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ABSTRACT

We consider the problem of aligning continuous word representations, learned in
multiple languages, to a common space. It was recently shown that, in the case
of two languages, it is possible to learn such a mapping without supervision. In
this paper, we extend one of the proposed methods to the problem of aligning
multiple languages to a common space. A simple solution to this problem is to
independently map all languages to English. Unfortunately, this can degrade the
alignments between languages different than English. We thus propose to add
constraints to ensure that the learned mappings can be composed, leading to bet-
ter alignments. We evaluate our method on the problem of aligning word vectors
in eleven languages, showing improvement in word translation requiring the com-
position of multiple mappings.

1 INTRODUCTION

Pre-trained continuous representations of words are standard building blocks of many natural lan-
guage processing and machine learning systems (Mikolov et al., 2013b). Word vectors are designed
to summarize and quantify semantic nuances through a few hundred coordinates. Such represen-
tations are typically used in challenging down-stream tasks to improve generalization when the
amount of data is scarce (Collobert et al., 2011). The distributional information used to learn these
word vectors derives from statistical properties of word co-occurrence found in large corpora (Deer-
wester et al., 1990). Such corpora are, by design, monolingual (Mikolov et al., 2013b; Bojanowski
et al., 2016), resulting in the independent estimation of word embeddings for each language.

A limitation of these monolingual embeddings is that it is impossible to compare words across lan-
guages. It is thus tempting to combine all these word representations into a common multilingual
space, where every language could be mapped. Mikolov et al. (2013a) noticed that word vectors
learned on different languages share a similar structure. More precisely, two sets of pre-trained vec-
tors in different languages can be aligned to some extent: a linear mapping between the two sets of
embeddings is enough to produce decent word translations. Recently, there has been an increasing
interest in mapping these pre-trained vectors in a common space (Xing et al., 2015b; Artetxe et al.,
2017), resulting in many publicly available embeddings in many languages mapped into a single
common vector space (Smith et al., 2017; Conneau et al., 2017; Joulin et al., 2018). The quality of
these multilingual embeddings can be tested by composing mappings between languages and look-
ing at the resulting translations. Figure 1 shows the quality of word translation between English and
Italian as a function of the number of composed mappings used between these two languages. The
linear degradation of their quality is an empirical evidence that independent alignments of language
pairs do not guarantee a “universal” coherence of the embedding space among languages. Practi-
cally speaking, it is not surprising to see such a degradation since these bilingual alignments are
trained separately, without enforcing transitivity.

We propose a novel approach to align multiple languages simultaneously in a common space in
a way that enforces transitive translations. Our method relies on constraining mappings to verify
circular translations over a graph of languages. Nakashole and Flauger (2017) has recently shown
that such constraints over a well chosen triplet of languages improve supervised bilingual alignment.
We extend their work to an unsupervised multilingual setting, i.e., where no bilingual lexicon nor
language graph is provided. We show that our approach achieves competitive performance among
unsupervised approaches while enforcing composition.
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Figure 1: English to Italian word translation
when mapping through an increasing number
k of intermediate languages. For instance, a
possible path is English→ French→ Russian→
Italian, where the English vectors are trans-
formed by applying successively three map-
pings Qen-fr, Qfr-ru, and Qru-it. The accuracy is
averaged over many paths. We align the fast-
Text embeddings of Bojanowski et al. (2016)
with the approach of Grave et al. (2018) and a
Nearest Neighbor (NN) criterion.

2 PRELIMINARIES ON BILINGUAL ALIGNMENT

In this section, we provide a brief overview on bilingual alignment approaches to map a dictionary
of embeddings onto another, and discuss their shortcomings when used in a multilingual setting.

2.1 SUPERVISED BILINGUAL ALIGNMENT

Mikolov et al. (2013a) formulate the problem of word embedding alignment as an optimization
problem with a quadratic loss. Given two aligned sets of (row) word vectors stacked in two n × d
matrices X = [x1; . . . ;xn] and Y = [y1; . . . ; yn] respectively, we learn a linear mapping matrix Q
by solving the following least-square problem

min
Q∈Rd×d

‖XQ− Y ‖22,

which admits a closed form solution. A crucial assumption of that formulation is that each embed-
ding (each line) in X corresponds to a word whose translation has an embedding stored in Y at the
same index. Therefore, a bilingual lexicon is needed to form Y and X . Xing et al. (2015b) have
shown that constraining the mapping Q to the set of orthogonal matrices Od leads to better trans-
formations, while preserving the dot product between vectors from the same language. As shown
by Schnemann (1966), this reformulation, commonly known as Orthogonal Procrustes, has a closed
form solution equal to Q = UV >, where USV > is the singular value decomposition of X>Y .

2.2 UNSUPERVISED BILINGUAL ALIGNMENT: WASSERSTEIN-PROCRUSTES

Wasserstein-Procrustes (Zhang et al., 2017a; Grave et al., 2018) extends orthogonal Procrustes to
the setting of unsupervised bilingual alignment. In this approach, an orthogonal transformation
and a one-to-one word mapping are jointly learned. This mapping is parametrized using a n × n
binary matrix P , belonging to the set of assignment matrices Pn, itself consisting in all bistochastic
matrices (the Birkhoff polytope) with binary entries:

Pn = Bn ∩ {0, 1}n×n, where Bn =
{
P ∈ Rn×n

+ , P1n = 1n, P
>1n = 1n

}
.

The joint optimization leads to the following problem:

min
Q∈Od

min
P∈Pn

‖XQ− PY ‖22. (1)

This problem is not convex since neither the feasible set Pn norOd is convex. Treating each variable
separately leads, however, to two well understood optimization problems: when P is fixed, solving
forQ, involves solving the orthogonal Procrustes problem. WhenQ is fixed, an optimal permutation
matrix P can be obtained with the Hungarian algorithm. Both algorithms have a cubic complexity,
although on different quantities: Procrustes involves the dimension of the vectors (typically d =
300) whereas the Hungarian algorithm is applied on the vocabulary (typically N = 20k–200k).
Because these two problems can be easily solved, a simple heuristic is to address Eq.(1) using
alternate optimization.
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We reformulate the optimal matching as a network flow problem using the Kantorovich relaxation
of optimal transport (Villani, 2003; Santambrogio, 2015) on the Birkhoff polytope

min
P∈Bn

〈P,D2
XQ,Y 〉, (2)

where D2
XQ,Y is the n × n matrix with entries ‖xiQ − yj‖22. This quantity is well known as

the 2-Wasserstein distance between the two point clouds described in XQ and Y . Cuturi (2013)
proposed to regularize problem Eq.(2) with the negative entropy of P . The resulting problem is
strongly convex and a solution can be obtained with a complexity of O

(
N2
)

(from matrix vector
multiplications). Grave et al. (2018) reduces further the overall complexity by using a stochastic
optimization.

As is usually the case for many non-convex problems, a good initial guess can help converge to
better local minima. Grave et al. (2018) propose for instance to compute an initial P by solving
a convex relaxation of the quadratic assignment problem which can ideally disambiguate among
several possible symmetric choices. We found, however, that a different approach, grounded on the
entropic regularization of the Gromov-Wasserstein (GW) problem (Mémoli, 2011) worked well in
practice and was significantly faster (see also Alvarez-Melis and Jaakkola (2018) for a recent use
of GW in a NLP context). As described in Solomon et al. (2016); Peyré et al. (2016), the entropic
regularization of GW consists in computing an optimal assignment matrix P̂ by solving

min
P∈Pn

〈−D2
XPD

2
Y , P 〉 − εH(P ), (3)

whereH(P ) stands for the Shannon entropy of P and D2
X , D2

Y for the n× n pairwise squared Eu-
clidian distance matrices of all points inX and Y respectively. Note that the case ε = 0 corresponds
to Mémoli’s initial proposal. Optimizing the regularized version (ε > 0) leads to a local minimum
P̂ that can be used as an initialization to solve Eq. (1).

3 COMPOSABLE MULTILINGUAL ALIGNEMENTS

Most publicly available aligned vectors are mapped to a unique multilingual vector space, that typ-
ically coincides with English (Smith et al., 2017; Conneau et al., 2017; Joulin et al., 2018). This
means that any translation to English can be carried out with a single matrix multiply, but that
any translation between two other languages requires two matrix multiplications (to, and then from
English). The results presented in Figure 1 are evidence that these aligned vectors would lead to
degraded performance when translating or comparing words from two languages different than En-
glish, compared to directly learning a mapping between these two languages. In this section, we
propose a method to jointly align N sets of word embeddings to a unique common space while pre-
serving the quality of word translations between all pairs of languages. We discuss efficient solutions
that avoid learning N2 matrices.

3.1 COMPOSITIONALITY AS A SET OF TRIPLET CONSTRAINTS

In the rest of this paper, we focus on the unsupervised multilingual alignment problem, that can
be formulated in the following way: given a graph G = (V,E) where each node is a language i
associated with its embeddings Xi, we are interested in learning the translation matrix Qij for each
edge (i, j) in E, i.e., learning a mapping between each pair of languages connected in the graph.
This graph can be dense, requiring to learn N2 matrices, or can be a star tree with a given language
in the middle (e.g., English) and only N matrices. In the unsupervised setting, we also need to learn
a permutation matrix Pij for each edge, leading to the following optimization problem:

min
Qij∈Od, Pij∈Pn

∑
(i,j)∈E

‖XiQij − PijXj‖22. (4)

This loss naturally decomposes along edges, leading to |E| independent bilingual alignment prob-
lems and no guarantees of compositionality. Nakashole and Flauger (2017) suggest to constrain
bilingual alignments along a triplet of languages, improving, in the supervised setting, the align-
ment of distant languages by taking a language “in-between”. In absence of supervision or knowl-
edge about similarities between languages, we can still adapt this idea by adding circular constraints
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Algorithm 1 Language Tree derivation
1: Input: embedding sets (X1, · · · , XN ) of size b; mappings (Q1, · · · , QN )
2: for i=1 to N do
3: for j=i+1 to N do
4: Qij = QiQ

>
j

5: Compute di,j = min
P∈Pb

‖XiW − PXj‖22
6: Build fully connected graph G = (V,E) with edge weights (di,j)i,j .
7: Return T a minimum spanning-tree of G

to Eq. (4), i.e., constraining mappings over a set T of triplets of languages to be coherent:

min
Qij∈Od, Pij∈Pn

∑
(i,j)∈E

‖XiQij − PijXj‖22 + µ
∑

(i,j,k)∈T
‖QijQjk −Qik‖22. (5)

The set T must be coherent with the graph G: A constraint (i, j, k) is only considered if the edges
(i, j) and (j, k) exist in the graph G. One limitation of this approach is that it potentially requires
additional linear mappings corresponding to the constraints. For example, in the case of a tree, these
additional edges do not exist as they would create cycles. Instead, we replace the constraints on the
mappings by constraints on the mapped vectors, at the cost of additional matchings Pjk:

min
Qij∈Od, Pij∈Pn

∑
(i,j)∈E

‖XiQij − PijXj‖22 + µ
∑

(i,j,k)∈T
‖XiQijQjk − PikXk‖22. (6)

The linear mappings are orthogonal, leading to the following equivalent reformulation:

min
Qij∈Od, Pij∈Pn

∑
(i,j)∈E

‖XiQij − PijXj‖22 + µ
∑

(i,j,k)∈T
‖XiQij − PikXkQ

>
jk‖22. (7)

The general problem stated in Eq. (7) can be optimized with the same alternative minimization
procedure as in Wasserstein-Procrustes.

We now discuss how to chose the set of edges E and constraints T . We want to learn only N − 1
matrices, while still being able to translate between any two pairs of languages. The set of edges
E must thus correspond to a spanning tree. Given a tree E, we can obtain a set of constraints by
considering all the triplets (i, j, k) such that the edges (i, j) and (j, k) exists in E. This corresponds
to adding constraints between pairs of languages which are at a distance of 2 in the tree.

Minimum spanning tree. Given a set of N2 residual alignment errors between all pairs of lan-
guages, it is possible to compute a minimum spanning tree, where similar languages would be close.
In the unsupervised case, we can obtain good enough alignment errors by using the results of our
initialization (i.e. bilingual alignment using Wasserstein Procrustes). Figure 2 gives an example of
a tree obtained this way. This solution ensures that a translation between two languages follows a
path between similar languages, which was shown to work well in practice (Nakashole and Flauger,
2017). However this method is sensitive to the quality of the initialization and translation error can
add up over a long path.

Star tree. An alternative to computing a minimum spanning tree is to use a star tree, centered
around one language (e.g. English). In that case, every embedding is only one transformation away
from a ”central” multilingual space. The main advantage of this approach is to limit the length of
the path between any pair of language to 2. Unfortunately, this graph leads to (N − 1)2 constraints,
since any pair of language (but the central one) is at a distance of 2.

Star tree with pruned constraints. A potential solution to this problem is to limit the number of
constraints that are added to our optimization problem. Here we propose to keep only a subset of
constraints of size of the order of N . This set can either be random or generated from the minimum
spanning tree. It can also be dynamically changed during the optimization. In that way, we have the
best of both worlds: our constraints focus only on a subset of languages, and every pair of languages
is only at a maximum distance of 2 in the graph. By indexing the central language by 0, this approach
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Figure 2: Three alignment models. Plain black lines indicate pairs of languages for which mappings
are learned while dashed red lines indicate constraints. Left: tree model: alignments are both
learned and penalized using a predefined language tree. Center: star model: languages are aligned
onto a common pivot language. All the N2 pairs are penalized. Right: HUG: languages are aligned
onto a common pivot languages but only edges from a predefined language tree are constrained.

Algorithm 2 Hyperalignement with Unsupervised Graphs (HUG)
1: Input: Embedding sets (X0, · · · , XN ); regularization factor µ
2: for i=1 to N do . Initialization
3: Qi=Wasserstein-Procrustes(Xi, X0)

4: for epoch=1 to nepoch do
5: Draw a set of N constraints either randomly or from a tree as constructed with Algo. 1
6: Update Qi by optimizing Eq. (7) with Projected Stochastic Gradient Descent
7: Return (Q1, · · · , QN ), T .

learns a mapping for each language different than 0, leading to the following optimization problem:

min
Qi∈Od, Pij∈Pn

N∑
i=1

‖XiQi − Pi0X0‖22 + µ
∑

(i,k)∈T

‖XiQi − PikXkQk‖22, (8)

where T is some set of N constraints. If the regularization parameter µ is set to one and we add a
mapping Q0 equal to the identity, we can even rewrite this objective function as:

min
Qi∈Od, Pij∈Pn

∑
(i,j)∈T ′

‖XiQi − PijXjQj‖22. (9)

This problem corresponds to mapping all vectors in a common space, while minimizing the Wasser-
stein distance between pairs of languages in T ′. It does not have any additional hyper-parameters
compared to the bilingual method, and we use this formulation in the rest of the paper.

Dynamic constraint tree. So far, we have assumed that the set of triplets is given a priori, but
there is no reason to keep it fixed during training. For example, we can sample a new tree at each
iteration or learn it from the language distances. Indeed, once all the languages are aligned in a
common space, we can compute an optimal 1-to-1 assignment between a pair of languages (i, j)
to build a pseudo-distance, di,j = min

P∈Pb

‖XiQi − PXjQj‖2. Once the distances for all pairs are

computed, we compute a minimum spanning tree. Algorithm 1 summarizes this procedure.

Overall approach. Algorithm 2 summarizes our approach, called Hyper-alignment with Unsu-
pervised Graphs (HUG): we initialize the Qi for each i = 1, . . . , N with Wasserstein-Procrustes
between Xi and the referential X0. We then iteratively draw N constraints, either randomly or from
a tree built on language distances obtained from the alignments. Then we update the alignment
matrices by optimizing the problem described in Eq. (7). We refer to our method as HUG-r if the
constraints are randomly sampled, and HUG-s if based on a minimum spanning tree.
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4 RELATED WORK

Bilingual word embedding alignment. Since the work of Mikolov et al. (2013a), many have pro-
posed different approaches to align word vectors with different degrees of supervision, from fully
supervised (Dinu et al., 2014; Xing et al., 2015a; Artetxe et al., 2016; Joulin et al., 2018) to little su-
pervision (Smith et al., 2017; Artetxe et al., 2017) and even fully unsupervised (Zhang et al., 2017a;
Conneau et al., 2017; Hoshen and Wolf, 2018). Among unsupervised approaches, some have explic-
itly formulated this problem as a distribution matching: Cao et al. (2016) align the first two moments
of the word vector distributions, assuming Gaussian distributions. Others (Zhang et al., 2017b; Con-
neau et al., 2017) have used a Generative Adversarial Network framework (Goodfellow et al., 2014).
Zhang et al. (2017a) shows that an earth mover distance can be used to refine the alignment obtained
from a generative adversarial network, drawing a connection between word embedding alignment
and Optimal Transport (OT). Closer to our work, Grave et al. (2018) and Alvarez-Melis and Jaakkola
(2018) have proposed an unsupervised bilingual alignment method solely based on OT. We use an
approach inspired by their work to initialize our multilingual approach.

Nakashole and Flauger (2017) show that constraining coherent word alignments between triplets of
nearby languages improves the quality of induced bilingual lexicons. As opposed to our work, their
approach is supervised both in terms of lexicon and choice of triplets. We extend their work in two
ways: we jointly extend the graph to more than three languages and we discover it along with the
bilingual lexicons without any supervision.

Optimal Transport. Optimal transport (Villani, 2003; Santambrogio, 2015) provides a natural
topology on shapes and discrete probability measures (Peyré et al., 2017), that can be leveraged
thanks to fast OT problem solvers (Cuturi, 2013; Altschuler et al., 2017). Of particular interest is the
Gromov-Wasserstein distance (Gromov, 2007; Mémoli, 2011). It has been used for shape matching
under its primitive form (Bronstein et al., 2006; Mémoli, 2007) and under its entropy-regularized
form (Solomon et al., 2016).

Hyperalignment. Hyperalignment, as introduced by Goodall (1991), is the method of aligning
several shapes onto each other with supervision. Recently, Lorbert and Ramadge (2012) extended
this supervised approach to non-Euclidean distances. We recommend Gower et al. (2004) for a
thorough survey of the different extensions of Procrustes and to Edelman et al. (1998) for algo-
rithms involving orthogonal constraints. For unsupervised alignment of multiple shapes, Huang
et al. (2007) use a pointwise entropy based method and apply it to face alignment.

5 EXPERIMENTAL RESULTS

Implementation Details. We use normalized fastText word embeddings trained on the Wikipedia
Corpus (Bojanowski et al., 2016). Word translations are retrieved with a 1-Nearest Neighbor (NN)
criterion. We use stochastic gradient descent (SGD) with an initial batch size of 500, 10k iterations
per epoch and a fixed learning rate of 0.1. We fix the total number of epoch to 5. At each epoch,
we double the batch size and divide by 2 the number of iterations per epoch. We initialize with
the Gromov-Wasserstein approach applied to the first 2k vectors and a regularization parameter ε of
0.5 (Peyré et al., 2016). We use the python optimal transport package 1.

Extended MUSE Benchmark. We evaluate our model on the MUSE test datasets (Conneau et al.,
2017) on the following languages: Czech, Danish, Dutch, English, French, German, Italian, Polish,
Portuguese, Russian and Spanish. MUSE bilingual lexicon are mostly translations to or from En-
glish. For missing pairs of languages (e.g., Danish-German), we use the intersection of their transla-
tion to English to build a test set. The resulting bilingual lexicons are noisy, but they seem to capture
decently the difference between approaches.

Baselines. We consider as baselines several bilingual alignment methods that are either supervised,
i.e., Orthogonal Procrustes and RCSLS (Joulin et al., 2018), or unsupervised, i.e., Adversarial (Con-
neau et al., 2017), ICP (Hoshen and Wolf, 2018) and Wasserstein Procrustes (Grave et al., 2018). We

1POT, https://pot.readthedocs.io/en/stable/
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Direct Ind. Direct Ind. Direct Ind.

ru-en pl-en ru-pl ru-pl it-en pt-en it-pt it-pt nl-en de-en nl-de nl-de

Bil. 42.8 53.0 51.7 42.7 71.4 72.5 74.9 70.3 64.3 66.4 66.4 63.6
HUG 44.3 49.7 - 50.9 71.0 71.8 - 74.0 63.6 66.3 - 64.8

ru-en pt-en ru-pt ru-pt da-en cs-en da-cs da-cs fr-en da-en fr-da fr-da

Bil. 42.8 72.5 43.7 38.7 49.0 46.3 40.0 33.5 76.6 49.0 45.1 41.9
HUG 44.9 71.0 - 43.0 50.1 47.6 - 38.1 74.0 49.3 - 45.2

Table 1: Accuracy with a NN criterion on triplet alignment with direct translation (“Direct”) and
indirect translation (“Ind.”). Indirect translation uses English as a pivot language. We consider
nearby languages on the first row of results, and distant ones on the second row. For reference, we
also provide the performance of direct bilingual alignment. All the accuracies are the average of both
directions (source7→target and target 7→source). The bilingual baseline (“Bil.”) is the Procrustes-
Wasserstein of Grave et al. (2018) with a Gromov-Wasserstein initialization.

also consider several alternatives to our approach as baselines: the minimum spanning tree approach
(“MST”) described on the left panel of Fig. (2). The minimum spanning tree is built on the distances
of the Gromov-Wasserstein initialization. We also consider a star-tree with N2 constraints (“Star”).

5.1 TRIPLET ALIGNMENT

In this section, we evaluate the quality of our formulation in the simple case of triplets of languages.
English is used as a “pivot” for the translation between two other languages. We evaluate both the
direct translation to the pivot and the indirect translation between the two other languages. This
experiment is related to the setting of Nakashole and Flauger (2017), with the difference that, being
in an unsupervised case, we do not have prior information about a good pivot language for a given
pair, hence, the choice of a fixed pivot across the experiments. The choice of English for pivot is
motivated by the fact that it is commonly used as a referential for publicly available aligned vectors.

Table 1 compares HUG with bilingual alignment (Bil.) on both direct and indirect translations. Note
that, in this setting, there is no difference between MST, Star or any variation of HUG. For reference,
we also report the performance obtained with a direct bilingual alignment between the 2 languages.

Overall, our approach improves indirect translation by 4.2% in average, while the overall impact on
the direct translation is marginal, i.e., −0.3%. HUG significantly reduces the drop of performance
of indirect alignment from 3.3% to 0.9% when compared to direct alignment. The effect seems to be
more important when one of the language is poorly aligned to the pivot. Interestingly, in some cases,
using a pivot can improve the performance of direct translation, typically when direct alignment is
not very good. Finally, when the two languages are already well aligned with English (e.g., nl-de or
it-pt), they tend to also have good unconstrained indirect translation. For these pairs, the impact of
our approach is marginal, with an improvement of less than a percent.

5.2 MULTILINGUAL ALIGNMENT

In this section, we evaluate the quality of joint multilingual alignment on 11 languages. We look
at the impact on direct and indirect alignments. We consider two versions of HUG: HUG-r, where
the tree is drawn at random at each iteration and HUG-s, where the tree is built with a MST on the
distance between languages at each epoch.

Direct word translation. Table 2 shows the accuracy on direct word translations, i.e., translation
to the pivot language, English. We average accuracy from and to English for each language. This
setting is unfair to the MST baseline, since it does not have the same set of direct translations.
For the bilingual supervised and unsupervised alignments, we learn a model per pair. In terms
of baselines, our implementation of Wasserstein-Procrustes (W-Proc.∗), initialized by optimizing
Gromov-Wasserstein, outperforms the one introduced in Grave et al. (2018) (W-Proc.) by 2.8%.

7



Under review as a conference paper at ICLR 2019

en-fr en-es en-it en-pt en-de en-pl en-ru en-da en-nl en-cs Avg.

supervised, unconstrained
Proc. 75.9 77.1 72.0 72.8 68.2 56.9 52.2 50.6 64.9 51.7 64.2
RCSLS 80.5 83.0 - - 73.7 - 58.7 - - - -

unsupervised, unconstrained
Adv. 66.2 70.5 - - 61.4 - 35.3 - - -
ICP 74.9 76.0 70.8 - 67.0 - 42.6 - - - -
W-Proc. 73.5 76.4 68.5 68.5 64.5 45.1 40.6 46.3 62.2 41.8 58.7
W-Proc.∗ 76.6 72.1 71.4 72.4 66.4 53.0 42.8 49.0 64.3 46.3 61.5

unsupervised, constrained
MST 65.3 69.6 60.7 63.8 64.7 44.6 39.3 42.9 59.1 39.5 54.8
Star 71.2 72.9 68.1 69.1 63.6 49.8 43.9 47.5 60.3 45.6 59.2
HUG-r 76.1 72.9 71.0 72.6 66.8 52.6 44.9 49.2 64.1 48.1 61.8
HUG-s 73.6 75.6 69.5 71.1 65.5 50.3 45.4 49.4 62.5 46.9 61.0

Table 2: Accuracy with a NN criterion on direct bilingual alignment between our approach and dif-
ferent bilingual unsupervised approaches as well as a supervised approaches, orthogonal Procrustes
and RCSLS (Joulin et al., 2018). All the accuracies are the average of both directions (source-target
and target-source). For fair comparison, we report Adv. (Conneau et al., 2017), ICP (Hoshen and
Wolf, 2018) and W-Proc. (Grave et al., 2018) without the refinement step. W-Proc.∗ is our imple-
mentation of W-Proc. with a Gomorov-Wasserstein initialization.

On direct translations, most constrained multilingual alignments, but HUG-r, perform slightly worse
than their bilingual counterparts. This is not surprising since bilingual alignment methods focus
on this task, while multilingual alignment methods focus on improving indirect translation. The
Star model performance drops significantly, which can be attributed to the difficulty of learning a
non-convex function with O(N2) terms. This is confirmed by the performance of HUG-r (+2.6%
compared to Star) where the N2 constraints are simply replaced by a sampling of N . The gain of
HUG-r over its bilingual counterpart (W-Proc.∗) is too marginal (+0.3%) to draw any conclusion.

Latin Germanic Slavic Latin-Germanic Latin-Slavic Germanic-Slavic All

Bil. 73.4 52.8 42.5 50.7 42.5 37.7 48.5

MST 75.0 50.0 49.3 46.4 41.9 35.1 47.2
Star 74.6 52.8 47.6 50.5 44.0 39.7 49.8
HUG-r 74.6 53.5 46.8 51.4 44.4 40.1 50.2
HUG-s 76.3 55.4 49.3 51.7 44.0 40.2 50.7

Table 3: Accuracy with a NN criterion on indirect translations averaged among and across language
families. The bilingual baseline (“Bil.”) is the Procrustes-Wasserstein of Grave et al. (2018) with a
Gromov-Wasserstein initialization.

Indirect word translation. Table 3 shows the performance on indirect word translation with En-
glish as a pivot language. We consider averaged accuracies among and across language families,
i.e. Latin, Germanic and Slavic. For the MST approach, we compute the translation by following
the unique path in the tree. This can be a direct translation and it does not necessarily involve En-
glish. As expected, all of the constrained approaches improve over the bilingual baseline, by 1 to
2%. Among them, HUG-s has the best performance with an average improvement of +2.2%. Note
that this improvement is averaged over 45 pairs of languages, while the drop of −0.5% in direct
translations is averaged over 10 pairs of languages, leading to an overall improvement of +1.7%
over all 55 pairs. Similarly, the overall improvement for HUG-r is +1.5%.

Interestingly, HUG-r and HUG-s improve translation for every pair of language families. The
biggest improvement comes from translation among Slavic languages (+6.8%). This is not sur-
prising since it is the language family that is the most distant from the pivot, i.e., English. Similarly,
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it is not surprising that the smallest improvement is between Latin and Germanic languages (+1%),
since English is a natural pivot between them.

Language tree. As a by-product, our ap-
proach discovers a language tree, as shown in
the figure on the right. We remove English
since it is not used directly. Three clusters ap-
pear: the Latin, Germanic and Slavic families
chained as Latin-Germanic-Slavic. However,
the pairs in the connections are harder to inter-
pret, like Dutch-Spanish.

6 CONCLUSION

This paper introduces an unsupervised multilingual alignment method that maps every language into
a common space while minimizing the impact on indirect word translation. We show that simply
adding circular constraints on the mapped words significantly reduces the drop of performance in
pivot word translation, and discuss several implementations of this idea. Despite its simplicity,
we observe a consistent gain over bilingual translation, even sometimes on direct word translation.
However, our current approach is relatively hard to scale and how to jointly learn alignment over
hundreds of languages remains an open question.
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