated CNN.101

Very recently, there are works that tried to apply Transformer for solving Earth system forecasting102

problems. Pathak et al. [24] proposed the FourCastNet for global weather forecasting, which is103

based on Adaptive Fourier Neural Operators (AFNO) [14]. Bai et al. [3] proposed Rainformer104

for precipitation nowcasting, which is based on an architecture that combines CNN and Swin-105

Transformer [20]. In the experiments, we can see that Earthformer outperforms Rainformer.106

Global and local attention in vision Transformers. To make self-attention more efficient in107

terms of both memory consumption and speed, recent works have adapted the essence of CNN to108

perform local attention in transformers [16, 42]. HaloNets [34] develops a new self-attention model109

family that are simple local self-attention and convolutional hybrids, which outperform both CNN110

and vanilla ViT on a range of downstream vision tasks. GLiT [5] introduces a locality module and111

use neural architecture search to find an efficient backbone. Focal transformer [41] proposes focal112

self-attention that can incorporate both fine-grained local and coarse-grained global interactions.113

However, these architectures are not directly applicable to spatiotemporal forecasting. Besides, they114

are also different from our design because we keep K global vectors to summarize the statistics of115

the dynamic system and connect the local cuboids; experiments show that such a global vector design116

is crucial for successful spatiotemporal forecasting.117

3 Model118

Similar to previous works [31, 36, 3], we formulate Earth system forecasting as a spatiotempo-119

ral sequence forecasting problem. The Earth observation data, such as radar echo maps from120

NEXRAD [17] and climate data from CIMP6 [10], are represented as a spatiotemporal sequence121

[Xi]
T
i=1, Xi ∈ RH×W×Cin . Based on these observations, the model predicts the K-step-ahead future122

[YT+i]
K
i=1, YT+i ∈ RH×W×Cout . Here, H,W denote the spatial resolution, and Cin, Cout denotes the123

number of measurements available at each space-time coordinate from the input and the target se-124

quence, respectively. As illustrated in Fig. 2, our proposed Earthformer is a hierarchical Transformer125

encoder-decoder based on Cuboid Attention. The input observations are encoded as a hierarchy of126

hidden states and then decoded to the prediction target. In the following, we present the detailed127

design of cuboid attention and the hierarchical encoder-decoder architecture in Earthformer.128

3.1 Cuboid Attention129

Compared with images and text, spatiotemporal data in Earth systems usually have higher dimension-130

ality. As a consequence, applying Transformers to this task is challenging. For example, for a 3D131

tensor with shape (T,H,W ), the complexity of the vanilla self-attention is O(T 2H2W 2) and can be132

computationally infeasible. Previous literature proposed various structure-aware space-time attention133

layers to reduce the complexity [18, 21, 4]. These space-time attention layers share the common134

design of stacking multiple elementary attention cells that focus on different types of data correlations135

(e.g., temporal correlation and spatial correlation). Steming from this observation, we propose the136

generic cuboid attention layer that involves three steps: “decompose”, “attend”, and “merge”.137
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Figure 2: Illustration of the Earthformer architecture. It
is a hierarchical Transformer encoder-decoder based on
cuboid attention. The input sequence has length 3 and
the target sequence has length 2. “×D" means to stack
D cuboid attention blocks with residual connection.
“M×" means to have M layers of hierarchies.
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Figure 3: Illustration of the cuboid atten-
tion layer with global vectors.
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Figure 4: Illustration of cuboid decomposition strategies when the input shape is (T,H,W ) =
(6, 4, 4), and cuboid size (bT , bH , bW ) = (3, 2, 2). Cells that have the same color belong to the same
cuboid and will attend to each other. (Best viewed in color).

Decompose. We first decompose the input spatiotemporal tensor X ∈ RT×H×W×C into a sequence138

of cuboids {x(n)}.139

{x(n)} = Decompose(X , cuboid_size, strategy, shift), (1)
where cuboid_size = (bT , bH , bW ) is the size of the local cuboid, strategy ∈140

{“local”, “dilated”} controls whether to adopt the local decomposition strategy or the dilated141

decomposition strategy [4], shift = (sT , sH , sW ) is the window shift offset [20]. There are a total142

number of ⌈ T
bT

⌉⌈ H
bH

⌉⌈ W
bW

⌉ cuboids in {x(n)}. To simplify the notation, we assume that T,H,W are143

divisible by bT , bH , bW . In the implementation, we pad the input tensor if it is not divisible.144

Assume x(n) is the (nT , nH , nW )-th cuboid in {x(n)}. The index [i, j, k] of x(n) can be mapped to145

the index [i′, j′, k′] of X via Eqn. 2 if the strategy is “local” and Eqn. 3 if the strategy is “dilated”.146

i′ ↔ sT + bT (nT − 1) + i mod T

j′ ↔ sH + bH(nH − 1) + j mod H

k′ ↔ sW + bW (nW − 1) + k mod W

(2)

i′ ↔ sT + bT (i− 1) + nT mod T

j′ ↔ sH + bH(j − 1) + nH mod H

k′ ↔ sW + bW (k − 1) + nW mod W

(3)147

Since the mapping is bijective, one can then map indices from X to {x(n)} via the inverse operation.148

Fig. 4 provides three examples showing how an input tensor will be decomposed following different149

hyperparameters of Decompose(·).150

Attend. After decomposing the input tensor into a set of non-overlapping cuboids, we apply151

self-attention within each cuboid in parallel:152

x
(n)
out = Attentionθ(x

(n)), 1 ≤ n ≤ N. (4)
The self-attention parameter θ are shared across all cuboids. The overall complexity of the153

Attentionθ(·) step is O
(
⌈ T
bT

⌉⌈ H
bH

⌉⌈ W
bW

⌉ (bT bHbW )
2
)

≈ O(THW · bT bHbW ), which scales154
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Table 1: Configurations of the cuboid attention patterns explored in the paper. The input tensor has
shape (T,H,W ). If the window shift or the Local/Dilated key is not given, we use (0, 0, 0) and
“local” strategy, respectively, by default. When stacking multiple cuboid attention layers, each
cuboid attention layer will be coupled with layer normalization layers and feed-forward network as in
the Pre-LN Transformer [39]. The first row shows the configuration of the generic cuboid attention.

Name Keys Configuration Values

Generic Cuboid Attention
Cub. Size (T1, H1, W1) → (T2, H2, W2) → · · · → (TL, HL, WL)

Window Shift (P1, M1, M1) → (P2, M2, M2) → · · · → (PL, ML, ML)
Local/Dilated “loc./dil.” → “loc./dil.” → · · · → “loc./dil.”

Axial Cub. Size (T, 1, 1) → (1, H, 1) → (1, 1, W)

Divided Space-Time Cub. Size (T, 1, 1) → (1, H, W)

Video-Swin P ×M
Cub. Size (P, M, M) → ( P , M , M )

Window Shift (0, 0, 0) → (P/2, M/2, M/2)

Spatial Local-Dilate-M Cub. Size (T, 1, 1) → (1, M, M) → (1, M, M)
Local/Dilated “local” → “local” → “dilated”

Axial Space Dilate-M Cub. Size (T, 1, 1) → (1, H/M, 1) → (1, H/M, 1) → (1, 1, W/M) → (1, 1, W/M)
Local/Dilated “local” → “dilated” → “local” → “dilated” → “local”

linearly to the cuboid size. Since the cuboid size can be much smaller than the size of the input tensor,155

the layer is more efficient than full attention.156

Merge. Merge(·) is the inverse operation of Decompose(·). The set of cuboids obtained after the157

attention step {x(n)
out } are merged back to the original input shape to produce the final output of cuboid158

attention, as shown in Eqn. 5. The mapping follows the same bijections in Eqn. 2 and Eqn. 3.159

Xout = Merge({x(n)
out }n, cuboid_size, strategy, shift). (5)

Explore cuboid attention patterns. By stacking multiple cuboid attention layers with different160

choices of cuboid_size, strategy and shift, we are able to efficiently explore existing and potentially161

more effective space-time attention. In this paper, we explore the cuboid attention patterns as listed162

in Table 1. From the table, we can see that cuboid attention subsumes previously proposed space-time163

attention methods like axial attention, video swin-Transformer, and divided space-time attention.164

Also, we manually picked the patterns that are reasonable and not computationally expensive as our165

search space. The flexibility of cuboid attention allows us to conduct Neural Architecture Search166

(NAS) to automatically pick a pattern but we will leave it as future work.167

3.2 Global Vectors168

One limitation of the previous formulation is that the cuboids do not communicate with each other.169

This is sub-optimal because each cuboid is not capable of understanding the global dynamics of170

the system. Thus, inspired by the CLS token adopted in BERT [7, 43], we propose to introduce a171

collection of P global vectors G ∈ RP×C to help cuboids scatter and gather crucial global information.172

When each cuboid is performing the self-attention, the elements will not only attend to the other173

elements within the same cuboid but attend to the global vectors G. We revise Eqn. 4 to Eqn. 6 to174

enable local-global information exchange. We also use Eqn. 7 to update the global vectors G by175

aggregating the information from all local vectors.176

x
(n)
out = Attentionθ(x

(n),G), 1 ≤ n ≤ N. (6)

Gout = Attentionϕ({x(n)}n,G). (7)

The additional complexity caused by the global vectors is approximately O
(
THW · P + P 2

)
. Given177

that P is usually small (in our experiments, P is at most 8), computational overhead induced by the178

global structure is negligible. The overall cuboid attention layer is illustrated in Fig. 3.179

3.3 Hierarchical Encoder-Decoder Architecture180

Earthformer adopts a hierarchical encoder-decoder architecture illustrated in Fig. 2. Each cuboid181

attention block in the encoder uses one of the patterns described in Table 1. Each block are repeated182
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Table 2: Statistics of the datasets used in the experiments.

Dataset Size Seq. Len. Spatial Resolution
train val test in out H ×W

MovingMNIST 8,100 900 1,000 10 10 64× 64
N -body MNIST 20,000 1,000 1,000 10 10 64× 64
SEVIR 35,718 9,060 12,159 13 12 384× 384
ICAR-ENSO 5,205 334 1,667 12 26 24× 48

for D times. The cuboid blocks in the decoder adopt the “Axial” pattern. The hierarchical architecture183

gradually encodes the input sequence to multiple levels of representations and generates the prediction184

via a coarse-to-fine procedure. To reduce the spatial resolution of the input for cuboid attention layers,185

we include a pair of initial downsampling and upsampling modules that consist of stacked 2D-CNN186

and Nearest Neighbor Interpolation (NNI) layers. Different from other papers that adopt Transformer187

for video prediction [18, 26], we generate the predictions in a non-auto-regressive fashion rather188

than an auto-regressive patch-by-patch fashion. This means that our decoder directly generates the189

predictions from the initial learned positional embeddings. We also conducted experiments with190

an auto-regressive decoder based on visual codebook [29]. However, the auto-regressive decoder191

underperforms the non-auto-regressive decoder in terms of forecasting skill scores. The comparison192

between non-auto-regressive decoder and auto-regressive decoder are shown in the Appendix.193

4 Experiments194

We first conducted experiments on two synthetic datasets, MovingMNIST and a newly proposed195

N -body MNIST, to verify the effectiveness of Earthformer and conduct ablation study on our196

design choices. Results on these two datasets lead to the following findings: 1) Among all patterns197

listed in Table 1, “Axial” achieves the best overall performance; 2) Global vectors bring consistent198

performance gain with negligible increase in computational cost; 3) Using a hierarchical coarse-199

to-fine structure can boost the performance. Based on these findings, we figured out the optimal200

design of Earthformer and compared it with other state-of-the-art models on two real-world datasets:201

SEVIR [36] and ICAR-ENSO1. On both datasets, Earthformer achieved the best overall performance.202

The statistics of all the datasets used in the experiments are shown in Table 2. We normalize the203

data to the range [0, 1] and trained all models with the Mean-Squared Error (MSE) loss. More204

implementation details are shown in the Appendix.205

4.1 Experiments on Synthetic Datasets206

MovingMNIST. We follow [33] to use the public MovingMNIST dataset2. The dataset contains207

10,000 sequences. Each sequence shows 2 digits moving inside a 64× 64 frame. We split the dataset208

to use 8,100 samples for training, 900 samples for validation and 1,000 samples for testing. The task209

is to predict the future 10 frames for each sequence conditioned on the first 10 frames.210

N -body MNIST. Earth is a complex system where an extremely large number of variables interact211

with each other. Compared with the Earth system, the dynamics of the synthetic MovingMNIST212

dataset, in which the digits move independently with constant speed, is over-simplified. Thus,213

achieving good performance on MovingMNIST does not imply that the model is capable of modeling214

complex interactions in Earth system. On the other hand, the real-world Earth observation data,215

though have experienced rapid development, are still noisy and may not provide useful insights216

for model development. Therefore, we extend MovingMNIST to N -body MNIST, where N digits217

are moving inside a 64 × 64 frame. Each digit has its mass and is subjected to the gravity from218

other digits. We choose N = 3 in the experiments so that the digits will follow the chaotic 3-body219

motion [22]. The highly non-linear interactions in N -body MNIST makes it much more challenging220

than the original MovingMNIST. We generate 20,000 sequences for training, 1,000 for validation and221

1,000 for test. Perceptual examples of the dataset can be found at the first two rows of Fig. 5.222

Hierarchical v.s. non-hierarchical. We choose “Axial” without global vectors as our cuboid223

attention pattern and compare the performance of non-hierarchical and hierarchical architectures on224

1Dataset available at https://tianchi.aliyun.com/dataset/dataDetail?dataId=98942
2MovingMNIST: https://github.com/tychovdo/MovingMNIST
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Table 3: Ablation study of different cuboid attention patterns and the effect of global vectors on
MovingMNIST and N -body MNIST. The variant that achieved the best performance is in bold-case
while the second best is underscored. We also compared the performance of the cuboid attention
patterns with and without global vectors and highlight the better one with grey background.

Model #Param. (M) GFLOPS Metrics on MovingMNIST Metrics on N -Body
MSE ↓ MAE ↓ SSIM ↑ MSE ↓ MAE ↓ SSIM ↑

Axial 6.61 33.7 46.91 101.5 0.8825 15.89 41.38 0.9510
+ global ⋆ 7.61 34.0 41.79 92.78 0.8961 14.82 39.93 0.9538

DST 5.70 35.2 57.43 118.6 0.8623 18.24 45.88 0.9435
+ global 6.37 35.5 52.92 108.3 0.8760 17.77 45.84 0.9433

Video Swin 2x8 5.66 31.1 54.45 111.7 0.8715 19.89 49.02 0.9374
+ global 6.33 31.4 52.70 108.5 0.8766 19.53 48.43 0.9389

Video Swin 10x8 5.89 39.2 63.34 125.3 0.8525 23.35 53.17 0.9274
+ global 6.56 39.4 62.15 123.4 0.8541 22.81 52.94 0.9293

Spatial Local-Global 2 6.61 33.3 59.88 122.1 0.8572 23.24 54.63 0.9263
+ global 7.61 33.7 59.42 122.9 0.8565 21.88 52.49 0.9305

Spatial Local-Global 4 6.61 33.5 58.72 118.5 0.8600 21.02 49.82 0.9344
+ global 7.61 33.9 54.84 115.5 0.8585 19.82 48.12 0.9371

Axial Space Dilate 2 8.59 41.8 50.11 104.4 0.8814 15.97 42.19 0.9494
+ global 10.30 42.4 46.86 98.95 0.8884 15.73 41.85 0.9510

Axial Space Dilate 4 8.59 41.6 47.40 99.31 0.8865 19.49 51.04 0.9352
+ global 10.30 42.2 45.11 95.98 0.8928 17.91 46.35 0.9440

Table 4: Comparison of Earthformer with baselines on MovingMNIST and N -body MNIST.

Model #Param. (M) GFLOPS MovingMNIST N -body MNIST
MSE ↓ MAE ↓ SSIM ↑ MSE ↓ MAE ↓ SSIM ↑

UNet [36] 16.6 0.9 110.4 249.4 0.6170 38.90 94.29 0.8260
ConvLSTM [31] 14.0 30.1 62.04 126.9 0.8477 32.15 72.64 0.8886
PredRNN [38] 23.8 232.0 52.07 108.9 0.8831 21.76 54.32 0.9288
PhyDNet [13] 3.1 15.3 58.70 124.1 0.8350 28.97 78.66 0.8206
E3D-LSTM [37] 12.9 302.0 55.31 101.6 0.8821 22.98 62.52 0.9131
Rainformer [3] 19.2 1.2 85.83 189.2 0.7301 38.89 96.47 0.8036

Earthformer w/o global 6.6 33.7 46.91 101.5 0.8825 15.89 41.38 0.9510
Earthformer 7.6 34.0 41.79 92.78 0.8961 14.82 39.93 0.9538

MovingMNIST. The results are shown in the Appendix. We can find that a hierarchical structure has225

fewer FLOPS and also performs better. We thus use a hierarchical structure in all other experiments.226

Cuboid pattern search. The design of cuboid attention greatly facilitates the search for optimal227

space-time attention. We compare the patterns listed in Table 1 on both MovingMNIST and N -228

body MNIST to investigate the effectiveness and efficiency of different space-time attention on229

spatiotemporal forecasting tasks. Besides the previously proposed space-time attention methods, we230

also include new configurations that are reasonable and not computationally expensive in our search231

space. For each pattern, we also compare the variant that uses global vectors. Results are summarized232

in Table 3. We find that the “Axial” pattern is both effective and efficient and adding global vectors233

improves performance for all patterns while having similar FLOPS. We thus pick “Axial + global” as234

the pattern in Earthformer when conducting experiments on real-world datasets.235

Comparison to the state of the art. We evaluate six spatiotemporal forecasting algorithms:236

UNet [36], ConvLSTM [31], PredRNN [38], PhyDNet [13], E3D-LSTM [37] and Rainformer [3].237

The results are in Table 4. Note that the MovingMNIST performance on several papers [13] are238

obtained by training the model with on-the-fly generated digits while we pre-generate the digits and239

train all models on a fixed dataset. Comparing the numbers in the table with numbers shown in these240

papers are not fair. We train all baselines from scratch on both MovingMNIST and N -body MNIST241

using the default hyperparameters and configurations in their officially released code3.242

Qualitative results on N -body MNIST. Fig. 5 shows the generation results of different methods243

on a sample sequence from N -body MNIST test set. The qualitative example demonstrates that our244

Earthformer is capable of learning the long-range interactions among digits and correctly predicting245

3Except for Rainformer which originally has 212M parameters and thus suffers overfitting severely.
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MSE=22.75

Earthformer
MSE=16.73
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Figure 5: A set of examples showing the perceptual quality of the predictions on the N -body MNIST
test set. From top to bottom: input frames, target frames, predictions by Rainformer [3], UNet [36],
ConvLSTM [31], PhyDNet [13], E3D-LSTM [37], PredRNN [38], Earthformer without using global
vectors, Earthformer. The results are sorted according to the MSE.

their future motion trajectories. Also, we can see that Earthformer is able to more accurately predict246

the position of the digits with the help of global vectors. On the contrary, none of the baseline247

algorithms that achieved solid performance on MovingMNIST gives the correct and precise position248

of the digit “0” in the last frame. They either predict incorrect motion trajectories (PredRNN and249

E3D-LSTM), or generate highly blurry predictions (Rainformer, UNet and PhyDNet) to accommodate250

the uncertainty about the future.251

4.2 SEVIR Precipitation Nowcasting252

Storm EVent ImagRy (SEVIR) [36] is a spatiotemporally aligned dataset containing over 10,000253

weather events. Each event consists of 384 km × 384 km image sequences spanning 4 hours of254

time. Images in SEVIR were sampled and aligned across five different data types: three channels255

(C02, C09, C13) from the GOES-16 advanced baseline imager, NEXRAD Vertically Integrated256

Liquid (VIL) mosaics, and GOES-16 Geostationary Lightning Mapper (GLM) flashes. SEVIR257

benchmark supports scientific research on multiple meteorological applications including precipitation258

nowcasting, synthetic radar generation, front detection, etc. We adopt SEVIR for benchmarking259

precipitation nowcasting, i.e., to predict the future VIL up to 60 minutes (12 frames) given 65 minutes260

context VIL (13 frames). Fig. 1 shows an example of VIL observation sequences in SEVIR.261

Besides MSE, we also include the Critical Success Index (CSI), which is commonly used262

in precipitation nowcasting and is defined as CSI = #Hits
#Hits+#Misses+#F.Alarms . To count the263

#Hits (truth=1, pred=1), #Misses (truth=1, pred=0) and #F.Alarms (truth=0, pred=1), the264

prediction and the ground-truth are rescaled back to the range 0-255 and binarized at thresholds265

[16, 74, 133, 160, 181, 219]. We report CSI at different thresholds and also their mean CSI-M.266

SEVIR is much larger than MovingMNIST and N -body MNIST and has higher resolution. We thus267

slightly adjust the configurations of baselines based on those for MovingMNIST for fair comparison.268

Detailed configurations are shown in the Appendix. The experiment results are listed in Table 5. Earth-269

former consistently outperforms baselines on almost all metrics and brings significant performance270

gain especially at high thresholds like CSI-219, which are more valued by the communities.271
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Table 5: Performance comparison on SEVIR. We include Critical Success Index (CSI) besides
MSE as evaluation metrics. The CSI, a.k.a intersection over union (IOU), is calculated at different
precipitation thresholds and denoted as CSI-thresh.

Model #Param. (M) GFLOPS Metrics
CSI-M ↑ CSI-219 ↑ CSI-181 ↑ CSI-160 ↑ CSI-133 ↑ CSI-74 ↑ CSI-16 ↑ MSE (10−3) ↓

Persistence - - 0.2613 0.0526 0.0969 0.1278 0.2155 0.4705 0.6047 11.5338
UNet [36] 16.6 33 0.3593 0.0577 0.1580 0.2157 0.3274 0.6531 0.7441 4.1119
ConvLSTM [31] 14.0 527 0.4185 0.1288 0.2482 0.2928 0.4052 0.6793 0.7569 3.7532
PredRNN [38] 46.6 328 0.4080 0.1312 0.2324 0.2767 0.3858 0.6713 0.7507 3.9014
PhyDNet [13] 13.7 701 0.3940 0.1288 0.2309 0.2708 0.3720 0.6556 0.7059 4.8165
E3D-LSTM [37] 35.6 523 0.4038 0.1239 0.2270 0.2675 0.3825 0.6645 0.7573 4.1702
Rainformer [3] 184.0 170 0.3661 0.0831 0.1670 0.2167 0.3438 0.6585 0.7277 4.0272

Earthformer w/o global 13.1 257 0.4356 0.1572 0.2716 0.3138 0.4214 0.6859 0.7637 3.7002
Earthformer 15.1 257 0.4419 0.1791 0.2848 0.3232 0.4271 0.6860 0.7513 3.6957

Table 6: Performance comparison on ICAR-ENSO. C-Nino3.4-M and C-Nino3.4-WM are the mean
and the weighted mean of the correlation skill CNino3.4 over K = 12 forecasting steps. C-Nino3.4-WM
assigns more weights to longer-term prediction scores. MSE is calculated between the spatiotemporal
SST anomalies prediction and the corresponding ground-truth.

Model #Param. (M) GFLOPS Metrics
C-Nino3.4-M ↑ C-Nino3.4-WM ↑ MSE (10−4) ↓

Persistence - - 0.3221 0.447 4.581
UNet [36] 12.1 0.4 0.6926 2.102 2.868
ConvLSTM [31] 14.0 11.1 0.6955 2.107 2.657
PredRNN [38] 23.8 85.8 0.6492 1.910 3.044
PhyDNet [13] 3.1 5.7 0.6646 1.965 2.708
E3D-LSTM [37] 12.9 99.8 0.7040 2.125 3.095
Rainformer [3] 19.2 1.3 0.7106 2.153 3.043

Earthformer w/o global 6.6 23.6 0.7239 2.214 2.550
Earthformer 7.6 23.9 0.7329 2.259 2.546

4.3 ICAR-ENSO Sea Surface Temperature Anomalies Forecasting272

El Niño/Southern Oscillation (ENSO) has a wide range of associations with regional climate extremes273

and ecosystem impacts. ENSO sea surface temperature (SST) anomalies forecasting for lead times274

up to one year (12 steps) is a valuable and challenging problem. Nino3.4 index, which is the area-275

averaged SST anomalies across a certain area (170◦-120◦W, 5◦S-5◦N) of the Pacific, serves as a276

crucial indicator of this climate event. The forecast quality is evaluated by the correlation skill [15]277

of the three-month-moving-averaged Nino3.4 index CNino3.4 =
∑

N (X−X̄)(Y −Ȳ )√∑
N (X−X̄)2

∑
N (Y −Ȳ )2

∈ RK278

calculated on the whole test set of size N , where Y ∈ RN×K is the ground-truth of K-step Nino3.4279

index, X ∈ RN×K is the corresponding prediction of Nino3.4 index.280

ICAR-ENSO consists of historical climate observation and stimulation data provided by Institute281

for Climate and Application Research (ICAR). We forecast the SST anomalies up to 14 steps (2282

steps more than one year for calculating three-month-moving-average) given context 12 steps SST283

anomalies observations. Table 6 compares the performance of our Earthformer with baselines on284

ICAR-ENSO dataset. We report the mean correlation skill C-Nino3.4-M = 1
K

∑
k C

Nino3.4
k and the285

weighted mean correlation skill C-Nino3.4-WM = 1
K

∑
k ak ·CNino3.4

k over K = 12 forecasting steps4,286

as well as the MSE between the spatiotemporal SST anomalies prediction and the corresponding287

ground-truth. We can find that Earthformer consistently outperforms baselines in all concerned288

evaluation metrics and that using global vectors further improves the performance.289

5 Conclusion and Future Work290

In this paper, we propose Earthformer, a space-time Transformer for Earth system forecasting.291

Earthformer is based on a generic and efficient building block called Cuboid Attention. It achieves292

SOTA on MovingMNIST, our newly proposed N -body MNIST, SEVIR, and ICAR-ENSO. For293

future works, we plan to extend Earthformer with NAS and GAN to further improve the performance294

and apply it on more Earth system forecasting problems.295

4ak = bk · ln k, where bk = 1.5, for k ≤ 4; bk = 2, for 4 < k ≤ 11; bk = 3, for k > 11.
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