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ABSTRACT

This paper introduces a new framework for open-domain question answering in
which the retriever and the reader iteratively interact with each other. The frame-
work is agnostic to the architecture of the machine reading model and the retriever
uses fast nearest neighbor search algorithms that allow it to scale to corpora contain-
ing millions of paragraphs. We show the efficacy of our architecture by achieving
state-of-the-art results on large open domain datasets such as TriviaQA-unfiltered
(Joshi et al., 2017). We also show that our multi-step-reasoning framework brings
uniform improvements when applied to two different reader architectures.

1 INTRODUCTION

Open-domain question answering (QA) (Voorhees et al., 1999) involves a retriever for selecting
relevant context from a large corpora of text (e.g. Wikipedia) and a reader for ‘reasoning’ on the
retrieved context. A lot of effort has been put into designing sophisticated neural machine reading
architectures for reading short context (e.g. a single paragraph), with much success (Wang & Jiang,
2017; Seo et al., 2017; Xiong et al., 2017; Wang et al., 2018c; Yu et al., 2018, inter alia). However, the
performance of such systems degrade significantly when combined with a retriever in open domain
settings (Chen et al., 2017). For example, the exact match accuracy of DrQA (Chen et al., 2017), on
the SQUAD dataset (Rajpurkar et al., 2016) degrades from 69.5% to 28.4% in open-domain settings.
The primary reason for this degradation in performance is due to the retriever’s failure to find the
relevant paragraphs for the machine reading model (Htut et al., 2018).

We propose the following desiderata for a general purpose open-domain QA system - (a) The retriever
model should be fast, since it has to find the relevant context from a very large text corpora and give
it to the more sophisticated and computationally expensive machine reading model (b) Secondly, the
retriever and reader models should be interactive, i.e. if the reader model is unable to find the answer
from the initial retrieved context, the retriever should be able to learn to provide more relevant context
to the reader. Open-domain QA systems such as R3 (Wang et al., 2018a) and DS-QA (Lin et al., 2018)
have sophisticated retriever models where the reader and retriever are jointly trained. However, their
retriever computes question-dependent paragraph representation which is then encoded by running an
expensive recurrent neural network over the tokens in the paragraph. Since the retriever has to rank a
lot of paragraphs, this design would not scale well to large corporas. One the other hand, the retriever
model of QA systems such as DrQA (Chen et al., 2017), Clark & Gardner (2018) are based on a tf-idf
retriever, but they lack trainable parameters and are consequently unable to recover from mistakes.

This paper introduces an open domain architecture in which the retriever and reader iteratively interact
with each other. Our model first pre-computes and caches representation of context (paragraph).
These representations are independent of the query unlike recent architectures (Seo et al., 2017;
Xiong et al., 2017; Wang et al., 2018a; Lin et al., 2018) and hence can be computed and stored offline.
Given an input question, the retriever performs fast inner product search to find the most relevant
contexts. The highest ranked contexts are then passed to the neural machine reader which usually is
a multi-layer recurrent neural network with attention. Our architecture is agnostic to the choice of
the reader architecture and we show that doing multi-step-reasoning increases performance of two
state-of-the-art machine reading architectures - DrQA (Chen et al., 2017) and BiDAF (Seo et al.,
2017).

It is possible that the answer might not exist in the initial retrieved context or that the model would
need to combine information across multiple contexts (Wang et al., 2018b). We equip the reader with
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Figure 1: Overview of our open-domain architecture. The initial query is encoded and the retriever
ranks all the paragraphs in the corpus. The k top-ranked paragraphs are sent to the neural machine
reader which outputs an answer span and also its internal reader state. The multi-step-reasoner
component of our model takes in input the reader state and the previous query vector and does a gated
update to produce a reformulated query. This new query vector is used by the retriever to re-rank the
paragraphs in the corpus. Thus the multi-step-reasoner facilitates iterative interaction between the
retriever (search engine) and the reader (QA model)

an additional gated recurrent unit (Cho et al., 2014; Chung et al., 2014) which takes in the state of the
reader and the current query vector and generates a new query vector. This new query vector is then
used by the retriever model to re-rank the context. This allows the model to read new contexts and
combine evidence across multiple contexts, if required. Since the retriever makes a ‘hard selection’ of
context to send to the reader, we train the retriever and the reader jointly using reinforcement learning
(RL). Recently, Buck et al. (2018) introduced the ActiveQA model in which a RL agent sits between
the user and the QA system and learns to reformulate the natural language query so as to maximize
performance. However, reformulating the query in a natural language domain is a hard problem as
we do not have a good generative model for natural language. In our approach, we circumvent this
issue by performing query reformulation in the continuous embedding space and not in the space of
natural language. Empirically, we find that our model significantly outperforms ActiveQA.

Our architecture draws inspiration from how students are instructed to take reading comprehension
tests (Cunningham & Shablak, 1975; Bishop et al., 2006; Duggan & Payne, 2009). Given a document
containing multiple paragraphs and a set of questions which can be answered from the document,
(a) the student quickly skims the paragraphs, (b) then for each question, she finds the most relevant
paragraphs that she thinks will answer the question. (c) She then carefully reads the chosen paragraph
to answer the question (d) However, if the chosen paragraph does not answer the question, then
given the question and the knowledge of what she has read till now, she decides which paragraph to
read next. Step (a) is akin to our model encoding and storing the question independent paragraph
representations and step (b) corresponds to the inner product search to find the relevant context. The
reading of the context by the sophisticated neural machine reader corresponds to step (c) and the last
step corresponds to the iterative (multi-step) interaction between the retriever and the reader.

To summarize, this paper makes the following contributions: (a) We introduce a new framework for
open-domain QA in which the retriever and reader iteratively interact with each other via a novel
multi-step-reasoning component which learns to reformulate the query vector. (b) Unlike several
recent open-domain models, our paragraph vectors are independent of the query representations
which makes our architecture highly scalable and we empirically demonstrate it by running large scale
experiments over millions of paragraphs. (c) Lastly, our framework is agnostic to the architecture of
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the reader and we demonstrate the efficacy of our framework on two different neural machine reading
comprehension models.

2 MODEL

The architecture of our model consists of three main components - (a) paragraph retriever - that
computes a relevance score for each paragraph w.r.t a given query and ranks them according to the
computed score. (b) reader - a more sophisticated neural machine reading model that receives few
top-ranked paragraphs from the retriever and outputs a span of text as a possible answer to the query
and (c) multi-step-reasoner - a gated recurrent unit that facilitates iterative interaction between the
retriever and the reader.

Formally, the input to our model is a natural language question Q = q1, q2,. . . , qn consisting of n
tokens and a set of paragraphs P = {p1, p2, . . . pK}. Our model extracts a span of text a as the answer
to the question from the paragraphs in P. Note that the set of paragraphs in P can be the paragraphs in
a set of documents retrieved by a search engine (as in TRIVIAQA web-open (Joshi et al., 2017)) or it
could be all the paragraphs in a large text corpus such as Wikipedia. Next we describe each individual
component of our model.

2.1 PARAGRAPH RETRIEVER

The paragraph retriever computes a score for how likely a paragraph is to contain an answer to a given
question. The paragraph representations are computed independent of the query and once computed,
they are not updated. This allows us to cache the representations and store them offline. The relevance
score of a paragraph is computed as a inner product between the paragraph and the query vectors.
The paragraph and query representations are computed as follows.

Given a paragraph p = {p1,p2, . . . ,pm} consisting of m tokens, a multi-layer recurrent neural network
encodes each tokens in the paragraph.

{p1,p2, . . . ,pm}= RNN({p1,p2, . . . ,pm})

where p j ∈R2d encodes useful contextual information around the j-th token. Specifically we choose to
use a multi-layer bidirectional long-short term memory network (LSTM) (Hochreiter & Schmidhuber,
1997) and take p j as the hidden units in the last layer of the RNN. We concatenate the representation
computed by the forward and the backward LSTM. To compute a single paragraph vector p ∈ R2d

from all the token representations, we combine them using weights b j ∈ R

b j =
exp(w ·pj)

∑ j′ exp(w ·p j′)

p =Ws ∑
j′

b j′ ·pj′

Here b j encodes the importance of each token and w ∈ R2d ,Ws ∈ R2d×2d are learned weights. This
is similar to computing self-attention (Lin et al., 2017; Vaswani et al., 2017).

The query q = {q1,q2, . . . ,qn} is encoded by another network with the exact same architecture to ob-
tain a query vector q ∈R2d . Next the relevance score of a paragraph w.r.t the query (score(p,q) ∈ R)
is computed by a simple inner product:

score(p,q) = 〈p,q〉 (1)

To return, we select k paragraphs corresponding the maximum score. Thus, our problem reduces
to maximum inner product search (MIPS). When number of candidate paragraphs is small, we can
evaluate the score for each candidate paragraph on GPU to perform MIPS. However, such approach
of linear search is wasteful and not scalable when the number of candidate paragraphs is large, e.g.
in case of full Wikipedia. Borrowing ideas from Bachrach et al. (2014); Anonymous (2018), we
propose to use excellent nearest neighbor (NN) search algorithms to perform the MIPS in sublinear
time. Assume, we can have an upper bound u for the L2 norm, i.e. u≤ ‖p‖, ∀p. Then, the trick is
to perform NN search in L2 distance with modified query and paragraph vectors so that the search
is equivalent to MIPS for original query. In this regard, define the augmented paragraph vectors as

3



Under review as a conference paper at ICLR 2019

p̃i = [pi;
√

u2−‖pi‖2] and augmented query vector as q̃ = [q;0]. With this transformation, we can
see that:

MIPS(q|p) = argmax
i
〈pi,q〉= argmin

i
u2 +‖q‖2−2〈pi,q〉

= argmin
i
‖ p̃i− q̃‖= argmin

i
‖x̃i− q̃‖2 = NN(q̃|p̃)

(2)

Many exact NN search algorithms can find k-NN in time (sublinear) logarithmic in number of
paragraphs (Beygelzimer et al., 2006; Anonymous, 2018), after an one-time preprocessing. In case
of question answering, the preprocessing can be done only once because the set of all paragraphs is
fixed for all the queries. We chose to use SGTree (Anonymous, 2018) to perform the NN/MIPS due
to its fast construction time and competitive performance.

Note that our paragraph representations are independent of the given query and are never updated
once they are trained. After training is completed, we cache the Wsp ∈ R2d vectors. This is unlike
many recent work in open-domain QA. For example, in R3 (Wang et al., 2018a), the retriever uses
Match-LSTM model (Wang & Jiang, 2017) to compute question-matching representations for each
token in the passage. The paragraph representations are then obtained by running a bi-directional
RNN over these matched representation. Although powerful, this architecture design will not scale in
open-domain settings where the retriever has to re-compute new representations for possibly millions
of paragraphs for every new question. In contrast, once training is over, we cache the paragraph
representation and use it for every query at test time.

Training - Following previous work (Htut et al., 2018; Lin et al., 2018; Wang et al., 2018a), we gather
labels for paragraphs during training using distant supervision (Mintz et al., 2009). A paragraph
that contains the exact ground truth answer string is labeled as an positive example. For a positive
(negative) labeled paragraph, we maximize (minimize) the log(σ(score(p,q))). The number of layers
of the bi-directional LSTM encoder is set to three and we use Adam (Kingma & Ba, 2014) for
optimization. Once training is done, we pre-compute and cache the paragraph representation of each
dataset in our experiments.

2.2 MACHINE READER

The reader is a sophisticated neural machine reading comprehension (MRC) model that takes in the
top few paragraphs sent by the retriever and outputs a span of answer text. Our model is agnostic to
the exact architecture of the reader and we perform experiments to show the efficacy of our model
on two state-of-the-art neural machine reading models - DrQA (Chen et al., 2017) and BiDAF (Seo
et al., 2017).

MRC models designed for SQUAD (Rajpurkar et al., 2016), NewsQA (Trischler et al., 2016), etc
operate on a single paragraph. However it has been shown that reading and aggregating evidence
across multiple paragraphs is important when doing QA over larger evidence set (e.g. full Wikipedia
document) (Swayamdipta et al., 2018; Clark & Gardner, 2018) and in open domain settings (Wang
et al., 2018b). Most MRC models compute a start and end scores for each token in the paragraph that
represents how likely a token is the start/end of an answer span. To gather evidence across multiple
paragraphs sent by the retriever, we normalize the start/end scores across the paragraphs. Furthermore
a text span can appear multiple times in a paragraph. To give importance to all answer spans in
the text, our objective aggregates (sums) the log-probability of the score for each answer position.
In other words, let I(w, p) denote the token start positions where the answer span appears in the
paragraph p and let wS be the starting word of the answer span. Our model maximizes the sum of the
following objective for the start and end word of an answer spans as follows. (For brevity, we only
show the objective for the starting word (ws) of the span.)

log

(
∑ j∈P ∑k∈I(ws,p j) exp(scorestart(k, j))

∑ j∈P ∑
n j
i=1 exp(scorestart(i, j))

)

Here, P denotes the set of all top-ranked paragraphs by the retriever, n j denotes the number of tokens
in paragraph j and scorestart (k, j) denotes the start score of the k-th token in the j-th paragraph. A
similar score aggregation strategy has been used in previous work (Kadlec et al., 2016; Clark &
Gardner, 2018). During inference, following Chen et al. (2017); Seo et al. (2017), the score of a
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span that starts at token position i and ends at position j of paragraph p is given by the sum of the
scorestart(i, p) and scoreend( j, p).

It should be noted that the changes we made to aggregate evidence over multiple paragraphs and
mentions of spans needs no change in the original architecture of the machine reading model.

2.3 MULTI-STEP-REASONER

A novel component of our open-domain architecture is the multi-step-reasoner which facilitates
iterative interaction between the retriever and the machine reader. The multi-step-reasoner is a gated
recurrent unit (Cho et al., 2014; Chung et al., 2014) which takes in the current state of the reader and
the current query vector and does a gated update to produce a reformulated query. The reformulated
query is sent back to the retriever which uses it to re-rank the paragraphs in the corpus. Since the
gated update of the multi-step-reasoner, conditions on the current state of the machine reader, this
multi-step interaction provides a way for the search engine (retriever) and the QA model (reader)
to communicate with each other. This can be seen as an instance of two agents cooperating via
communication to solve a task (Lazaridou et al., 2017; Lee et al., 2018; Cao et al., 2018).

More formally, let qt ∈ R2d be the current query representation which was most recently used by the
paragraph retriever to score the paragraphs in the corpus (equation 1). The multi-step-reasoner also
has access to the reader state which is computed from the hidden memory vectors of the reader. The
reader state captures the current information that the reader has encoded after reading the paragraphs
that was sent by the retriever. Next we show how the reader state is computed.

Let mj ∈ R2p be the hidden vector associated with the j-th token in the paragraph as computed by
the bi-directional multi-layer recurrent neural network encoder of the reader model1. Let L ∈ R2p be
the final query representation of the reader model. L is usually created by some pooling operation on
the hidden representation of each question token. The reader state S ∈ R2p is computed from each of
the hidden vectors mj and L by first computing soft-attention weights between each paragraph token,
followed by combining each mj with the soft attention weights.

αj =
exp
(
mj ·L

)
∑ j′ exp

(
m′j ·L

)
S =∑

j

(
αj ·mj

)
Finally, the new reformulated query qt+1 for the paragraph retriever is calculated by a GRU update.

qt+1 = GRU(qt,S)

The gated update ensures that relevant information from qt is preserved and new and useful informa-
tion from the reader state S is added to the reformulated query.

Training - There exists no supervision for training the query reformulation of the multi-step-reasoner.
Therefore, to train the parameters of the GRU network we employ reinforcement learning. We define
the problem as a deterministic finite horizon Partially Observed Markov decision process (POMDP).
The components of POMDP are described as follows:

States. A state in the state space consists of the entire text corpora, the query, the answer, and k
selected paragraphs. The reader is part of the environment and is fully described given the current
state, i.e. selected paragraphs and the query.

Observations. The agent only observes a function of the current state. In particular, to the agent only
the initial query vector and the memory of the reader model is shown, which are a function of the
current state. Intuitively, this represents the information encoded by the machine reader model after
reading the top k paragraphs sent by the retriever in current step.

1An overwhelming majority of successful MRC architectures use multi-layer RNN encoders. However there
are exceptions such as QANET (Yu et al., 2018) and work by Swayamdipta et al. (2018). However these models
still compute hidden memory vectors for each token position and a representation for the query and therefore the
reader state can be computed in the same way.
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Algorithm 1 Multi-step reasoning for open-domain QA

Input: Question text Qtext, Text corpus (as a list of paragraphs) T , Paragraph embeddings P (list
of paragraph embeddings for each paragraph in T ), ModelM, Number of multi-steps T, number
of top-ranked paragraphs k
Output: Answer span a

1: q0←− encode query(Qtext) # (§ 2.1)
2: for t in range(T) do
3: {p1, p2, . . . pk} ←M.retriever.score paras(qt,P,k) # each pi denotes a paragraph id
4: P1...k

text ← get text(T ,{p1, p2, . . . pk}) # get text for the top paragraphs
5: at , st , St ←M.reader.read(P1...k

text ,Qtext) # (§ 2.2); St denotes reader state
# at denotes answer span
# st denotes the score of the span

6: qt←M.multi step reasoner.GRU(qt,St)
# (§ 2.3); Query reformulation step

7: end for
8: return answer span a with highest score

Actions. The set of all paragraphs in the text corpora forms the action space. The retriever scores all
paragraphs w.r.t the current query and selects the top k paragraphs to send to the reader model. We
treat k as a hyper-parameter in our experiments.

Reward. At every step, the reward is measured by how well the answer extracted by the reader
model matches to the ground-truth answer. We use the F1 score (calculated by word overlap between
prediction and ground-truth) as the reward at each step.

Transition. The environment evolves deterministically after reading the paragraphs sent by the
retriever.

Our policy is parameterized by the GRU of the multi-step-reasoner and we directly optimize the
parameters to maximize the expected reward. We treat the reward at each step equally and do not
apply any discounting. We employ the REINFORCE (Williams, 1992) algorithm to train the GRU
network.

2.4 PUTTING IT ALL TOGETHER

Our open-domain architecture is summarized above in Algorithm 1. Given a large text corpora (as a
list of paragraphs), the corresponding paragraph embeddings (which can be trained by the procedure
in (§ 2.1)) and hyper-parameters (T,k), our modelM returns a text span a as answer. The multi-step
interaction between the retriever and reader can be best understood by the for loop in line 2 of
algorithm 1. The initial query q0 is first used to rank all the paragraphs in the corpus (line 3), followed
by which the top k paragraphs are sent to the reader (line 4). The reader returns the answer span (with
an associated score for the span) and also its internal state (§ 2.3) (line 5). The GRU network then
takes in the current query and the reader state to produce the updated query which is then passed
to the retriever (line 6). The retriever uses this updated query to again re-rank the paragraphs and
the entire process is repeated for T steps. At the end of T steps, the model returns the span with the
highest score returned by the reader model. The reader is trained using supervised learning (using the
correct spans as supervision) and the parameters of the GRU network are trained using reinforcement
learning. During training, we first pre-train the reader model by setting the number of multi-step
reasoning steps (T = 1). After the training converges, we freeze the parameters of the reader model
and train the parameters of the GRU network using policy gradients. The output of the reader model
is used to generate the reward which is used to train the policy network.

3 RELATED WORK

Open domain QA is a well-established task that dates back to few decades of reasearch. For example
the BASEBALL system (Green Jr et al., 1961) aimed at answering open domain question albeit
for a specific domain. Open-domain QA has been popularized by the Trec-8 task (Voorhees et al.,
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Datasets #q(test) #p(test) #p/q(test)
SearchQA 27,247 1,351,493 49.6
QuasarT 3,000 299,389 99.8
TriviaQA-unfiltered 10,790 1,610,186 149
TriviaQA-full 11,274 1,684,193 1,684,193

Table 1: Statistics of various dataset. In TriviaQA full our retriever operates on 1.6M paragraphs

1999). Research has still progressed in open-domain settings with the introduction of datasets such
as SearchQA Dunn et al. (2017), Quasar (Dhingra et al., 2017), TriviaQA (Joshi et al., 2017) but
performance is still unsatisfactory. In many open-domain systems (Chen et al., 2017; Clark & Gardner,
2018), the retriever is a simple IR based system (e.g. tfidf retriever) with no trainable parameters
and hence the retriever cannot overcome from its mistakes. Recent work such as R3 (Wang et al.,
2018a) use a trained retriever and have shown improvement in performance. However R3 forms query
dependent paragraph representation and such architectures will not scale to full open-domain settings
where the retriever has to rank millions of paragraphs. The retriever and reader of R3 and DS-QA Lin
et al. (2018) are trained jointly but they do not support iterative reasoning thereby failing to recover
from any mistakes made by the ranker or where evidence needs to be aggregated across multiple
paragraphs. Models that do iterative reasoning (Shen et al., 2017; Liu et al., 2017) i.e. read a single
paragraph multiple times, have proven to be effective in closed domain settings (e.g. SQUAD). Our
model can be seen as doing iterative reasoning but in a more realistic, open-domain setting. In fact,
our architecture reduces to these models when the set of evidence consists of only one paragraph and
hence can be seen as a strict generalization of these models.

4 EXPERIMENTS

We now present empirical studies for our model in order to establish that (i) multi-step reasoning is
effective (§ 4.1), (ii) the framework achieves high accuracy on large open-domain datasets (§ 4.2),
(iii) the framework is agnostic to reader architecture (§ 4.4), and (iv) the framework scales to corpora
containing millions of paragraphs (§ 4.3) To illustrate these claims, we evaluate on the following
open-domain question answering datasets:

TriviaQA-open – TriviaQA includes around 95,000 questions answers pairs authored by Trivia
enthusiasts. We use the unfiltered TriviaQA corpus which contains a lot more paragraphs
than the web/wiki setting. Moreover there is no guarantee that the evidence will have answer
to a question.

TriviaQA-full – This is a setting in which we combine all evidence for every question in the
development set. This resulted in a corpus containing 1.68M paragraphs per question. In
other words, to answer a question, the retriever has to find the correct context among 1.68M
paragraphs.

SearchQA – is another open-domain dataset which consists of question-answer pairs crawled from
the J! archive. The paragraphs are obtained from 50 web pages retrieved using the Google
search API

Quasar-T – consists of 43K open-domain questions where the paragraphs are obtained by retrieving
50 sentences from the ClueWeb data source.

Implementation All the algorithms are implemented on PyTorch. For all experiments, we use
Adam optimizer (Kingma & Ba, 2014) with the default hyperparameter settings. We run our exper-
iments on a commodity machine with Intel R© Xeon R© CPU E5-2630 v4 CPU, 256GB RAM, and
NVidia R© Titan X GPU.
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Figure 3: Examples of how our retriever iteratively modifies the query by reading context to fetch
more relevant paragraphs

Model Quasar-T SearchQA TriviaQA
EM F1 EM F1 EM F1

GA (Dhingra et al., 2016) 26.4 26.4 - - - -
Bidaf (Seo et al., 2017) 25.9 28.5 28.6 34.6 - -
AQA (Buck et al., 2018) - - 40.5 47.4 - -
R3 (Wang et al., 2018a) 35.3 41.7 49.0 55.3 47.3 53.7
DS-QA 2 (Lin et al., 2018) 37.27 43.63 58.8 64.5 48.7 56.3
multi-step-reasoner 39.53 46.67 55.01 61.61 51.94 61.66

2 Despite our best effort we could not reproduce the results for Quasart-T using their code

Table 2: Performance on test sets for various datasets

4.1 EFFECTIVENESS OF MULTI-STEP REASONING

30 40 50 60 70
F1 Score

TriviaQA

SearchQA

Quasar-T

58.59

57.33

42.69

61.96

61.61

46.05

3 Steps

7 Steps

3 Steps

Base

MSR

Figure 2: Performance gain (on develop-
ment set) using multi step reasoning on
3 open domain datasets.

We show how multi-step reasoning using RL, as presented
in Section 2.3, improves the question answering accu-
racy. For each dataset, we start with a reader model which
has been trained using no multi-step reasoning steps. We
freeze the parameters of the reader and then train the pa-
rameters of the GRU (policy) using reinforcement learning.
Different datasets have varying degree of complexity of the
questions, thus we need different number of multi-step rea-
soning. For every dataset, we uniformly see improvements
in performance over the base model. The improvement
with multi-step reasoning over the base model is shown in
Figure 2 and illustratives are shown in Figure 3.

4.2 ACCURACY

Next, we demonstrate high accuracy of multi-step-reasoner on reported baselines on the three
challenging open datasets. In Table 2, we compare multi-step-reasoner with various prior art using
Exact Match (EM) and F1 scores. On the hidden test set of TriviaQA we obtain the highest score
ever reported to the best of our knowledge. We also have competitive scores on other datasets. For
example on SearchQA, we beat AQA (Buck et al., 2018) significantly by more than 13 F1 points. This
shows that it is much more efficient to do query reformulation in rich embedding space rather than in
the space of natural language. We also consistently outperform R3 on all datasets demonstrating the
effectiveness of iterative reasoning.
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Models F1
BiDaF 31.74
BIDAF-multi-step-3 32.25
BIDAF-multi-step-5 33.09

Table 3: Performance of BiDAF on the Quasar-T dataset.

4.3 SCALABILITY

Next we show the scalability of our architecture. For this experiment, we combine all paragraphs in
the development set resulting in 1.68M paragraphs. Since we do not update paragraph representations
and we use fast nearest neighbor data structures, our architectures can scale to such large corpus
size. Since no other baselines scaled to this size, we compare our multi-step-reasoner model with a
reader model with no multi-steps. The reader model got an exact match score of 37.45 and F1 score
of 42.16, where as the model with reasoning steps 3 got a score of 39.76 (Em) and 44.30 (F1). This
also shows that multi-step reasoning is effective even in the large scale setting.

4.4 EXPERIMENTS ON BIDAF READER

Finally, we show that our framework can be used in exactly the same way for a different reader
architecture. We use an open source implementation of BiDAF (Seo et al., 2017) and modify it to
return reader state (with the scores). Without any tuning, we observed that multi-step-reasoning gave
a boost in peformance on the QuASAR-T dataset.

5 CONCLUSION

In this paper, we introduced a new framework for open-domain question answering in which the
retriever and the reader iteratively interact with each other. The resulting framework improved
accuracy in question answering task by 15% as compared to previous results establishing new state-
of-the-art results on the TriviaQA-unfiltered dataset(Joshi et al., 2017). We also show that our method
can scale to corpora containing millions of paragraphs. Lastly, we show that our framework brings
uniform improvements to two neural machine reading architectures - DrQA (Chen et al., 2017) and
BiDAF (Seo et al., 2017).
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