
ZooD: Exploiting Model Zoo for
Out-of-Distribution Generalization

Qishi Dong 2,1∗, Awais Muhammad 3,1∗, Fengwei Zhou 1∗, Chuanlong Xie 4,1†, Tianyang Hu 1,
Yongxin Yang 1, Sung-Ho Bae 3, Zhenguo Li 1†

1 Huawei Noah’s Ark Lab,
2 Hong Kong Baptist University,

3 Kyung-Hee University,
4 Beijing Normal University

Abstract

Recent advances on large-scale pre-training have shown great potentials of lever-
aging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution
(OoD) generalization, for which the goal is to perform well on possible unseen
domains after fine-tuning on multiple training domains. However, maximally exploit-
ing a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs
is computationally prohibitive while accurate selection of PTMs requires tackling
the possible data distribution shift for OoD tasks. In this work, we propose ZooD, a
paradigm for PTMs ranking and ensemble with feature selection. Our proposed met-
ric ranks PTMs by quantifying inter-class discriminability and inter-domain stability
of the features extracted by the PTMs in a leave-one-domain-out cross-validation
manner. The top-K ranked models are then aggregated for the target OoD task. To
avoid accumulating noise induced by model ensemble, we propose an efficient vari-
ational EM algorithm to select informative features. We evaluate our paradigm on
a diverse model zoo consisting of 35 models for various OoD tasks and demonstrate:
(i) model ranking is better correlated with fine-tuning ranking than previous methods
and up to 9859x faster than brute-force fine-tuning; (ii) OoD generalization after
model ensemble with feature selection outperforms the state-of-the-art methods and
the accuracy on most challenging task DomainNet is improved from 46.5% to 50.6%.
Furthermore, we provide the fine-tuning results of 35 PTMs on 7 OoD datasets,
hoping to help the research of model zoo and OoD generalization. Code will be
available at https://gitee.com/mindspore/models/tree/master/research/cv/zood.

1 Introduction

Although data Independent and Identically Distributed (IID) is a primary assumption behind most
machine learning systems, it does not hold in many real-world scenarios due to continuous distribution
shifts [39, 88]. Machine learning models encounter serious performance degradation [9, 32, 34] in
such Out-of-Distribution (OoD) scenarios. To alleviate the accuracy degradation caused by distribution
shifts, numerous algorithms have been proposed [3, 1, 40, 44, 5, 41, 70, 31, 20, 47, 6]. Recently,
Gulrajani and Lopez-Paz [29] have argued for the systematic comparisons of OoD algorithms and
introduced a standard and rigorous test bed called DomainBed. Their experimental comparison has
raised concerns about the effectiveness of OoD algorithms since they often fail to outperform the
simple Empirical Risk Minimization (ERM).

∗Equal Contribution. This work was carried out at Huawei Noah’s Ark Lab.
†Correspondence to: li.zhenguo@huawei.com; clxie@bnu.edu.cn

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://gitee.com/mindspore/models/tree/master/research/cv/zood


Figure 1: An overview of ZooD. Given a task with multiple training domains, the model ranking
component evaluates and selects the top-K models that generalize well on this task. The features from
selected models are then aggregated and denoised based on the feature selection component.

On the other hand, recent works [33, 2, 89, 64] have shown the advantages of pre-training for improving
OoD generalization, i.e., learning from multiple training domains in order to generalize to an unseen
domain. The availability of a large set of Pre-Trained Models (PTMs) provides a huge potential for
solving various OoD tasks. However, it is challenging to sufficiently exploit the power of a model zoo
(a large set of PTMs). One naive approach could be fine-tuning all possible combinations of PTMs on
the target dataset and choosing the best-performing one, which is computationally expensive especially
when the number of PTMs and the data size are large. Besides, fine-tuning may also require exhaustive
hyper-parameter search and encounter the risk of over-fitting [91].

Recently, many ranking metrics have been proposed to estimate the transferability of models under IID
assumption [8, 76, 58, 91, 90]. However, ranking a zoo of models for generalization on unseen distribu-
tion shifts is more challenging compared with the IID setting. Moreover, even if a metric can correctly
evaluate the transferability of each PTM, simply using the best model will not fully utilize rich knowl-
edge present in a zoo of models. But the problem is even more serious that the most transferable model
will include some noise, because noise and invariant features are undistinguishable in the sense that they
are all stable across domains. Previous study [87] also pointed this out and emphasized the necessity of
feature denoising. Therefore, if we leverage the model zoo by assembling relatively transferable models,
the accumulation of noise features may increase memory use and hurt the predictive performance.

To solve the aforementioned problems, we propose ZooD, a paradigm to rank and aggregate a Zoo of
PTMs for OoD generalization. An overview of our method is shown in Figure 1 . Given a classification
task with multiple training domains, to evaluate the generalization capability of each model, we
quantify both the inter-class discriminability and inter-domain stability of the features extracted
from each PTM in a leave-one-domain-out cross-validation manner, i.e., choosing one domain as the
validation domain and each domain rotating as the validation domain, which is critical for identifying
models that can extract domain-invariant features. Each PTM in the zoo is ranked by this quantification.
ZooD then continues with model aggregation consisting of model ensemble and feature selection.
By introducing latent masks over candidate features, an efficient EM algorithm is proposed to select
informative features. To tackle the intractability of the posterior, variational approximation to the
true posterior using a factorizable distribution is derived. We further extend it to large-scale datasets
by building a local estimator under the stochastic approximation [65].

To demonstrate the efficacy of our method, we have performed extensive experiments with 35 diverse
PTMs and 7 OoD datasets. First, we show that our ranking metric is strongly correlated with the
fine-tuning performance of PTMs compared with existing IID metrics. Second, we illustrate the
outstanding performance of ZooD on OoD datasets. For instance, on Office-Home, we get 85.1%
average accuracy compared with the previous SOTA of 70.6%. Lastly, we show the speedup of our
method compared with brute-force fine-tuning. ZooD gives a maximum speedup of ≈10000× (0.27
GPU hours vs 2662.27 GPU hours), making it practical and scalable.

Finally, to speed up research and make our work more reproducible, we have devised a test bench
consisting of extracted features, fine-tuning accuracy results, and ranking scores for all 35 PTMs in
our model zoo. This testbed can help future research as the process of getting fine-tuning accuracy
results based on DomainBed [29] for a zoo of models is computationally expensive. For instance,

2



fine-tuning 35 models on all 7 OoD datasets costs approximately 35140 GPU hours (equivalent to
1464 GPU days or 4 GPU years). Concisely, our contributions are as follows:

• We propose an efficient and scalable ranking metric to gauge the generalization-ability of
PTMs for unseen domains.

• Using EM, we propose a method for selecting informative features and discarding invariant
but noisy features in an ensemble of models.

• We have established a test bed for PTMs on 7 OoD datasets, including features extracted
by 35 PTMs in our model zoo, fine-tuning accuracy results, and model ranking scores by
different methods.

2 Related Work

Pre-training for OoD generalization. To tackle the problem of distribution shifts between training and
test data, various OoD methods [3, 1, 40, 44, 22, 13, 5, 41, 70, 20, 47, 6] have been proposed with the aim
to learn invariant representations across different environments. However, a standard evaluation [29] of
many OoD algorithms shows that they do not significantly outperform simple ERM. On the other hands,
recent works have shown the effectiveness of pre-trained models for OoD generalization. Yi et al. [89]
theoretically showed that adversarially pre-trained models also perform better for OoD generalization.
Yu et al. [92] showed that the right choice of pre-trained models can achieve SOTA results. They also
showed that IID performance is not a good indicator of OoD performance and emphasized on the impor-
tance of model selection. Albuquerque et al. [2] showed the importance of feature extractor by proposing
a new OoD-based pretext task for self-supervised pre-training. CLIP [64] demonstrated that large-scale
pre-training on a dataset of image-text pairs results in much more robust models for downstream tasks
with various distribution shifts. Our work is based on these observations and we aim to facilitate utiliza-
tion of PTMs by proposing an efficient metric as well as efficient feature ensemble and selection method.

Ranking pre-trained models by metric design. Recently, a number of metrics have been introduced
to estimate transferability of source-task-learned representations for target task under IID conditions.
H-score [8] estimates the transferability by finding the relationship between extracted features and target
class labels. NCE [76] proposes to estimate transferability via measuring conditional entropy between
source and target labels. LEEP [58] simplifies NCE by using the joint distribution of source and target
labels to estimate log expected empirical prediction. LogME [91, 90] estimates the maximum value of
label evidence given features from pre-trained models. These transferability metrics focus on determin-
ing the compatibility of source-task-learned representations for the target task. We, on the other hand,
aim to compute stability of these features across domains in addition to source-target transferability.

Ensemble and feature selection. Early works have shown that model ensemble can significantly
improve predictive performance [21]. In the age of deep learning, Lakshminarayanan et al. [42]
propose deep ensemble to measure predictive uncertainty. Similar works [60, 62] on uncertainty
estimation focus on the context of outlier detection and reinforcement learning. When facing a zoo
of PTMs, it’s natural to leverage the rich knowledge by assembling multiple PTMs. In prior works,
Liu et al. [49] propose using PTMs as teacher models that distill knowledge to a target model for
downstream tasks. Shu et al. [71] propose Zoo-Tuning that learns to aggregate the parameters of
multiple PTMs to a target model. However, these methods require the target model must have the
identical architecture as the PTMs, thus sacrificing flexibility.

Our proposed paradigm involves selecting informative features from assembled feature extractors.
In the framework of Bayesian variable selection, it is common practice to identify promising features
by estimating the posterior probabilities over all potential feature subsets. Here we mainly focus
on Stochastic Search Variable Selection (SSVS) [59] that involves specifying priors over regression
coefficients such that higher posterior probabilities will be allocated to coefficients substantially
different from zero. Then the features whose coefficients have higher posterior probabilities will be
selected. George and McCulloch [25] first propose SSVS for the linear model and conduct the posterior
inference using Gibbs sampling [57]. Li and Zhang [45] consider SSVS for regression modeling in
high-dimensional spaces incorporating structural information. Ročková and George [66] propose
EMVS for efficient SSVS in high-dimentional cases with sparse estimations of posterior probabilities.
Note that all aforementioned feature selection methods have inherent assumptions that observed
datasets must be IID, which makes these methods difficult to use in our scenarios.

3



3 ZooD for OoD Generalization

3.1 Model Ranking

Figure 2: A directed graphical model that
represents the model assumptions in (1).
Here α and β are hyper-parameters. The
goal is to inference the conditional distri-
bution of y′j given ϕ(x′j), yi, and ϕ(xi).

Assume that we have a domain distribution D from which
we observe m domains:

{
D1,D2,··· ,Dm

}
. Each domain

Di is a set of label and datum pairs, i.e. Di=
{
(yij ,xij),1≤

j≤ni
}
.Meanwhile, we have a zoo of pre-trained feature

extractors: M = {ϕ1, ϕ2, ··· , ϕk, ··· }. Our objective is
to select a feature extractor from M (e.g., ϕk), such that
when we train a predictor f on top of it, the composed
model f ◦ϕk can have the best performance on both them
observed domains and unseen domains from D.

In this section, we propose a method that facilitates model
selection without carrying out the fine-tuning step. For
every model in M, our method produces an associated
score, by which we can rank the models, such that the
higher-ranked ones have a better chance to deliver stronger
results after fine-tuning.

The proposed method is a combination of 1) a model
transferability metric and 2) a leave-one-domain-out cross-
validation scheme. More specifically, we evaluate each
feature extractorm times, and each time we treat the data
from the held-out domain as validation data {(y′j ,x′j)}n

′

j=1,
while aggregating all remaining (m−1) domains’ data as the training data {(yi,xi)}ni=1. In the end,
we average them values of the model transferability metric. Finally, we rank all feature extractors in
descending order of the average.

To simplify the notation, we denote the aggregated domain’s label and feature as y=(y1,...,yn)
⊤∈Rn

and Φ=
(
ϕ(x1),...,ϕ(xn)

)⊤∈Rn×d, respectively. We use y′∈Rn′
and Φ′∈Rn′×d for the held-out

domain. The main idea of the designed metric is to evaluate whether the classifier fitted on (y,Φ) also
performs well on (y′,Φ′). Hence, we formulate the problem as estimating the likelihood function of
(y′,Φ′) given (y,Φ):

p(y′,Φ′∣∣y,Φ)=p(y′|Φ′,y,Φ)p(Φ′|Φ),

where p(y′|Φ′,y,Φ) measures inter-class discriminability between features Φ′ and labels y′, given the
aggregated training data. Meanwhile, p(Φ′|Φ) measures covariate shift between features Φ and Φ′,
which quantify the inter-domain stability.

Given a hypothetical spaceF of classifiers, we can write p(y|Φ)=
∫
f∈Fp(y|Φ,f)p(f)df . We consider

a linear classifier 3, i.e. f ◦ϕ(x)=w⊤ϕ(x) with a Gaussian prior of w:

w∼N (0,α−1Id), y
∣∣Φ,w∼N (Φw,β−1In), (1)

where α and β are two positive parameters. Figure 2 summarizes the model assumptions in (1) with a
directed graphical model. We estimate α̂ and β̂ by maximizing the model evidence

p(y|Φ;α,β)=
∫
w∈Rd

p(y|Φ,w;β)p(w;α)dw

according to Algorithm 3 in You et al. [90] and compute the likelihood of y′ as follows:

p(y′|Φ′,y,Φ;α̂,β̂)=
p(y′,y|Φ′,Φ;α̂,β̂)

p(y|Φ;α̂,β̂)
.

3According to the Laplace approximation [51], if p(y|Φ, f) is unimodal at µ, we can take Taylor ex-
pansion of the log-likelihood at the mode log p(y|Φ, f) ≈ log p(µ|Φ, f) − 1

2
(y − µ)⊤Λ(y − µ), where

Λ = −∇y⊤∇y logp(y|Φ, f)
∣∣
y=µ

. The quadratic term implies that p(y|Φ, f) can be approximated with a
Gaussian distribution.

4



For measuring covariate shift, we approximate the distribution of ϕ(x) with a Gaussian distribution
N (µ̂ϕ,Σ̂ϕ), where µ̂ϕ and Σ̂ϕ are estimated from the training data Φ. Then we compute the density
p(Φ′|Φ)=p(Φ′|µ̂ϕ,Σ̂ϕ) to quantify the covariate shift.

Finally, we compute the density at the logarithmic scale and this defines the proposed metric

log p(y′|Φ′,y,Φ)+log p(Φ′|Φ). (2)

Please refer to Appendix B.3 and B.4 for more details.

One distinctive aspect of our selection process is the cross-domain validation, embodied in the first
term of (2). Across different domains, there are domain-invariant and domain-specific features,
where overfitting to the latter can severely harm the OoD generalization. By evaluating on held-out
domains, we are able to filter out models that fixate on domain-specific features. To provide theoretical
justification, an explicit analysis in the linear regression setting is conducted, where we show that
the model with the optimal metric is the one that selects all domain-invariant features. Despite the
over-simplification, it does reflect the essence of our approach. Due to page limit, the technical details
are presented in Appendix B.5.

3.2 Model Ensemble with Feature Selection

The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further
aggregate different PTMs, we consider assembling the top-ranked feature extractors and rewrite
Φ=

[
Φ(1),...,Φ(k)

]
,where Φ(i) is the feature matrix from the i-th ranked feature extractor.

As we show in experiments, in most cases, aggregating features from multiple models can outperform
any single model. However, simply concatenating features inevitably introduces more noise. As found
in [87], non-informative but invariant features from training domains may only bring some noise that
is irrelevant to the classification problem, and the accumulation of noise hurts the learnability of the
OoD generalization task while increasing the memory and computation cost. Therefore, we propose a
feature selection method under the Bayesian linear model framework in Section 3.1.

First, we impose a binary mask z = (z1,z2, ... ,zd)⊤ for the weight vector w = (w1,w2, ... ,wd)
⊤,

where zi =1 indicates that wi is an active weight in the top linear model, i.e., wi ̸=0, meaning the
corresponding feature is informative, while wi≈0 if zi=0, indicating a noisy feature that should be
screened. Therefore the Bayesian feature selection is formulated by estimating the probability πi of zi
with πi :=p(zi=1) and π={π1,π2,...,πd}.
To facilitate the utility of the mask, we assume that the weights {wi} are independent of each other and
each weight wi is drawn from either a slab prior or a spike prior [37] with the mean of zero:

p(wi|zi,αi,1,αi,2)=

{
N (0,α−1

i,1 ) if zi=1;

N (0,α−1
i,2 ) if zi=0.

We make the Bayesian treatment to the linear model in Section 3.1 by introducing gamma priors for all
inverse variance terms:

αi,1∼Gamma(νi,1,νi,2), αi,2∼Gamma(νi,3,νi,4), β∼Gamma(ν0,1,ν0,2),

and denote all hyper-parameters as ν = {νi,j}. In addition, we denote all latent variables as ξ ={
β,{wi,zi,αi,1,αi,2}di=1

}
. Under certain conditions, maximizing marginal likelihood provably leads

to consistent selection and obeys Occam’s razor phenomenon [27, 85], and thus screens non-informative
features. To estimate πi, the maximum marginal likelihood estimator of (π,ν) is given by

π̂,ν̂=argmax
π,ν

log p(y|Φ;π,ν)=argmax
π,ν

log

∫
ξ

p(y,ξ|Φ;π,ν)dξ. (3)

However, the direct maximization of (3) is intractable due to the integration over ξ. One possible
solution is to use EM algorithm [66]. In the E-step, we compute the conditional expectation:

Eξ

[
log p(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]
.

Notice that evaluating the expectation involves the posterior distribution of ξ.However in our case,
it is not straightforward to obtain an analytical form of the true posterior distribution. We instead

5



Algorithm 1 Pseudocode of Variational EM Algorithm for Bayesian Feature Selection

Step 1: Initialization:
∏d

i=1Q
0(wi) and

∏d
i=1Q

0(αi,1)Q
0(αi,2);

Step 2 (E-Step): Approximate the posterior of ξk for each ξk∈ξ at iteration twith:

Qt(ξk)=exp
[
EQt−1(ξ−k)log p(y,ξ|Φ;π

t−1,νt−1)
]
;

Step 3 (M-Step): Update (π,ν) at iteration t by maximizing (5):

πt,νt=argmax
π,ν

Eξ∼Qt(ξ)

[
log p(y,ξ|Φ;π,ν)

]
;

Step 4: Repeat Step 2 and Step 3 until the convergence criterion is met.

approximate it using variational inference [12] by introducing a tractable distributionQ. Considering
the following objective function:

L(Q)=

∫
ξ

Q(ξ;π,ν)log
p(y,ξ|Φ;π,ν)
Q(ξ;π,ν)

dξ,

which is a lower bound of log p(y|Φ;π,ν). It has been shown the maximizer of L(Q) is the optimal
approximator of p(ξ|y,Φ;π,ν) under the KL divergence. To obtain an explicit solution, we consider
the classical mean-field family [12], where variational distributionQ can be factorized into:

Q(ξ)=Q(β)

d∏
i=1

[
Q(zi)Q(wi)Q(αi,1)Q(αi,2)

]
. (4)

After all variational parameters in (4) are updated by running one-step coordinate gradient descent [12],
in the M-step, we update πnew and νnew by maximizing:

Eξ∼Q(ξ;πold,νold)

[
log p(y,ξ|Φ;π,ν)

]
. (5)

By repeating the E- and M-step, the estimator (πnew, νnew) converges to an optimal solution. We then
screen those variables with converged prior πi smaller than the predefined threshold τ . The pseudocode
is provided in Algorithm 1 to illustrate the main idea of the proposed method, where ξk denotes the
k-th variable in the set ξ and ξ−k is the subset of all other variables except ξk. In the E-step, the optimal
approximatorQ(ξ) under the mean-field family takes the tractable form of the expectation of the joint
distribution and the optimization of (5) in M-step is equivalent to substituting with corresponding
variational parameters ofQ(ξ) from E-step. Our derivations for variational approximations and prior
hyper-parameters optimization are listed in Appendix C.3.

However, the proposed algorithm still suffers from heavy computational cost: each iteration costs
O(nd2). To address this problem, we propose an efficient version based on stochastic variational
inference [35]. A local estimator Qs(ξ) is established under stochastic approximation that enjoys
less computational complexity and guarantees convergence to global optimum [65]. We successfully
reduce the computation cost to O(nsd2) with ns≪n. Readers can refer to Appendix C.4 for more
detailed discussions and the complete algorithm for feature selection.

4 Experiments

In this section, we demonstrate the effectiveness of ZooD. First, we evaluate the ability of our ranking
metric to estimate OoD performance and compare it with the ground-truth performance and several
existing IID ranking methods. Second, we show that our aggregation method achieves significant
improvements and SOTA results on several OoD datasets. Finally, we demonstrate that ZooD requires
significantly less computation, and, therefore, is practically scalable compared with naive fine-tuning.

Setup Details. We use 35 PTMs with diverse architectures, pre-training methods, and pre-training
datasets. We divide the PTMs into three groups. Group 1 consists of models with different architectures,
Group 2 consists of models pre-trained with different training methods, and Group 3 consists of
models pre-trained on large-scale datasets. We conduct experiments on six OoD datasets: PACS [43],

6



Figure 3: Comparison of ZooD ranking scores with three features-based ranking methods. The
plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis), and Kendall’s
coefficient τ for 35 PTMs on seven datasets.

VLCS [24], Office-Home [77], TerraIncognita [10], DomainNet [63], and NICO (NICO-Animals
& NICO-Vehicles) [31]. Each of the datasets has multiple domains. The standard way to conduct
the experiment is to choose one domain as test (unseen) domain and use the remaining domains as
training domains, which is named leave-one-domain-out protocol. The top linear classifier is trained
on the training domains only and tested on the test domain. Each domain rotates as the test domain
and the average accuracy is reported for each dataset. To get ground-truth performance, we follow
DomainBed [29] to fine-tune top linear classifiers for the PTMs on these OoD datasets. We adopt the
leave-one-domain-out cross-validation setup in DomainBed with 10 experiments for hyper-parameter
selection and run 3 trials. We triple the number of iterations for DomainNet (5000 to 15000) as it
is a large-scale dataset requiring more iterations [17] and decrease the number of experiments for
hyper-parameter selection from 10 to 5. More details on the experimental setup are in Appendix A.1.

4.1 Comparison with IID Ranking Metrics

IID ranking methods. We divide existing ranking methods into two groups. One group consists of
methods that employ PTM’s classification layer for ranking. These methods include NCE [76] and
LEEP [58]. The other group consists of approaches that only use PTM’s extracted features. These
methods include H-Score [8] and LogME [91]. Additionally, we also use kNN with k=200 [81] as a
baseline.

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-
domain-out validation protocol [43]. For ZooD and kNN, we further adopt leave-one-domain-out
validation for training domains and take average results as the performance prediction for the held-out
test domain. To compute the correlation between ranking scores and ground-truth performance, we
use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ
Kendall’s coefficient τ [38]. Unlike Pearson’s correlation, τ measures correlation based on the order of
two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of
transferability metric for top-model selection, we utilize weighted Kendall’s coefficient τw [78]. The
τw gives more weight to the ranking of top-performing models compared with the rest of the models.
Therefore, it is a better comparative criterion for top model selection.

Results. First, we compare our method with feature-based scoring methods: kNN, H-Score, and
LogME. These methods, similar to our method, rank models based on the penultimate layer. We
compare ZooD with these methods for the full set of 35 PTMs. We plot ranking scores and ground-truth
accuracies in Figure 3. For quantitative comparison, we also provide τ values. It can be seen that ZooD
is better correlated with fine-tuning accuracy than other ranking methods on most of the datasets. For

7



Figure 4: Comparison of ZooD ranking scores with two classification-layer-based ranking methods.
The plots illustrate ground-truth out-of-domain accuracies (x-axis), ranking scores (y-axis), and
Kendall’s coefficient τ for 25 PTMs that have classification layers on seven datasets.

Table 1: Comparisons: (a) τw between ZooD and feature-based transferability estimation methods
using all of our PTMs. (b) τw between ZooD and classification-based transferability estimation
methods. For this comparison, we consider 25 models that have classification heads. (c) Our method
v.s. brute-force fine-tuning in terms of computing cost. For this comparison, we consider all 35 models.

(a) τw for feature based

kNN H-Score LogME ZooD

PACS 0.76 0.57 0.88 0.91
VLCS 0.49 0.45 0.79 0.80
Office-Home 0.78 0.68 0.86 0.86
TerraIncognita 0.40 -0.20 0.02 0.46
DomainNet 0.89 0.62 0.65 0.76
NICO-Animals 0.73 0.72 0.89 0.90
NICO-Vehicles 0.82 0.75 0.90 0.92

(b) τw for Classification based

LEEP NCE ZooD

PACS 0.76 0.81 0.89
VLCS 0.57 0.32 0.88
Office-Home 0.76 0.94 0.86
TerraIncognita 0.02 -0.44 0.59
DomainNet 0.77 0.87 0.72
NICO-Animals 0.58 0.92 0.94
NICO-Vehicles 0.69 0.92 0.95

(c) Speed-up over brute-force

GPU Hours ZooD Fine-tuning Speed Up

PACS 0.27 2662.27 9859×
VLCS 0.29 2706.67 9332×
Office-Home 0.39 3089.87 7922×
TerraIncognita 0.49 3920.27 8000×
DomainNet 11.24 17055.33 1516×
NICO-Animals 0.32 2914.40 9107×
NICO-Vehicles 0.30 2794.13 9313×

example, our method has a τ of 0.85 compared with LogME’s τ of 0.77 on Office-Home and a τ of
0.40 compared with LogME’s τ of 0.04 on TerraIncognita.

Furthermore, our metric is more stable and consistent. Precisely, τ of ZooD varies between 0.40 ∼
0.85 compared with 0.04 ∼ 0.80 for LogME, -0.08 ∼ 0.67 for H-Score, and 0.16 ∼ 0.86 for kNN.
The consistency of transferability metric across different datasets is critical since the purpose of a
transferability metric is to estimate performance on a new dataset without having access to ground-truth
accuracy. Whenever an estimation metric is inherently unstable, it is hard to determine its reliability for
a new dataset.

Note that our method uses a linear model with Gaussian error to approximate the top classifier. This
helps us achieve efficient model assessment, especially on small and medium-sized datasets in which the
bias caused by model approximation is negligible compared with the estimation error due to insufficient
data. However, on DomainNet, things may be different. The bias caused by model approximation
dominants the evaluation performance on large datasets. Therefore, our method does not outperform
kNN on DomainNet.

Second, we compare our method with classification-layer based methods: NCE and LEEP. For this
comparison, we select a subset of our PTMs that have classification layers. The results are illustrated in
Figure 4. It can be seen that ZooD is also more stable and consistent than NCE and LEEP. Moreover,
Our method achieves superior performance on the difficult real-world TerraIncognita dataset. This
dataset consists of obscure and blurry images captured by WildCams installed in different territories.
NCE has a negative correlation for this dataset. On the other hand, our method, although not perfect,
captures the relation in a better way. For this challenging dataset, our method has a τ of 0.45 compared
with 0.12 and -0.32 for LEEP and NCE, respectively.

8



Table 2: Comparison of out-of-domain accuracies between ZooD and SOTA OoD methods. The results
of MixStyle [93] and SWAD [17] are from SWAD, and other results are from Gulrajani and Lopez-Paz
[29] (denoted with †). Our results are average of three trials.

Method PACS VLCS Office-Home TerraInc. DomainNet Avg
ERM† 85.5 77.5 66.5 46.1 40.9 63.3
IRM† 83.5 78.6 64.3 47.6 33.9 61.6
GroupDRO† 84.4 76.7 66.0 43.2 33.3 60.7
I-Mixup† 84.6 77.4 68.1 47.9 39.2 63.4
MLDG† 84.9 77.2 66.8 47.8 41.2 63.6
MMD† 84.7 77.5 66.4 42.2 23.4 58.8
DANN† 83.7 78.6 65.9 46.7 38.3 62.6
CDANN† 82.6 77.5 65.7 45.8 38.3 62.0
MTL† 84.6 77.2 66.4 45.6 40.6 62.9
SagNet† 86.3 77.8 68.1 48.6 40.3 64.2
ARM† 85.1 77.6 64.8 45.5 35.5 61.7
VREx† 84.9 78.3 66.4 46.4 33.6 61.9
RSC† 85.2 77.1 65.5 46.6 38.9 62.7
MixStyle 85.2 77.9 60.4 44.0 34.0 60.3
SWAD 88.1 79.1 70.6 50.0 46.5 66.9

ZooD
Single 96.0 79.5 84.6 37.3 48.2 69.1
Ensemble 95.5 80.1 85.0 38.2 50.5 69.9
F. Selection 96.3 80.6 85.1 42.3 50.6 71.0
F. Ratio (% ) 24.3 24.5 62.5 76.8 99.8

Third, we compare the weighted Kendall’s coefficient of our method with other ranking methods.
The weighted Kendall’s coefficient is a better metric to gauge the performance of a metric for top
model selection. We also divide these results into two groups: comparison with feature-based scoring
methods in Table 1a and comparison with classification-based scoring methods in Table 1b. Our method
outperforms feature-based scoring methods on 6 out of 7 datasets. Similarly, it also outperforms both
LEEP and NCE on 5 out of 7 datasets. Moreover, our ranking method is more stable as it performs
better on challenging datasets. For example, it has τw of 0.46 ∼ 0.92 compared with LogME’s τw of
0.02 ∼ 0.90 and H-Score’s τw of -0.20 ∼ 0.75.

In summary, transferability estimation of ZooD correlates better with ground-truth accuracy on most of
the OoD datasets compared with previous ranking methods. It also outperforms most feature-based
metrics for model selection in terms of τw. Additionally, it is more stable and consistent across datasets,
making it a better choice for pre-trained model selection.

4.2 SOTA Results with Our Selection Method

We also compare ZooD (model ranking and feature selection) with several recent SOTA OoD methods
and demonstrate that it achieves substantial performance improvements. We compare previous OoD
methods with three versions of our method: 1) Single: fine-tune the top-1 model by transferability
metric; 2) Ensemble: fine-tune an ensemble of the top-K models; 3) F. Selection: fine-tune an ensemble
of the top-K models with feature selection, which is the expected result using ZooD. By fine-tuning,
we mean using ERM with DomainBed settings to fine-tune a top linear classifier for the PTMs. Their
predictive performance and F. Ratio (the percentage of features used in F. Selection) are listed in the
last four lines of Table 2.

In all experiment results, except TerraIncognita (discussed in the next paragraph), our method achieves
remarkable improvement against ERM and recent SOTA. For Single, we list the improvements over
the previous SOTA as follows: +14% on Office-Home, +7.9% on PACS, +1.7% on DomainNet, and
+0.4% on VLCS. This result also shows that even without aggregation, using proper pre-trained model
can improve OoD generalization by a large margin. Notice that our method can be regarded as a
complement to other OoD algorithms. After selecting the top-ranked models, different OoD algorithms
can be adapted to fine-tune the models.

9



The performance of Single does not outperform the previous SOTA on TerraIncognita. This is because
previous methods fine-tune the whole network. In contrast, we only train a classifier on top of a fixed
feature extractor. TerraIncognita is a much more challenging dataset compared with other OoD datasets,
as the majority of its images are obscured by the background. Therefore it requires fully fine-tuning. To
show the effectiveness of ZooD with fully fine-tuning, we select the top-1 ranked model and fine-tune
the whole model. Our resulted model achieves a +2.6% improvement compared with the previous
SOTA. One limitation of ZooD when aggregating multiple models is that fine-tuning the whole models
is difficult due to the limitation of GPU memory. However, for OoD tasks, fine-tuning the whole
model may not perform better than fine-tuning the top classifier. For example, the results of fine-tuning
the full top-ranked models on PACS, VLCS and Office-Home are 90.6, 79.1 and 83.4, respectively.
Empirically, we find if a PTM is suitable for a given OoD task, fine-tuning the top classifier has better
OoD generalization than fine-tuning the full model.

As shown in Table 2, a simple model ensemble (Ensemble) provides fairly minimal improvement
because it may introduce invariant but noisy features. To efficiently utilize multiple models, we propose
to select informative features in Section 3.2. Here, we compare the performance improvement by F.
Selection with Single and Ensemble. ZooD significantly outperforms both candidates while only using
a small portion of aggregated features from top-K models. Even on the most sophisticated DomainNet,
ZooD can improve predictive performance by +2.4% compared with Single and +0.1% compared with
Ensemble.

Figure 5: Comparison of selected-feature ensem-
ble vs. all-feature ensemble for varying number
of top models in the ensemble.

To find the appropriate number K for the model
ensemble, we performed an ablation study. We
varied the number of K, e.g. K ∈ {3,5,7}. The
performance changes are plotted in Figure 5. We
found the performance by aggregating top-3 mod-
els strikes the right balance between performance
and computational complexity. Hence, K=3 is set
to the default value.

In summary, our ranking metric in ZooD is good
enough to select a model that can outperform the
previous SOTA methods without adding any bells
and whistles. Furthermore, feature selection in
ZooD can efficiently utilize informative features from top-K models to further improve OoD generaliza-
tion. In this work, we do not control for the impact of better PTMs. Given a zoo of PTMs, our method
aims to exploit the power of the zoo for OoD generalization. We can further increase the power of the
model zoo by adding more PTMs. Based on extensive experimental results on various OoD datasets,
we conclude ZooD makes it easy and efficient to exploit a large set of PTMs for OoD generalization.

4.3 Computational Efficiency of ZooD

We illustrate the precision and computational efficiency of ZooD by comparing it with brute-force
fine-tuning in terms of GPU hours. The results are shown in Table 1c. ZooD provides a minimum of
1516× speed-up for DomainNet and a maximum of 9859× speed-up for PACS. Cumulatively, our
method took a total of 13 GPU hours to evaluate all the PTMs on all the datasets compared with 35140
GPU hours (equivalent to 4 GPU years) for brute-force fine-tuning. Therefore, ZooD is a scalable and
practical method for OoD generalization.

5 Conclusion

Machine learning models rely on IID assumption, which is often violated due to constant distribution
shifts in real-world applications. In this work, we argue for leveraging a large set of PTMs to improve
OoD generalization and propose ZooD, a paradigm for efficient PTMs ranking and aggregation. Our
paradigm avoids the computationally-prohibitive fine-tuning by ranking PTMs based on quantifying
their inter-class discriminability and inter-domain stability, and selecting the most informative features
from top-ranked PTMs ensemble. Extensive experiments show ZooD is superior in ranking correlation
with the ground-truth performance and achieves SOTA results on various OoD benchmarks.

10



References
[1] Kartik Ahuja, Karthikeyan Shanmugam, Kush Varshney, and Amit Dhurandhar. Invariant risk minimization

games. In International Conference on Machine Learning, pages 145–155. PMLR, 2020.

[2] Isabela Albuquerque, Nikhil Naik, Junnan Li, Nitish Shirish Keskar, and Richard Socher. Improving
out-of-distribution generalization via multi-task self-supervised pretraining. ArXiv, abs/2003.13525, 2020.

[3] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[4] Yuki M. Asano, C. Rupprecht, and Andrea Vedaldi. Self-labelling via simultaneous clustering and represen-
tation learning. ArXiv, abs/1911.05371, 2020.

[5] Haoyue Bai, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, S-H Gary Chan, and
Zhenguo Li. Decaug: Out-of-distribution generalization via decomposed feature representation and semantic
augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 6705–
6713, 2021.

[6] Haoyue Bai, Fengwei Zhou, Lanqing Hong, Nanyang Ye, S-H Gary Chan, and Zhenguo Li. Nas-ood: Neural
architecture search for out-of-distribution generalization. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8320–8329, 2021.

[7] Hangbo Bao, Li Dong, and Furu Wei. Beit: Bert pre-training of image transformers. arXiv preprint
arXiv:2106.08254, 2021.

[8] Yajie Bao, Yongni Li, Shao-Lun Huang, Lin Zhang, Lizhong Zheng, Amir Roshan Zamir, and Leonidas J.
Guibas. An information-theoretic approach to transferability in task transfer learning. 2019 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 2309–2313, 2019.

[9] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenen-
baum, and Boris Katz. Objectnet: A large-scale bias-controlled dataset for pushing the limits of object
recognition models. Advances in Neural Information Processing Systems, 32:9453–9463, 2019.

[10] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In ECCV, 2018.

[11] Christopher M Bishop. Pattern recognition. Machine learning, 128(9), 2006.

[12] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

[13] Fabio M Carlucci, Antonio D’Innocente, Silvia Bucci, Barbara Caputo, and Tatiana Tommasi. Domain
generalization by solving jigsaw puzzles. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2229–2238, 2019.

[14] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages
132–149, 2018.

[15] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Unsuper-
vised learning of visual features by contrasting cluster assignments. In Thirty-fourth Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[16] George Casella, F Javier Girón, M Lina Martínez, and Elias Moreno. Consistency of bayesian procedures
for variable selection. The Annals of Statistics, 37(3):1207–1228, 2009.

[17] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat minima. arXiv preprint arXiv:2102.08604, 2021.

[18] Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum contrastive
learning. ArXiv, abs/2003.04297, 2020.

[19] Adrian Corduneanu and Christopher M Bishop. Variational bayesian model selection for mixture distribu-
tions. In Artificial intelligence and Statistics, volume 2001, pages 27–34. Morgan Kaufmann Waltham, MA,
2001.

[20] Joel Dapello, Tiago Marques, Martin Schrimpf, Franziska Geiger, David D Cox, and James J DiCarlo.
Simulating a primary visual cortex at the front of cnns improves robustness to image perturbations. BioRxiv,
2020.

11



[21] Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pages 1–15. Springer, 2000.

[22] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via
model-agnostic learning of semantic features. Advances in Neural Information Processing Systems, 32:
6450–6461, 2019.

[23] Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised models transfer? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5414–5423,
2021.

[24] Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. 2013 IEEE International Conference on Computer Vision, pages
1657–1664, 2013.

[25] Edward I George and Robert E McCulloch. Stochastic search variable selection. Markov chain Monte Carlo
in practice, 68:203–214, 1995.

[26] Edward I George and Robert E McCulloch. Approaches for bayesian variable selection. Statistica sinica,
pages 339–373, 1997.

[27] Subhashis Ghosal, Jüri Lember, and Aad Van Der Vaart. Nonparametric bayesian model selection and
averaging. Electronic Journal of Statistics, 2:63–89, 2008.

[28] Jean-Bastien Grill, Florian Strub, Florent Altch’e, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Ávila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray
Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to self-supervised
learning. ArXiv, abs/2006.07733, 2020.

[29] Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2021.

[30] Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[31] Yue He, Zheyan Shen, and Peng Cui. Towards non-iid image classification: A dataset and baselines. Pattern
Recognition, page 107383, 2020.

[32] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. Proceedings of the International Conference on Learning Representations, 2019.

[33] Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, and Dawn Xiaodong Song.
Pretrained transformers improve out-of-distribution robustness. In ACL, 2020.

[34] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples.
CVPR, 2021.

[35] Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference.
Journal of Machine Learning Research, 14(5), 2013.

[36] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269, 2017.

[37] Hemant Ishwaran and J Sunil Rao. Spike and slab variable selection: frequentist and bayesian strategies.
The Annals of Statistics, 33(2):730–773, 2005.

[38] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[39] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-wild
distribution shifts. In International Conference on Machine Learning, pages 5637–5664. PMLR, 2021.

[40] David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In
International Conference on Machine Learning, pages 5815–5826. PMLR, 2021.

[41] Kun Kuang, Peng Cui, Susan Athey, Ruoxuan Xiong, and Bo Li. Stable prediction across unknown
environments. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1617–1626, 2018.

12



[42] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive un-
certainty estimation using deep ensembles. Advances in Neural Information Processing Systems, 30,
2017.

[43] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. 2017 IEEE International Conference on Computer Vision (ICCV), pages 5543–5551, 2017.

[44] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to generalize: Meta-learning for
domain generalization. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[45] Fan Li and Nancy R Zhang. Bayesian variable selection in structured high-dimensional covariate spaces
with applications in genomics. Journal of the American statistical association, 105(491):1202–1214, 2010.

[46] Junnan Li, Pan Zhou, Caiming Xiong, Richard Socher, and Steven C. H. Hoi. Prototypical contrastive
learning of unsupervised representations. ArXiv, abs/2005.04966, 2021.

[47] Yichen Li and Xingchao Peng. Network architecture search for domain adaptation. arXiv preprint
arXiv:2008.05706, 2020.

[48] Feng Liang, Rui Paulo, German Molina, Merlise A Clyde, and Jim O Berger. Mixtures of g priors for
bayesian variable selection. Journal of the American Statistical Association, 103(481):410–423, 2008.

[49] Iou-Jen Liu, Jian Peng, and Alexander G Schwing. Knowledge flow: Improve upon your teachers. arXiv
preprint arXiv:1904.05878, 2019.

[50] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. ArXiv, abs/2103.14030, 2021.

[51] David J. C. MacKay. Choice of basis for laplace approximation. Mach. Learn., 33(1):77–86, 1998.

[52] David JC MacKay. Probable networks and plausible predictions—a review of practical bayesian methods
for supervised neural networks. Network: computation in neural systems, 6(3):469–505, 1995.

[53] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. ArXiv, abs/1706.06083, 2018.

[54] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant representations. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 6706–6716, 2020.

[55] Toby J Mitchell and John J Beauchamp. Bayesian variable selection in linear regression. Journal of the
american statistical association, 83(404):1023–1032, 1988.

[56] Naveen Naidu Narisetty and Xuming He. Bayesian variable selection with shrinking and diffusing priors.
The Annals of Statistics, 42(2):789–817, 2014.

[57] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo, 2(11):2,
2011.

[58] Cuong V Nguyen, Tal Hassner, C. Archambeau, and Matthias W. Seeger. Leep: A new measure to evaluate
transferability of learned representations. In ICML, 2020.

[59] Robert B O’Hara and Mikko J Sillanpää. A review of bayesian variable selection methods: what, how and
which. Bayesian analysis, 4(1):85–117, 2009.

[60] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
dqn. Advances in neural information processing systems, 29:4026–4034, 2016.

[61] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[62] Nick Pawlowski, Miguel Jaques, and Ben Glocker. Efficient variational bayesian neural network ensembles
for outlier detection. arXiv preprint arXiv:1703.06749, 2017.

[63] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 1406–1415, 2019.

13



[64] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In ICML, 2021.

[65] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

[66] Veronika Ročková and Edward I George. Emvs: The em approach to bayesian variable selection. Journal of
the American Statistical Association, 109(506):828–846, 2014.

[67] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet large scale
visual recognition challenge. International Journal of Computer Vision, 115:211–252, 2015.

[68] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adversarially
robust imagenet models transfer better? ArXiv, abs/2007.08489, 2020.

[69] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[70] Zheyan Shen, Peng Cui, Tong Zhang, and Kun Kunag. Stable learning via sample reweighting. In Proceedings
of the AAAI Conference on Artificial Intelligence, pages 5692–5699, 2020.

[71] Yang Shu, Zhi Kou, Zhangjie Cao, Jianmin Wang, and Mingsheng Long. Zoo-tuning: Adaptive transfer
from a zoo of models. In International Conference on Machine Learning, pages 9626–9637. PMLR, 2021.

[72] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, D. Erhan,
Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[73] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826, 2016.

[74] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In
International Conference on Machine Learning, pages 6105–6114. PMLR, 2019.

[75] Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl S. Ni, Douglas N. Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: the new data in multimedia research. Commun. ACM, 59:64–73,
2016.

[76] A. Tran, Cuong V Nguyen, and Tal Hassner. Transferability and hardness of supervised classification tasks.
2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1395–1405, 2019.

[77] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep hashing
network for unsupervised domain adaptation. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5385–5394, 2017.

[78] Sebastiano Vigna. A weighted correlation index for rankings with ties. In Proceedings of the 24th
international conference on World Wide Web, pages 1166–1176, 2015.

[79] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. Transformers: State-of-the-art natural language processing. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, October 2020. Association for Computational Linguistics. URL https://www.aclweb.
org/anthology/2020.emnlp-demos.6.

[80] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
and processing for computer vision, 2020.

[81] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric
instance discrimination. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3733–3742, 2018.

14

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


[82] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transfor-
mations for deep neural networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5987–5995, 2017.

[83] Xiaofan Xu and Malay Ghosh. Bayesian variable selection and estimation for group lasso. Bayesian Analysis,
10(4):909–936, 2015.

[84] Ismet Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Kumar Mahajan. Billion-scale
semi-supervised learning for image classification. ArXiv, abs/1905.00546, 2019.

[85] Yun Yang and Debdeep Pati. Bayesian model selection consistency and oracle inequality with intractable
marginal likelihood. arXiv preprint arXiv:1701.00311, 2017.

[86] Yun Yang, Martin J Wainwright, and Michael I Jordan. On the computational complexity of high-dimensional
bayesian variable selection. The Annals of Statistics, 44(6):2497–2532, 2016.

[87] Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a theoretical
framework of out-of-distribution generalization. arXiv preprint arXiv:2106.04496, 2021.

[88] Nanyang Ye, Kaican Li, Haoyue Bai, Runpeng Yu, Lanqing Hong, Fengwei Zhou, Zhenguo Li, and Jun
Zhu. OoD-Bench: Quantifying and understanding two dimensions of out-of-distribution generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7947–7958,
2022.

[89] Mingyang Yi, Lu Hou, Jiacheng Sun, Lifeng Shang, Xin Jiang, Qun Liu, and Zhi-Ming Ma. Improved ood
generalization via adversarial training and pre-training. In ICML, 2021.

[90] Kaichao You, Yong Liu, Jianmin Wang, Michael I Jordan, and Mingsheng Long. Ranking and tuning
pre-trained models: A new paradigm of exploiting model hubs. arXiv preprint arXiv:2110.10545, 2021.

[91] Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. Logme: Practical assessment of pre-trained
models for transfer learning. In International Conference on Machine Learning, pages 12133–12143. PMLR,
2021.

[92] Yaodong Yu, Heinrich Jiang, Dara Bahri, Hossein Mobahi, Seungyeon Kim, Ankit Singh Rawat, Andreas
Veit, and Yi Ma. An empirical study of pre-trained vision models on out-of-distribution generalization. In
NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications, 2021.

[93] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. ArXiv,
abs/2104.02008, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 4.2
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Mainly in the Appendix.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] Will be released
upon publication.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] See Setup Details in Section 4 and Appendix A.1.

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [No]

15



(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [Yes] See Section 4.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

16



Appendix
A Experiments

A.1 Complete Details of Experiment Setup

In this section, we provide a detailed experiment setup we have used. For completeness purposes, this
section also includes details already mentioned in the main paper.

Pre-trained models. We use 35 PTMs having diverse architectures, pre-training methods and pre-
training datasets. Group 1 consists of models with different architectures. This group consists of 12
different architectures (CNNs and ViTs) trained on ImageNet-1k. The architectures are as follows:
ResNet-50, ResNet-152 [30], ResNeXt-50 [82], DenseNet-169, DenseNet-201 [36], Inception v1 [72],
Inception v3 [73], MobileNet v2 [69], EfficientNet-B2, EfficientNet-B4 [74], Swin-T, Swin-B [50].
Group 2 consists of models pre-trained with different training methods. We use 10 ResNet-50s trained
via following pre-training methods: Adversarial Training [53], BYOL [28], MoCo-v2 [18], InsDis [81],
PIRL [54], DeepCluster-v2 [14], PCL-v2 [46], SeLa-v2 [4, 15], SwAV [15]. Group 3 consists of
models pre-trained on large-scale datasets. We used 13 different models trained on ImageNet-22k [67],
YFCC-100M [75], IG-1B-Targeted [84], WebImageText [64]. A summary of the PTMs can be found
in Table 3.

Datasets. We use six OoD datasets for our experiments. The details of these datasets are listed
here. PACS [43] consists of 9,991 images from four domains (art, cartoons, photos, sketches) and
seven classes. VLCS [24] consists of 10,729 images from four domains (Caltech101, LabelMe,
SUN09, VOC2007) and five classes. Office-Home [77] has four domains (art, clipart, product, real)
of common objects in office and home settings. The dataset has a total of 15,588 images belonging
to 65 classes. TerraIncognita [10] contains photos of wild animals taken by camera traps installed at
four different locations. It has a total of 24,788 images from 10 classes. DomainNet [63] is one of the
most challenging OoD datasets. It has 586,575 images from six diverse domains (clipart, infographics,
painting, quickdraw, real, sketch) belonging to 345 classes. NICO [31] consists of nearly 25,000
images from two superclasses: NICO-Animals (10 classes) and NICO-Vehicles (9 classes). We split
the images of NICO-Animals and NICO-Vehicles into multiple domains according to [5] and combine
validation and test sets as one domain to form four domains, separately.

Ground-truth performance. To get ground-truth performance, we train linear classifiers on top of
PTMs following DomainBed [29]. The authors of DomainBed [29] argue for the hyper-parameter
selection to be a part of the method selection criteria. Based on this argument, they propose a rigorous
test bench. We follow their training and evaluation protocol, including dataset splits, hyper-parameter
settings, optimizer, etc. We adopt the leave-one-domain-out cross-validation setup in DomainBed with
10 experiments for hyper-parameter selection and run 3 trials. We triple the number of iterations for
DomainNet (5000 to 15000) as it is a larger dataset and requires more training [17] and decrease the
number of experiments for hyper-parameter selection from 10 to 5.

IID ranking methods. We divide existing ranking methods into two groups. The first group consists
of methods that employ PTM’s classification layer for ranking. These methods include NCE [76] and
LEEP [58]. The second group consists of approaches that only use PTM’s extracted features. These
methods include H-Score [8] and LogME [91]. Additionally, we also use kNN with k=200 [81] as a
baseline.

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-
domain-out validation protocol [43]. For ZooD and kNN, we further adopt leave-one-domain-out
validation for training domains and take average results as the performance prediction for the held-out
test domain. To compute the correlation between ranking scores and ground-truth performance, we
use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ
Kendall’s coefficient τ [38]. Unlike Pearson’s correlation, τ measures correlation based on the order of
two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of
transferability metric for top-model selection, we utilize weighted Kendall’s coefficient τw [78]. The
τw gives more weight to the ranking of top-performing models compared with the rest of the models.
Therefore, it is a better comparative criterion for top model selection.

17



A.2 Extended Ranking Results

In this section, we provide detailed and raw results for all 35 models on all six OoD datasets. Specifically,
we provide raw scores assigned by all the ranking methods to all PTMs. We also provide accuracy of
each model after fine-tuning. A more interpretable and visual analysis of these scores are provided in
section 4.1 of the main paper.

We provide these raw scores here to help aid reproducability and to help other researchers for easier
benchmarking. It is important to note that getting these results, especially accuracy results, is computa-
tionally expensive, which may hinder future progress. For instance, on large DomainNet dataset, it
takes 711 GPU days of training to get all ground-truth performance. Therefore, providing these raw
scores can significantly help future researchers.

The results are provided in the following tables. Table 4 shows results on PACS and VLCS, Table 5
shows results on Office-Home and TerraIncognita, Table 6 contains results on NICO-Animals and
NICO-Vehicles, and Table 7 contains results on DomainNet.

Table 3: Details of our model zoo. The first column corresponds to the numbers we have used for
subsequent tables. The rest of the table describes architectures, pre-training datasets, and pre-training
algorithms as well as the group and source of each model.

Number Architecture Dataset Algorithm Group Source
1 ResNet-50 ImageNet-1K ERM Group 1 Paszke et al. [61]
2 ResNet-152 ImageNet-1K ERM Group 1 Paszke et al. [61]
3 ResNeXt-50 ImageNet-1K ERM Group 1 Paszke et al. [61]
4 DenseNet-169 ImageNet-1K ERM Group 1 Paszke et al. [61]
5 DenseNet-201 ImageNet-1K ERM Group 1 Paszke et al. [61]
6 Inception v1 ImageNet-1K ERM Group 1 Paszke et al. [61]
7 Inception v3 ImageNet-1K ERM Group 1 Paszke et al. [61]
8 MobileNet v2 ImageNet-1K ERM Group 1 Paszke et al. [61]
9 EfficientNet-B2 ImageNet-1K ERM Group 1 Paszke et al. [61]

10 EfficientNet-B4 ImageNet-1K ERM Group 1 Paszke et al. [61]
11 Swin-T ImageNet-1K Swin Group 1 Liu et al. [50]
12 Swin-B ImageNet-1K Swin Group 1 Liu et al. [50]
13 ResNet-50 ImageNet-1K Adv. ℓ2 (ϵ=0.5) Group 2 Salman et al. [68]
14 ResNet-50 ImageNet-1K Adv. ℓ∞ (ϵ=4) Group 2 Salman et al. [68]
15 ResNet-50 ImageNet-1K BYOL Group 2 Ericsson et al. [23]
16 ResNet-50 ImageNet-1K MoCo-v2 Group 2 Ericsson et al. [23]
17 ResNet-50 ImageNet-1K InsDis Group 2 Ericsson et al. [23]
18 ResNet-50 ImageNet-1K PIRL Group 2 Ericsson et al. [23]
19 ResNet-50 ImageNet-1K DeepCluster-v2 Group 2 Ericsson et al. [23]
20 ResNet-50 ImageNet-1K PCL-v2 Group 2 Ericsson et al. [23]
21 ResNet-50 ImageNet-1K SeLa-v2 Group 2 Ericsson et al. [23]
22 ResNet-50 ImageNet-1K SwAV Group 2 Ericsson et al. [23]
23 ResNet-18 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [84]
24 ResNet-50 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [84]
25 ResNeXt-50 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [84]
26 ResNeXt-101 ImageNet-1K + YFCC-100M Semi-supervised Group 3 Yalniz et al. [84]
27 ResNet-18 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [84]
28 ResNet-50 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [84]
29 ResNeXt-50 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [84]
30 ResNeXt-101 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group 3 Yalniz et al. [84]
31 Swin-B ImageNet-1K + ImageNet-22K Swin Group 3 Liu et al. [50]
32 BEiT-B ImageNet-1K + ImageNet-22K BEiT Group 3 Wolf et al. [79], Bao et al. [7]
33 ViT-B/16 ImageNet-1K + ImageNet-22K ViT Group 3 Wolf et al. [79], Wu et al. [80]
34 ResNet-50 WebImageText CLIP Group 3 Radford et al. [64]
35 ViT-B/16 WebImageText CLIP Group 3 Radford et al. [64]

18



Table 4: The ranking scores and fine-tuning accuracy on PACS and VLCS datasets. The numbering in
the first column corresponds to a pre-trained model from Table 3. The numbers in each subsequent
column represent the scores assigned by a ranking metric to the PTMs. The last column displays
the accuracy of each model after fine-tuning. Empty cells represent models for which ranking is not
feasible.

Model PACS VLCS
Number LEEP NCE H-Score kNN LogME ZooD Acc. LEEP NCE H-Score kNN LogME ZooD Acc.

1 -1.226 -1.077 5.016 49.608 0.226 0.053 66.9 -0.566 -0.498 3.241 58.156 0.223 0.119 76.7
2 -1.140 -1.007 5.072 54.767 0.274 0.100 74.4 -0.538 -0.494 3.253 61.215 0.229 0.127 77.0
3 -1.185 -1.022 5.010 50.737 0.231 0.064 65.6 -0.552 -0.499 3.216 58.540 0.200 0.083 76.9
4 -1.156 -0.998 4.636 43.284 0.186 -0.012 67.1 -0.569 -0.514 3.013 56.056 0.181 0.063 76.8
5 -1.172 -1.039 4.854 48.861 0.235 0.058 72.4 -0.581 -0.517 3.076 57.387 0.193 0.076 78.0
6 -1.392 -1.093 4.356 48.446 0.145 -0.025 65.3 -0.745 -0.549 2.811 58.260 0.136 0.004 74.6
7 -1.082 -0.947 4.795 37.655 0.164 -0.022 65.3 -0.565 -0.543 3.130 44.151 0.144 0.018 73.9
8 -1.209 -1.059 4.614 39.574 0.180 -0.002 65.0 -0.579 -0.512 2.922 59.465 0.152 0.030 75.9
9 -1.239 -0.949 4.857 46.069 0.270 0.067 74.2 -0.682 -0.505 3.002 58.049 0.131 -0.027 74.7

10 -0.993 -0.840 5.174 35.581 0.353 0.117 75.3 -0.556 -0.511 3.142 54.788 0.175 0.041 74.4
11 -1.231 -1.004 4.624 30.913 0.272 0.076 68.2 -0.637 -0.493 2.935 34.481 0.181 0.035 76.4
12 -1.154 -0.929 4.850 30.591 0.303 0.064 69.3 -0.601 -0.500 3.081 38.755 0.184 0.057 75.6
13 -1.230 -1.054 5.124 52.974 0.284 0.076 70.2 -0.584 -0.498 3.200 60.767 0.199 0.073 76.6
14 -1.226 -0.978 5.186 53.150 0.301 0.092 72.2 -0.667 -0.530 3.083 63.175 0.145 0.005 74.9
15 5.076 46.615 0.298 0.110 74.2 3.208 55.076 0.200 0.081 75.6
16 4.847 47.360 0.198 -0.075 58.9 3.260 60.138 0.247 0.141 69.8
17 4.578 31.131 0.066 -0.319 40.9 3.109 56.697 0.138 0.012 65.6
18 4.576 28.835 0.071 -0.309 38.4 3.150 55.033 0.162 0.043 64.2
19 5.024 36.493 0.256 -0.680 65.6 3.242 49.445 0.223 0.108 76.3
20 4.760 36.451 0.151 -0.093 58.4 3.205 54.922 0.209 0.102 71.3
21 4.829 35.495 0.187 -0.691 64.0 3.258 47.359 0.230 -0.435 75.4
22 4.946 34.103 0.231 0.034 62.9 3.253 52.114 0.231 0.119 77.1
23 -1.169 -0.974 4.225 48.668 0.190 0.034 69.4 -0.561 -0.503 2.832 57.624 0.214 0.107 77.1
24 -1.014 -0.908 5.181 57.411 0.362 0.164 75.7 -0.536 -0.503 3.340 58.396 0.313 0.208 78.6
25 -1.024 -0.881 5.151 55.490 0.312 0.099 74.4 -0.540 -0.500 3.312 62.857 0.268 0.173 77.8
26 -0.950 -0.841 5.287 61.007 0.369 0.156 78.4 -0.533 -0.505 3.340 63.100 0.285 0.190 77.9
27 -1.034 -0.834 4.609 63.988 0.302 0.159 83.4 -0.558 -0.484 2.828 58.549 0.211 0.105 77.0
28 -0.767 -0.630 5.499 75.592 0.578 0.400 91.7 -0.534 -0.495 3.363 61.016 0.341 0.238 79.1
29 -0.784 -0.612 5.493 78.550 0.531 0.358 89.0 -0.539 -0.493 3.347 62.604 0.302 0.203 78.1
30 -0.671 -0.518 5.625 74.917 0.646 0.447 91.5 -0.536 -0.499 3.371 66.276 0.312 0.211 78.7
31 -1.057 -0.740 5.587 41.936 0.527 0.263 85.4 -0.675 -0.499 3.163 39.618 0.275 0.176 78.6
32 -1.819 -1.415 3.424 26.731 -0.106 -0.214 47.1 -1.142 -0.794 2.048 52.277 -0.028 -0.213 68.4
33 -1.271 -0.995 4.621 58.167 0.198 -0.060 66.1 -0.601 -0.503 3.120 68.578 0.253 0.150 78.3
34 6.188 47.724 0.075 -0.106 66.0 3.198 64.808 0.275 0.184 74.9
35 5.546 84.858 0.869 0.653 96.0 3.143 67.367 0.377 0.312 79.5

B Model Ranking in ZooD

In this section, we present more details about the proposed ranking metric and algorithm.

B.1 Preliminaries: setup, problem and strategy

Suppose that:

• Model zoo. We have a collection of PTMs as learned feature extractors:

M={ϕ1(x),ϕ2(x),...,ϕk(x),...},

where ϕk(x) is a d-dimensional feature extractor that maps X to Rd.

• Dataset. A multi-domain dateset is collected for solving a domain generalization problem:

D={D1,D2,...,Dm},with Di=
{
(xij ,yij),1≤j≤ni

}
,

wherem is the number of observed domains and Di is the set of data points under the i-th
domain. The total sample size is n=

∑
ini.

• Problem. The objective is to select a PTM ϕ from M such that the optimal top classifier
f based on the selected feature extractor ϕ, i.e. the whole predictor is f ◦ϕ(x), has good
prediction performance on the domain generalization task.

To proceed further, we need more notations as folllows:

• For any domain i, we rewrite Di={yi,xi} where

yi=(yi1,yi2,...,yini
)⊤∈Rni , xi=(xi1,xi2,...,xini

)⊤∈Rni×p.

19



Table 5: The ranking scores and fine-tuning accuracy for Office-Home and TeraIncognita datasets. The
numbering in the first column corresponds to a pre-trained model from Table 3. The numbers in each
subsequent column represent the scores assigned by a ranking metric to the PTMs. The last column
displays the accuracy of each model after fine-tuning. Empty cells represent models for which ranking
is not feasible.

Model Office-Home TerraIncognita
Number LEEP NCE H-Score kNN LogME ZooD Acc. LEEP NCE H-Score kNN LogME ZooD Acc.

1 -1.540 -1.311 41.908 50.614 0.985 0.075 67.7 -1.531 -1.286 5.559 23.477 0.301 -0.722 31.0
2 -1.355 -1.198 43.973 53.499 1.029 0.120 70.6 -1.501 -1.338 5.592 29.018 0.305 -0.721 35.2
3 -1.465 -1.263 41.439 51.501 0.979 0.076 69.1 -1.519 -1.290 5.491 23.227 0.292 -0.735 25.5
4 -1.457 -1.280 35.695 47.413 0.941 0.025 68.7 -1.473 -1.266 4.850 22.977 0.244 -0.815 23.9
5 -1.460 -1.271 37.727 48.186 0.952 0.036 69.1 -1.573 -1.321 5.119 22.116 0.251 -0.831 23.0
6 -2.243 -1.701 30.175 44.089 0.887 -0.015 59.0 -1.636 -1.327 4.432 24.368 0.238 -0.881 17.7
7 -1.396 -1.327 40.696 53.520 0.977 0.083 66.2 -1.440 -1.286 5.097 24.285 0.250 -0.819 23.8
8 -1.713 -1.439 32.911 45.934 0.902 -0.005 62.8 -1.614 -1.373 4.782 22.793 0.264 -0.811 29.7
9 -1.628 -1.143 40.378 51.252 1.022 0.106 72.2 -1.610 -1.388 5.124 25.737 0.299 -0.740 32.8

10 -1.229 -1.082 45.309 45.939 1.094 0.176 73.6 -1.523 -1.383 5.517 25.909 0.319 -0.720 24.8
11 -1.528 -1.174 36.781 47.708 1.018 0.100 72.5 -1.563 -1.393 4.474 26.624 0.272 -0.746 30.3
12 -1.320 -1.099 42.086 48.265 1.070 0.139 75.9 -1.545 -1.466 4.984 25.561 0.289 -0.720 30.9
13 -1.594 -1.311 41.423 48.194 0.972 0.061 66.3 -1.625 -1.315 6.101 25.319 0.348 -0.803 31.9
14 -1.825 -1.377 39.631 43.415 0.937 0.027 62.4 -1.704 -1.309 6.106 24.481 0.344 -0.910 26.7
15 40.498 37.124 0.971 -0.022 60.6 5.542 24.565 0.307 -0.721 23.7
16 38.633 32.130 0.941 -0.102 41.6 5.601 26.435 0.308 -0.742 19.1
17 31.841 18.154 0.825 -0.399 22.7 5.675 27.931 0.308 -1.067 16.0
18 32.493 19.447 0.838 -0.366 24.4 5.711 30.123 0.313 -0.777 18.4
19 39.876 30.521 0.956 -0.010 61.0 5.649 26.656 0.322 -0.710 28.7
20 36.612 27.949 0.912 -0.100 44.1 5.486 23.898 0.296 -0.775 16.1
21 38.936 29.547 0.950 -0.424 52.7 5.537 23.617 0.303 -0.745 23.6
22 39.705 28.988 0.954 -0.041 58.8 5.680 26.854 0.323 -0.994 23.2
23 -1.680 -1.400 26.787 45.371 0.895 -0.028 62.3 -1.560 -1.311 3.817 23.495 0.228 -0.846 26.5
24 -1.339 -1.194 44.073 49.205 1.049 0.097 71.2 -1.487 -1.322 5.527 25.801 0.309 -0.698 32.5
25 -1.294 -1.156 44.683 56.220 1.055 0.151 72.7 -1.505 -1.335 5.439 24.983 0.291 -0.718 27.7
26 -1.168 -1.081 46.671 60.344 1.106 0.199 74.8 -1.487 -1.360 5.510 26.461 0.302 -0.685 28.8
27 -1.502 -1.266 28.820 49.142 0.924 0.004 66.7 -1.549 -1.291 3.761 23.208 0.223 -0.856 29.3
28 -1.152 -1.024 46.552 56.192 1.119 0.167 76.1 -1.495 -1.354 5.428 25.008 0.298 -0.739 36.0
29 -1.111 -0.979 47.382 61.253 1.133 0.230 78.0 -1.515 -1.360 5.342 26.525 0.277 -0.730 34.4
30 -0.971 -0.875 50.223 67.685 1.226 0.312 81.0 -1.449 -1.343 5.478 28.274 0.298 -0.681 35.4
31 -1.252 -0.859 47.500 60.458 1.240 0.306 84.6 -1.579 -1.392 4.934 29.336 0.303 -0.669 37.3
32 -3.896 -2.913 15.908 9.459 0.755 -0.178 31.9 -1.828 -1.400 19.076 24.408 0.230 -0.939 26.2
33 -1.675 -1.295 37.045 58.928 1.027 0.107 71.8 -1.548 -1.268 -0.153 26.017 0.247 -0.827 21.3
34 26.080 22.301 0.828 -0.091 42.4 3.695 28.290 0.220 -0.868 18.8
35 36.712 65.789 1.056 0.148 82.2 4.147 31.467 0.259 -0.749 40.0

• Given a feature extractor ϕ, the learned feature matrix is denoted by

Φi=
(
ϕ(xi1),ϕ(xi2),...,ϕ(xini

)
)⊤∈Rni×d.

• For any i∈ [m], we denote Φ−i and y−i as

y−i =
(
y⊤
1 ,···,y⊤

i−1,y
⊤
i+1,···,y⊤

m

)⊤∈R(n−ni),

Φ−i =
(
Φ⊤

1 ,···,Φ⊤
i−1,Φ

⊤
i+1,···,Φ⊤

m

)⊤∈R(n−ni)×d.

We can break the model selection problem down into two questions. 1). When generalizing to unknown
domains, are the learned features stable enough to avoid extrapolating predictions? 2). Are the learned
features informative enough to ensure that the correlation between features and labels is stable across
different domains? To answer these two questions, we compute the following two quantities:

• p(Φi|Φ−i), which measures covariate shift between Φi and Φ−i, indicating whether the
validation input is a rare sample compared with the training input;

• p(yi|Φi,y−i,Φ−i), which measures the discriminability and correlation shift between Φi and
yi given the training data Φ−i and y−i.

We thus propose a metric by assembling the above quantities for PTMs ranking:

log p(yi|Φi,y−i,Φ−i)+λlog p(Φi|Φ−i), (6)

where λ is a tuning parameter that unifies the scale of the correlation shift and the covariate shift. In our
implementation, the tuning parameter is taken to be the ratio of two standard deviations:

λ=
Std(log p(yij |Φi,y−i,Φ−i))

Std(log p(ϕ(xij)|Φ−i))
,

which is also used in Ye et al. [87].

20



Table 6: The ranking scores and fine-tuning accuracy for NICO dataset. The numbering in the first
column corresponds to a pre-trained model from Table 3. The numbers in each subsequent column
represent the scores assigned by a ranking metric to the PTMs. The last column displays the accuracy
of each model after fine-tuning. Empty cells represent models for which ranking is not feasible.

Model NICO-Animal NICO-Vehicle
Number LEEP NCE H-Score kNN LogME ZooD Acc. LEEP NCE H-Score kNN LogME ZooD Acc.

1 -0.501 -0.397 7.767 86.348 0.512 0.510 91.0 -0.699 -0.651 6.758 81.043 0.398 0.363 86.1
2 -0.419 -0.340 7.975 88.823 0.599 0.602 92.8 -0.624 -0.598 6.928 84.266 0.467 0.433 88.1
3 -0.455 -0.379 7.789 87.400 0.527 0.525 92.0 -0.670 -0.637 6.773 82.466 0.405 0.376 86.7
4 -0.450 -0.376 7.358 86.748 0.466 0.455 91.8 -0.692 -0.661 6.387 80.092 0.370 0.329 86.4
5 -0.479 -0.375 7.472 85.773 0.483 0.471 92.0 -0.720 -0.679 6.469 79.118 0.381 0.340 86.6
6 -0.983 -0.629 6.721 78.237 0.343 0.326 83.7 -1.109 -0.834 5.718 72.119 0.242 0.206 79.2
7 -0.460 -0.450 7.748 84.286 0.519 0.502 88.7 -0.647 -0.660 6.659 77.803 0.371 0.336 83.6
8 -0.616 -0.508 6.810 81.108 0.326 0.318 86.6 -0.792 -0.743 5.959 76.653 0.268 0.233 82.5
9 -0.646 -0.345 7.814 79.292 0.600 0.583 92.1 -0.823 -0.600 6.739 80.821 0.474 0.427 88.0

10 -0.393 -0.318 8.089 82.033 0.693 0.664 92.4 -0.578 -0.560 7.016 77.957 0.547 0.493 88.0
11 -0.598 -0.309 7.797 80.542 0.681 0.656 93.5 -0.742 -0.569 6.655 80.318 0.526 0.477 89.1
12 -0.460 -0.277 8.201 80.414 0.811 0.798 95.1 -0.644 -0.545 6.963 78.615 0.593 0.545 90.3
13 -0.602 -0.468 7.551 82.090 0.433 0.428 88.0 -0.743 -0.651 6.685 78.180 0.374 0.340 84.9
14 -0.921 -0.634 7.030 69.756 0.288 0.275 81.2 -0.941 -0.731 6.407 71.239 0.283 0.247 80.7
15 7.546 71.552 0.438 0.427 86.9 6.644 71.200 0.362 0.326 82.9
16 7.679 73.400 0.491 0.485 80.0 6.701 67.634 0.376 0.331 74.0
17 6.562 46.842 0.188 0.166 53.2 6.050 49.714 0.184 0.143 53.6
18 6.756 48.977 0.225 0.207 55.4 6.184 52.048 0.221 0.176 56.0
19 7.652 68.655 0.470 0.462 89.3 6.743 69.965 0.395 0.354 83.8
20 7.491 68.446 0.429 0.419 81.1 6.532 65.629 0.323 0.276 75.6
21 7.649 60.005 0.458 -0.970 84.2 6.681 62.967 0.370 -0.704 78.3
22 7.580 65.025 0.445 0.436 87.7 6.710 66.776 0.385 0.343 82.4
23 -0.482 -0.391 6.713 84.406 0.404 0.391 90.6 -0.688 -0.633 5.748 77.967 0.324 0.284 85.9
24 -0.346 -0.278 8.081 89.122 0.666 0.656 94.3 -0.593 -0.573 7.001 83.783 0.524 0.479 89.9
25 -0.333 -0.255 8.266 88.655 0.754 0.757 95.1 -0.563 -0.538 7.122 86.015 0.559 0.519 90.1
26 -0.305 -0.245 8.383 89.750 0.832 0.831 95.9 -0.524 -0.514 7.250 87.605 0.627 0.582 91.1
27 -0.444 -0.347 6.793 81.971 0.425 0.410 91.3 -0.649 -0.602 5.873 78.824 0.350 0.312 86.4
28 -0.283 -0.211 8.253 89.394 0.772 0.762 95.8 -0.527 -0.520 7.131 85.509 0.594 0.549 91.1
29 -0.287 -0.192 8.424 93.119 0.872 0.871 96.7 -0.515 -0.490 7.250 88.538 0.632 0.590 91.6
30 -0.255 -0.164 8.594 90.335 1.038 1.037 97.4 -0.478 -0.450 7.430 89.605 0.752 0.710 92.8
31 -0.521 -0.167 8.407 84.414 1.086 1.063 97.5 -0.641 -0.439 7.254 90.010 0.824 0.774 94.5
32 -1.864 -1.317 4.772 35.264 0.057 0.031 62.2 -1.801 -1.282 4.525 41.243 0.044 0.007 64.4
33 -0.393 -0.224 8.673 93.392 0.819 0.798 94.6 -0.616 -0.511 6.808 89.564 0.589 0.534 90.4
34 7.429 84.647 0.472 0.465 89.4 6.929 83.589 0.567 0.539 92.3
35 8.240 95.664 0.936 0.932 97.5 7.206 89.449 0.832 0.805 97.3

B.2 Model Assumption

Since the correlation between ϕ(x) and response variables y may be non-linear, we need to make
further assumptions and approximations. Let each y be independently generated from a unknown
distribution: p(y|Φ,f). Assume this distribution is unimodal and the mode is denoted by µ, we can
take Taylor expansion of log-likelihood at the mode

log p
(
y|ϕ(x),f

)
≈ log p

(
µ
∣∣ϕ(x),f)− 1

2
(y−µ)⊤Λ(y−µ)

where Λ=−∇y∇ylogp(y|ϕ(x),f)
∣∣
y=µ

. The above transformation is the Laplace approximation [51]
and the quadratic term implies the rationality of the Gaussian approximation. Similar to You et al. [91],
the top model over a learned feature extractor ϕ is approximated with a linear model:

y=w⊤ϕ(x)+ϵ, y∈R,w∈Rd,ϵ∈R,
where ϵ is Gaussian noise with variance β−1. We assume the prior distribution of the weights w is a
zero-mean isotropic Gaussian distribution governed by a hyperparameter α:

w∼N (0,α−1Id) or p(w;α)=
( α
2π

) d
2

exp
(
−α

2
w⊤w

)
and the conditional distribution of the target variable y given ϕ(x) is a Gaussian distribution:

y
∣∣ϕ(x),w∼N (w⊤ϕ(x),β−1) or p

(
y
∣∣ϕ(x),w;β

)
=
( β
2π

) 1
2

exp

(
−β
2

(
y−w⊤ϕ(x)

)2)
.

Recall the notations yi, Φi, y−i and Φ−i in Appendix B.1. Then we have

yi|Φi,w∼N (Φiw,β
−1Ini

) and y−i|Φ−i,w∼N (Φ−iw,β
−1In−ni

).

In the next section, we present the details of estimating the two hyperparametersα and β.Appendix B.4
shows how to compute the conditional density p(yi|Φi,y−i,Φ−i) and p(Φi|Φ−i) in the proposed
metric (6).

21



Table 7: The ranking scores and fine-tuning accuracy for DomainNet dataset. The numbering in the
first column corresponds to a pre-trained model from Table 3. The numbers in each subsequent column
represent the scores assigned by a ranking metric to the PTMs. The last column displays the accuracy
of each model after fine-tuning. Empty cells represent models for which ranking is not feasible.

Model DomainNet
Number LEEP NCE H-Score kNN LogME ZooD Acc.

1 -4.083 -3.972 51.822 24.387 1.590 1.229 31.1
2 -3.946 -3.898 58.350 26.811 1.601 1.237 32.6
3 -4.033 -3.963 50.728 24.933 1.588 1.228 31.3
4 -3.984 -3.943 45.158 23.998 1.566 1.204 32.2
5 -3.989 -3.931 48.664 25.178 1.569 1.207 33.5
6 -4.646 -4.287 31.525 19.208 1.560 1.211 24.2
7 -3.999 -3.981 49.943 23.852 1.588 1.238 30.3
8 -4.172 -4.059 32.807 21.075 1.561 1.208 27.9
9 -4.177 -3.833 47.122 25.990 1.584 1.225 34.2

10 -3.768 -3.694 58.857 25.956 1.603 1.250 34.7
11 -4.063 -3.829 46.212 24.848 1.586 1.231 35.3
12 -3.914 -3.769 56.918 26.283 1.602 1.240 37.4
13 -4.127 -3.965 50.865 24.040 1.588 1.225 31.8
14 -4.252 -4.037 48.624 21.554 1.584 1.224 30.8
15 52.079 20.940 1.591 1.211 27.1
16 54.303 17.481 1.597 1.179 12.7
17 30.438 8.729 1.556 1.113 4.1
18 33.129 9.266 1.560 1.117 4.5
19 47.827 17.507 1.584 1.200 25.4
20 48.762 16.188 1.587 1.174 15.1
21 51.271 15.744 1.591 1.191 18.5
22 47.734 16.392 1.583 1.203 23.1
23 -4.078 -3.992 28.905 22.296 1.558 1.198 29.7
24 -3.787 -3.793 64.463 27.011 1.613 1.233 38.3
25 -3.788 -3.743 64.207 28.979 1.614 1.250 35.7
26 -3.661 -3.685 70.961 30.872 1.626 1.260 38.1
27 -3.841 -3.748 35.255 27.955 1.569 1.215 35.9
28 -3.426 -3.430 82.151 35.589 1.648 1.282 46.3
29 -3.413 -3.380 83.818 38.643 1.654 1.300 44.7
30 -3.229 -3.224 98.610 42.285 1.687 1.328 48.2
31 -3.646 -3.376 73.872 35.363 1.635 1.277 48.8
32 -5.639 -5.096 14.577 5.968 1.536 1.178 10.6
33 -4.226 -3.908 50.099 27.670 1.593 1.232 34.1
34 43.703 16.713 1.565 1.201 15.9
35 54.259 49.147 1.601 1.259 56.2

B.3 Parameter Estimation

If we introduce a uniform prior distribution over α and β, the posterior distribution for α and β is

p(α,β|y−i,Φ−i)=
p(α,β,y−i,Φ−i)

p(y−i,Φ−i)
∝p(α,β,y−i,Φ−i)=p(y−i,Φ−i|α,β)p(α,β),

where the prior distribution p(α,β) is assumed to be a uniform distribution over α and β. Then the
values of α̂ and β̂ are obtained by maximizing the density function p(y−i,Φ−i|α,β), which is also
the model evidence over {y−i,Φ−i}. The density function p(y−i,Φ−i|α,β) is obtained by integrating
over w:

p
(
y−i,Φ−i

∣∣α,β) =

∫
w

p
(
y−i,Φ−i

∣∣w,β)p(w∣∣α)dw
=

∫
w

p
(
y−i

∣∣Φ−i,w,β
)
p
(
Φ−i

∣∣w,β)p(w∣∣α)dw
=

∫
w

p
(
y−i

∣∣Φ−i,w,β
)
p
(
w
∣∣α)dw×p(Φ−i)

∝
∫
w

p
(
y−i

∣∣Φ−i,w,β
)
p
(
w
∣∣α)dw.

According to the model assumptions in Appendix B.2:

y−i|Φ−i,w∼N (Φ−iw,β
−1In−ni

) and w∼N (0,α−1Id),

22



then the likelihood function of α and β is

L(α,β) =

∫
w

p(y−i|Φ−i,w,β)p(w|α)dw

=
( β
2π

)n−ni
2
( α
2π

) d
2

∫
w

exp

(
−β
2
(y−i−Φ−iw)⊤(y−i−Φ−iw)−α

2
w⊤w

)
dw

=
( β
2π

)n−ni
2
( α
2π

) d
2

∫
w

exp(−E(w))dw,

whereE(w) is the energy function of w, i.e.

E(w)=
β

2
(y−i−Φ−iw)⊤(y−i−Φ−iw)+

α

2
w⊤w.

Given y−i and Φ−i, then the posterior distribution of w is

p(w|y−i,Φ−i,α,β)∼N
(
w|m−i,A

−1
−i

)
,

where

m−i=βA
−1
−iΦ

⊤
−iy−i, A−i=αId+βΦ⊤

−iΦ−i.

Notice that

E(w) =
β

2
w⊤Φ⊤

−iΦ−iw+
α

2
w⊤w−βy⊤

−iΦ−iw+
β

2
y⊤
−iy−i

=
1

2
w⊤(βΦ⊤

−iΦ−i+αId)w−βy⊤
−iΦ−iw+

β

2
y⊤
−iy−i

=
1

2
w⊤A−iw−βy⊤

−iΦ−iA
−1
−iA−iw+

β

2
y⊤
−iy−i

=
1

2
w⊤A−iw−m⊤

−iA−iw+
β

2
y⊤
−iy−i.

Then we haveE(m−i)=− 1
2m

⊤
−iA−im−i+

β
2y

⊤
−iy−i.We rewrite w=w−m−i+m−i and obtain

that
1

2
w⊤A−iw =

1

2
(w−m−i)

⊤A−i(w−m−i)−
1

2
m⊤

−iA−im−i+m⊤
−iA−iw.

Therefore,

E(w) =
1

2
(w−m−i)

⊤A−i(w−m−i)−
1

2
m⊤

−iA−im−i+
β

2
y⊤
−iy−i

= E(m−i)+
1

2
(w−m−i)

⊤A−i(w−m−i).

Then we have

logL(α,β) =
n−ni
2

logβ+
d

2
logα−n−ni

2
log(2π)−E(m−i)−

1

2
log|A−i| (7)

=
n−ni
2

logβ+
d

2
logα−n−ni

2
log(2π)− β

2

∥∥y−i−Φ−im−i

∥∥2−α

2
∥m−i∥2−

1

2
log|A−i|.

and obtain α̂ and β̂ by maximizing logL(α,β), i.e.,

α̂,β̂=argmax
α,β

logL(α,β).

We can find that the objective function here is the same as Eq.(2) in You et al. [91]. Then we use the
fix-point iteration algorithm [91, 90]. The detailed inference procedure is presented as follows.

Let λi and vi be the i-th eigenvalue and eigenvector of the matrix βΦ⊤
−iΦ−i. That is (βΦ⊤

−iΦ−i)vi=
λivi. Then we have

|A−i|= |αId+βΦ⊤
−iΦ−i|=

d∏
i=1

(α+λi).

23



The stationary points of logL(α,β) with respect to α satisfy

d

2α
− 1

2
∥w∥2− 1

2

d

dα
log

(
d∏

i=1

(α+λi)

)
=0

⇔ d−
d∑

i=1

α

α+λi
=α∥w∥2

⇔ α=
γ

∥w∥2
with γ=

d∑
i=1

λi
α+λi

.

Notice that the eigenvalues λi are proportional to β. Hence dλi/dβ=λi/β. Then the stationary points
of logL(α,β) with respect to β satisfy

n−ni
2β

− 1

2

∥∥y−i−Φ−im−i

∥∥2− 1

2β

d∑
i=1

λi
α+λi

=0

⇔ 1

β
=

1

n−ni−γ
∥∥y−i−Φ−im−i

∥∥2.
B.4 Computing Metric

In this section, we present the details of computing the covariate shift p(Φi|Φ−i) and the correlation
shift p(yi|Φi,y−i,Φ−i).Then we can plug these two quantities into (6) to compute the proposed metric.

Covariate shift. Leaving the i-th domain out, we compute the density p
(
Φi

∣∣Φ−i

)
to check whether the

learned feature ϕ(x) is stable such that the distribution shift between Φi and Φ−i is not significant. We
approximate the distribution of ϕ(x) with a Gaussian distribution N (µϕ,Σϕ) and empirically estimate
the parameters µϕ and Σϕ from the training inputs Φ−i∈R(n−ni)×d. That is,

µ̂ϕ=
1

n−ni
Φ⊤

−i1n−ni
Σ̂ϕ=

1

n−ni
(Φ−i−1n−ni

µ̂⊤
ϕ )

⊤(Φ−i−1n−ni
µ̂⊤
ϕ ),

where 1n−ni
is a (n − ni)-length one vector. Then we compute the density of Φi according to

N (µ̂ϕ,Σ̂ϕ):

p(Φi|Φ−i) = p(Φi|µ̂ϕ,Σ̂ϕ)=

ni∏
j=1

√
1

(2π)d|Σ̂ϕ|
exp

(
−1

2
(ϕ(xij)−µ̂ϕ)

⊤Σ̂−1
ϕ (ϕ(xij)−µ̂ϕ)

)
.

= (2π)−
nid

2 |Σ̂ϕ|−
ni
2 exp

(
−1

2
trace

{
(Φi−1ni

µ̂⊤
ϕ )Σ̂

−1
ϕ (Φi−1ni

µ̂⊤
ϕ )

⊤}).
Correlation shift. Given α̂ and β̂, we have

p(yi|Φi,y−i,Φ−i;α̂,β̂)=
p(yi,y−i|Φi,Φ−i;α̂,β̂)

p(y−i|Φi,Φ−i;α̂,β̂)
=
p(yi,y−i|Φi,Φ−i;α̂,β̂)

p(y−i|Φ−i;α̂,β̂)
. (8)

We write m̂−i= β̂Â
−1
−iΦ

⊤
−iy−i and Â−i= α̂Id+β̂Φ⊤

−iΦ−i.According to (7),

log p(y−i|Φ−i;α̂,β̂) =
n−ni
2

logβ̂+
d

2
logα̂−n−ni

2
log(2π) (9)

− β̂
2

∥∥y−i−Φ−im̂−i

∥∥2− α̂

2
∥m̂−i∥2−

1

2
log|Â−i|.

To proceed further, we denote

y=(y⊤
i ,y

⊤
−i)

⊤∈Rn, Φ=(Φ⊤
i ,Φ

⊤
−i)

⊤∈Rn×d, m̂= β̂Â−1Φ⊤y, Â= α̂Id+β̂Φ⊤Φ.

Similar to (7), we have

log p(y|Φ;α̂,β̂) = logp(yi,y−i|Φi,Φ−i;α̂,β̂)

=
n

2
logβ̂+

d

2
logα̂−n

2
log(2π)− β̂

2

∥∥y−Φm̂
∥∥2− α̂

2
∥m̂∥2− 1

2
log|Â|. (10)

24



Plugging (9) and (10) into (6), we obtain the value of the proposed metric.

Remark. Given y−i, Φ−i, α̂ and β̂, the posterior distribution of w is

p(w|y−i,Φ−i,α̂,β̂)∼N
(
w|m̂−i,Â

−1
−i

)
.

Further,

p(yi|Φi,y−i,Φ−i;α̂,β̂)=

∫
w

p(yi|Φi,w;β̂)p(w|y−i,Φ−i;α̂,β̂)dw.

By calculating the integral, we can deduce

yi

∣∣Φi,y−i,Φ−i∼N
(
Φim̂−i,β̂

−1Ini+ΦiÂ
−1
−iΦ

⊤
i

)
.

Therefore we can also use this distribution to calculate p(yi|Φi,y−i,Φ−i) directly. Throughout this
paper, we use the formula (8) to calculate the correlation shift.

B.5 Cross-Domain Validation Selects Invariant Features

To justify our proposed selection method, and provide more intuition, we conduct explicit analysis in a
linear regression setting. Despite the over-simplification, it does reflect the essence of our approach.
From this base case, adaptions to more complicated and realistic assumptions can be made.

Data Assumption Suppose we have data in different domains with domain invariant and domain-
specific features, with respect to the response variable y. Denote the set of invariant features to be iv,
which are assumed to be unit-norm and orthogonal to each other. Without loss of generality, let data in
domain D be x=(xiv,xD) where xiv∈Rd∗

denotes the domain invariant features and xD∈Rd−d∗

denotes domain specific ones. Let xiv be fixed. The domain-specific features can have non-zero
correlation with xiv such that

xD=xiv ·AD+eD,

where AD ∈Rd∗×(d−d∗), and eD ∼N(0,s2Id−d∗). For different domains, assume the correlation
to be independently random, i.e., AD’s are i.i.d. matrices with independent entries with mean 0 and
variance 1. Given the features x, assume the response y only depends on xiv such that

y=xiv ·βiv+ϵ=x·β+ϵ,

where β=(βiv,β
D) with βD=0 and ϵ followsN(0,σ2).

Model Assumption Let the model candidates be linear models fitted to different subsets of the
features and there are in total 2d different combinations. Denote the fitted parameters to be β̂∈Rd with
only the selected dimensions being non-zero. Let the selection be ϕ, which is a subset of {1,...,d}. We
want to show that our proposed statistics, in the cross-validated fashion, will prefer the optimal one
with ϕ= iv. The optimality is in the sense that it achieves the best goodness-of-fit, measured by the
square loss.

More Notations Let (X,y),(X̃,ỹ) be independent datasets in two domains to be cross validated.
For any vector (matrix), we use subscript to denote part of it with selected rows (columns). For instance,
a model candidates with feature dimensions ϕ will only fit y∼Xϕ and the resulting β̂ will only be
nonzero on β̂ϕ. For a set ϕ, denote |ϕ| be to its cardinality and ϕ̄ to be its complement.

In our proposed test statistics, there are two terms to be assessed. The first term is essentially the
goodness-of-fit of ỹ and X̃ϕ · β̂ϕ, which is of critical importance for selecting the invariance and
consistent features across different domains. The second term can be seen as some regularization. In
this section, we will focus on the first term, and to make things really simple, we consider expected l2
loss as the measure for goodness-of-fit.

The estimated β̂ can be explicitly written as

β̂ϕ=(X⊤
ϕ Xϕ)

−1X⊤
ϕ y∈R|ϕ|.

25



Given y=Xβ+ϵ, we can write
Xβ=Xϕβϕ+Xϕ̄βϕ̄.

Thus,

β̂ϕ=βϕ+(X⊤
ϕ Xϕ)

−1X⊤
ϕ Xϕ̄βϕ̄+(X⊤

ϕ Xϕ)
−1X⊤

ϕ ϵ

=βϕ+(X⊤
ϕ Xϕ)

−1X⊤
ϕ ϵ. (11)

The expected l2 loss can be expressed as

Eϵ,ϵ̃,e,A,ẽ,Ã

(
∥ỹ−X̃ϕ ·β̂ϕ∥2

)
=Eϵ,e,A,ẽ,Ã

(
∥X̃ ·β−X̃ϕ ·β̂ϕ∥2

)
+nσ2

=Eϵ,e,A,ẽ,Ã

(
∥X̃iv∩ϕβiv∩ϕ+X̃iv\ϕβiv\ϕ−X̃ϕ∩iv ·β̂ϕ∩iv−X̃ϕ\iv ·β̂ϕ\iv∥2

)
+nσ2

=Eϵ,e,A,ẽ,Ã

(
∥X̃iv∩ϕ(βiv∩ϕ−β̂iv∩ϕ)+X̃iv\ϕβiv\ϕ−X̃ϕ\iv ·β̂ϕ\iv∥2

)
+nσ2

=Eϵ,e,A,ẽ,Ã

(
∥X̃iv∩ϕ

(
(X⊤

ϕ Xϕ)
−1X⊤

ϕ ϵ
)
iv∩ϕ

+X̃iv\ϕβiv\ϕ−X̃ϕ\iv ·β̂ϕ\iv∥2
)
+nσ2

:=Eϵ,e,A,ẽ,Ã

(
∥I1+I2+I3∥2

)
+nσ2.

I1 accounts for the variance in estimating the selected invariance features. I2 is non-random and
accounts for the error from unselected invariance features. I3 accounts the error from wrongly selected
features. Easy to verify that E(I1) = E(I3) = 0 and E(I1I3) = 0, since β̂ is independent with Ã,ẽ,
which are both mean zero.

Eϵ,e,A,ẽ,Ã(∥I1∥
2)=σ2Ee,Atr

(
(X⊤

ϕ Xϕ)
−1
iv∩ϕ

)
For I3, we can further write

Eϵ,e,A,ẽ,Ã(∥I3∥
2)=Eϵ,e,A,ẽ,Ã

(
β̂⊤
ϕ\ivX̃

⊤
ϕ\ivX̃ϕ\iv ·β̂ϕ\iv

)
=Eϵ,e,A

(
∥β̂ϕ\iv∥2

)
Eẽ,Ãtr

(
X̃⊤

ϕ\ivX̃ϕ\iv

)
=Eϵ,e,A

(
∥β̂ϕ\iv∥2

)(
EÃtr

(
Ã⊤

ϕ\ivÃϕ\iv

)
+n|ϕ\iv|s2

)
=n(1+s2)|ϕ\iv|·Eϵ,e,A

(
∥β̂ϕ\iv∥2

)
Therefore,

Eϵ,ϵ̃,e,A,ẽ,Ã

(
∥ỹ−X̃ϕ ·β̂∥2

)
=σ2Ee,Atr

(
(X⊤

ϕ Xϕ)
−1
iv∩ϕ

)
+∥βiv\ϕ∥2+n(1+s2)|ϕ\iv|·Eϵ,e,A

(
∥β̂ϕ\iv∥2

)
+nσ2.

If ϕ= iv, the above quantity is minimized with Eϵ,ϵ̃,e,A,ẽ,Ã

(
∥ỹ−X̃ϕ ·β̂∥2

)
=(n+d∗)σ2.

26



C Feature Selection in ZooD

In this section, we present more details about the PTMs ensemble and feature selection in Section 3.2.
The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further
aggregate different PTMs, we consider assembling the features by using PTMs as feature extractors

Φ=
[
Φ(1),...,Φ(k)

]
,

where Φ(i) is the i-th ranked feature extractor and [·] denotes the row concatenation operation. As
we show in experiments, in most cases, using aggregated models can significantly outperform any
single model. However, the rough ensemble will inevitably introduce more noise. According to the
definition of OoD learnability proposed by Ye et al. [87], non-informative but invariant features from
training domains may only bring some noise, and the accumulation of noise hurts learnability of the
OoD generalization task. Therefore, we propose a Bayesian feature selection method based on the
Gaussian linear framework in Section 3.1.

C.1 Bayesian Variable Selection

In the Bayesian literature, the variable selection problem can be efficiently solved by introducing, for
each variable wi, a binary mask zi∈{0,1} [48, 16, 83, 86], which are given by Bernoulli distributions
governed by probability coefficient π. Let z={zi}di=1 and

p(z;π)=
d∏

i=1

p(zi)=
d∏

i=1

πzi
i (1−πi)1−zi .

From a generative perspective, these masks determine whether the weight wi is generated from a slab
or a spike prior [37]. If zi=1, then wi will follow a slab prior with diffusing probability density; if
zi = 0, wi will have a spike prior with probability mass concentrated around 0, and thus should be
discarded. Specifically, we assume

p(wi|zi,αi,1,αi,2)=

{
N (0,α−1

i,1 ) if zi=1;

N (0,α−1
i,2 ) if zi=0.

Denote w= (w1,...,wd)
⊤ and αi,1 and αi,2 control the shape of the wi distribution and should be

reasonably large for αi,2. Conditioned on wi, each data point yn is assumed to be independently drawn
from a linear model with mean w⊤ϕ(x) and additional Gaussian noise with inverse variance β:

p(yn
∣∣ϕ(xn),w;β)=

( β
2π

) 1
2

exp

(
−β
2

(
yn−w⊤ϕ(xn)

)2)
.

The model specification is completed by introducing conjugate Gamma priors over the inverse variance
β and {αi,1,αi,2}di=1:

αi,1∼Gamma(νi,1,νi,2), αi,2∼Gamma(νi,3,νi,4), β∼Gamma(ν0,1,ν0,2).

Denote the set of Gamma prior parameters as ν={νi,j} and all latent variables as

ξ=
{
β,{wi,zi,αi,1,αi,2}di=1

}
.

Then the variable selection problem can be solved by estimatingπ={π1,π2,...,πd}withπi=p(zi=1).
We can find the maximum likelihood estimator of the probability coefficient π of Bernoulli masks and
then screen the variables if πi is smaller than the pre-defined threshold τ .

C.2 Variational EM Algorithm

Given the dataset {y,Φ}, the maximum marginal likelihood estimator of (π,ν) is given by

π̂,ν̂ = argmax
π,ν

log p(y|Φ;π,ν)

= argmax
π,ν

log

∫
ξ

p(y,ξ|Φ;π,ν)dξ. (12)

27



However, direct maximization of (12) is intractable due to the integration over ξ. EM algorithm [66]
might be a solution here. In the E-step, we compute the conditional expectation

L(π,ν;πold,νold) = Eξ

[
logp(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]

=

∫
logp(y,ξ|Φ;π,ν)p(ξ|y,Φ;πold,νold)dξ,

which involves inferring posterior p(ξ|y,Φ;π,ν). However, this is not straightforward to obtain due to
the complexity of our model setup. MCMC [57] is a common tool for this problem, but suffers from
intensive computation, thus hard to extend to large-scale data. We instead use approximate Bayesian
inference in Section C.3.

In the M-step, we update π and ν by maximizing the expectation

πnew,νnew=argmax
π,ν

L(π,ν;πold,νold).

By repeating the E and M steps, the estimator (πnew,νnew) converges to an optimal solution. We show
this method has satisfying performance for the underlying variable selection problems in synthetic data
and the prevailing OoD dataset.

C.3 Variational Inference

In the E-Step, computation of Eξ

[
logp(y,ξ|Φ;π,ν)

∣∣y,Φ;πold,νold
]

involves inferring posterior
p(ξ|y,Φ;π,ν). However, due to the complexity of our model setup, no analytical form of the
posterior distribution can be found. We instead approximate true posterior distribution by variational
inference [12]. The main idea involves the introduction of a set of distributionsQ, which should ideally
be easy to compute and provide a good approximation to the true posterior distribution. We consider
the following transformation of the marginal likelihood

lnp(y|Φ;π,ν)=ln

∫
p(y,ξ|Φ;π,ν)dξ

=ln

∫
Q(ξ)

p(y,ξ|Φ;π,ν)
Q(ξ)

dξ

≥
∫
Q(ξ)ln

p(y,ξ|Φ;π,ν)
Q(ξ)

dθ

=L(Q),

where L(Q) denotes the variational lower bound. The key point is that, through proper choice ofQ
distribution, L(Q) can be readily evaluated, and thus by maximizing the lower bound, we generally
find theQ distribution, which is the best approximation within the considered family. Here we factorize
Q over each latent variable, such that

Q(ξ;π,ν)=Q(β;ν̃0,1,ν̃0,2)

d∏
i=1

[
Q(zi;π̃i)Q(wi;mi,λ

−1
i )Q(αi,1;ν̃i,1,ν̃i,2)Q(αi,2;ν̃i,3,ν̃i,4)

]
,

which holds for classic mean-field family [11]. By denoting {m,λ,π̃}={mi,λi,πi}di=1 and ν̃={ν̃i,j},
an optimization-free form over all possibleQ has been established, which can lead to minimization of
KL divergence between variational distributionQ(ξ) and true posterior p(ξ|y,Φ;π,ν)

Q∗(ξk)=
expEξ−k∼Q∗(ξ−k)lnp(y,ξ|Φ;π,ν)∫
expEξ−k∼Q∗(ξ−k)lnp(y,ξ|Φ;π,ν)dξk

,

where denote ξk as the k-th variable in the set ξ and ξ−k is the subset of all other variables except ξk.
For models in conjugate families, the optimalQ∗(ξk) has the same form as its prior distribution. We
then establish the optimization step for arbitrary variational parameters set {m,λ,ν̃,π̃} to approach
the true posterior:

mi=fm(π̃i,m,ν̃)=

(
N∑

n=1

x2n,iE[β]+π̃iE[αi,1]+(1−π̃i)E[αi,2]

)−1

·

E[β]· N∑
n=1

xn,i

d−1∑
j ̸=i

mj ·xn,j−yn

,
28



π̃i=fπi(m,λ,ν̃)=
exp
{
Eln|αi,1|− 1

2Tr
(
E[αi,1]·[E[w2

i ]]
)
+lnπi

}
exp
{
Eln|αi,1|+Eln|αi,2|− 1

2Tr[(E[αi,1]+E[αi,2])·[E[w2
i ]]]+lnπi+ln(1−πi)

} ,
(ν̃0,2)

−1=fν0,2
(m,λ)=

N∑
n=1

y2n−2

N∑
n=1

(
d∑

i=1

mi ·xn,i

)
·yn+

N∑
n=1

d2∑
i,j

xn,i ·xnj
(
[E[w2

i ]
)
+ν−1

0,2 ,

(ν̃i,2)
−1=fνi,2

(m,λ,π̃)=
(
E[w2

i ]
−1
)
·π̃i+ν−1

i,2 , (ν̃i,4)
−1=fνi,4

(m,λ,π̃)=
(
E[w2

i ]
−1
)
·(1−π̃i)+ν−1

i,4 ,

λi=fλ(ν̃)=

N∑
n=1

x2n,iE[β]+π̃iE[αi,1]+(1−π̃i)E[αi,2],

ν̃0,1=fν0,1
(n)=ν0,1+n, ν̃i,1=fνi,1

(π̃)=νi,1+π̃i, ν̃i,3=fνi,3
(π̃)=νi,3+1−π̃i,

where the variational expectations are given by

E[w2
i ]=m

2
i +λ

−1
i , E[β]= ν̃0,1 ·ν̃0,2, E[αi,1]= ν̃i,1 ·ν̃i,2, E[αi,2]= ν̃i,3 ·ν̃i,4, (13)

Eln|αi,1|=ψ
(
νi,1

2

)
+ln2+ln

∣∣νi,2∣∣, Eln|αi,2|=ψ
(
νi,3

2

)
+ln2+ln

∣∣νi,4∣∣. (14)

Since the optimization steps for each variational parameter are mutually dependent, we can use coordi-
nate gradient descent [12] starting by currentQ(ξ)t−1 from the last iteration. After one-step optimiza-
tion, variational parameters ofQ(ξ)t are used in computation ofEξ∼Q(ξ;πold,νold)t

[
logp(y|Φ,ξ;π,ν)

]
,

thus finishing E-step. During this procedure, the lower bound L(Q) will continuously increase until
reaching its maximum value. Therefore, the value of L(Q) can be used as a useful indicator for
convergence of algorithm [19].

C.4 Algorithm Details

The proposed model contains a set of prior hyper-parameters π,ν, which is exactly what we want to
estimate for feature screening. In Bayesian literature, hyper-parameter selection can be automated from
data through a procedure named “ARD” [52]. The original “ARD” procedure proposes a selection based
on the value of model evidence. However, in many cases including ours, this evidence is intractable.
Fortunately, it’s also feasible to use variational lower bound L(Q) as a substitute. Learning prior
hyper-parameters π,ν leads to the minimization of KL divergence. This can be rationalized by the
decomposition of L(Q):

L(Q) = Eξ∼Q(ξ)

[
log p(y|Φ,ξ;π,ν)

]
= Eξ∼Q(ξ)

[
log p(y|ξ,Φ)

]
−KL(Q(ξ)||p(ξ;π,ν)).

Thus by setting derivatives of each hyper-parameters with respect to L(Q) to 0, it’s easy to see L(Q) is
maximized when all hyper-parameters are set to posterior parameters:

πnew= π̃, νnew= ν̃.

However, the proposed algorithm still suffers from heavy computational cost: Each iteration costs
O(nd2). Thus to relieve computation burden and memory usage, we leverage our method with
stochastic approximation leading to the EM algorithm with stochastic variational inference [35]. In
each iteration, we sample a random subset of entire data with size ns. Fitting our algorithm over this
subset for the current iteration, we obtain a local optimal estimator denoted byQs(ξ). In M-step these
intermediate variational distributions by factorizing Qs(ξ) will be used to learn hyper-parameters
π and ν and simultaneously as the starting point for subsequent estimator in the next iteration. In
the end, we successfully reduce the computation cost to O(nsd2) with ns ≪ n, while maintaining
the guarantee of convergence to the global optimum [65]. In our experiments, we collect variational
probabilities of {π̃i}di=1 from the last three runs and early-stop the algorithm if its difference with the
current probability is smaller than the pre-defined threshold ϵ or reaches the maximum iteration times.
Variational EM algorithm for Bayesian feature selection is summarized in Algorithm 2. Note that we
initialize m by linear regression and the initialization of ν̃ is set to ν.

In our experiments, we often deal with the multivariate case. If the underlying task involves multivariate
regression or classification, i.e., Y ∈Rn×K , we can run the proposed EM algorithm on each dimension
and take the union of all selected features. Therefore, our feature selection procedure can be used in
almost all prevailing models and tasks.

29



Algorithm 2 Variational EM Algorithm for Bayesian Feature Selection

Input: The observed data Y ∈ Rn,X ∈ Rn×d; Prior parameters π0 = {π0
i }di=1 and ν0 = {ν0i,j};

Maximum iteration step T ; Batch size ns; Stopping threshold ϵ.
Output: Converged πt and νt.

1: Initialization of variational moment: {m,λ,E[αi,1],E[αi,2],Eln|αi,1|,Eln|αi,2|}di=1:
• Initialize m0 by linear regression between Y and X , and let λ0=(m0⊙m0)−1;
• Set ν̃0=ν0 and computeE[αi,1],E[αi,2],Eln|αi,1|,Eln|αi,2| by Equation (13) and (14);

2: for 1≤ t≤T do
3: Random Sampling a data subset with size ns;
4: Update ν̃t0,1 and ν̃t0,2 by fνt−1

0,1
(ns) and fνt−1

0,2
(mt−1,λt−1);

5: for 1≤ i≤d do
6: Update each π̃t

i by fπt−1
i

(mt−1,λt−1,ν̃t−1);
7: Update each ν̃ti,1, ν̃ti,2, ν̃ti,3, ν̃ti,4 by fνt−1

i,1
(π̃t), fνt−1

i,2
(mt−1, λt−1, π̃t−1), fνt−1

i,3
(π̃t),

fνt−1
i,4

(mt−1,λt−1,π̃t);

8: Updatemt
i and λti by fm(π̃t

i ,m
t−1,ν̃t) and fλ(ν̃t);

9: end for
10: Update πt= π̃t,νt= ν̃t;
11: if t≥3 then
12: πmean=(πt−2+πt−1+πt)/3;
13: Early Stop if |πt−πmean|<ϵ;
14: end if
15: end for

C.5 Theoretical Result

It has been shown that our method, as well as others in Bayesian variable selection, has potentially
strong selection consistency [48, 16, 83, 86]. Consider the following model with inverse Gamma prior:

yn |
(
ϕ(xn),w,σ

2
)
∼N

(
wϕ(xn),σ

2I
)
,

wi |
(
σ2,zi=0

)
∼N

(
0,σ2τ20,N

)
,

wi |
(
σ2,zi=1

)
∼N

(
0,σ2τ21,N

)
,

p(zi=1)=1−p(zi=0)=qN ,

σ2∼ IG(α1,α2),

(15)

where i runs from 1 to d, qN ,τ0,N ,τ1,N are constants that depend on sample sizeN , and IG (α1,α2)
is the Inverse Gamma distribution with shape parameter α1 and scale parameter α2. Under regular
conditions (See conditions 4.1–4.5 in [56]), selection consistency is established:
Theorem 1. Assume regular conditions hold, under the model with inverse Gamma prior, we have
p
(
z= t |Y ,σ2

) p−→ 1 as n→∞, that is, the posterior probability of the true model goes to 1 as the
sample size increases to ∞.

More related works on Bayesian feature selection can be found in [26, 55].

C.6 Simulation Study

In this section, we will conduct a series of simulations to verify selection performance on an i.i.d.
dataset with varying sizes and dimensions. Here, we consider cases in the standard multivariate
regression. We first generate each input predictor from a standard normal distribution: xni∼N(0,1)
for i=1,...,d, and thus we generate response variables by subsequently sampling βj∼Uniform(1,3)

for j=1,...,k<d and yn∼N(
∑k

i=1βixni,1). We then vary the values of d and k to find the potential
influence in terms of True Positive Rate (TPR) and False Positive Rate (FPR). The results are shown in
Table 9.

We repeat each case 50 times and present the mean and variance of TPR and FPR. The hyper-parameter
setting is listed in Table 8. We vary ns to study the influence of batch size. Overall, our method

30



illustrates the experimental selection consistency. When n>d, our method almost always selects the
correct k variables with TPR close to 100% and successfully screens all unnecessary variables with
FPR equal to 0%. Even under the less informative circumstance when n has an equal or less amount
than d, our method can still achieve great selection results with TPR above 90%. As n goes up, there is
a uniform improvement in all cases in terms of TPR and FPR.

Table 8: Hyper-parameters setting in feature selection.
πi ν0,1 ν0,2 νi,1 νi,2 νi,3 νi,4 T ns ϵ

0.5 1 1 1 1 5 1 1000 256 0.5

Table 9: Feature selection in terms of TPR/FPR.
d=100 k n ns TPR FPR
Case 1 50 200 64 99.92%±0.39% 0.00%±0.00%
Case 2 50 200 128 99.92% ± 0.39% 0.00%±0.00%
Case 3 50 400 64 100.00% ± 0.00% 0.00%±0.00%
Case 4 50 400 128 100.00% ± 0.00% 0.00%±0.00%
Case 5 90 200 64 99.86%±0.42% 0.00%±0.00%
Case 6 90 200 128 99.93% ± 0.26% 0.00% ± 0.00%
Case 7 90 400 64 100.00% ± 0.00% 0.00% ± 0.00%
Case 8 90 400 128 100.00% ± 0.00% 0.00% ± 0.00%
d=300 k n ns TPR FPR
Case 1 100 300 64 95.21%±2.22% 2.16%±1.52%
Case 2 100 300 256 96.46% ± 2.12% 2.31% ± 2.10%
Case 3 100 500 64 99.92% ± 0.27% 0.00% ± 0.00%
Case 4 100 500 256 100.00% ± 0.00% 0.00% ± 0.00%
Case 5 250 300 64 91.34%±2.92% 11.92%±6.79%
Case 6 250 300 256 91.95% ± 2.40% 14.56% ± 8.35%
Case 7 250 500 64 99.92% ± 0.17% 0.00% ± 0.00%
Case 8 250 500 256 99.92% ± 0.05% 0.00% ± 0.00%
d=500 k n ns TPR FPR
Case 1 100 450 64 92.70%±2.56% 4.41%±1.67%
Case 2 100 450 256 92.89% ± 2.69% 4.90% ± 1.82%
Case 3 100 800 64 99.94% ± 0.23% 0.00% ± 0.00%
Case 4 100 800 512 100.00% ± 0.00% 0.00% ± 0.00%
Case 5 450 500 64 90.21%±2.56% 12.68%±6.38%
Case 6 450 500 256 92.06% ± 1.84% 16.04% ± 6.69%
Case 7 450 800 64 99.92% ± 0.13% 0.00% ± 0.00%
Case 8 450 800 512 100.00% ± 0.00% 0.00% ± 0.00%

31


	Introduction
	Related Work
	ZooD for OoD Generalization
	Model Ranking
	Model Ensemble with Feature Selection

	Experiments
	Comparison with IID Ranking Metrics
	SOTA Results with Our Selection Method
	Computational Efficiency of ZooD

	Conclusion
	Experiments
	Complete Details of Experiment Setup
	Extended Ranking Results

	Model Ranking in ZooD
	Preliminaries: setup, problem and strategy
	Model Assumption
	Parameter Estimation
	Computing Metric
	Cross-Domain Validation Selects Invariant Features

	Feature Selection in ZooD
	Bayesian Variable Selection
	Variational EM Algorithm
	Variational Inference
	Algorithm Details
	Theoretical Result
	Simulation Study


