
Approximate Decomposable Submodular Function
Minimization for Cardinality-Based Components

Anonymous Author(s)
Affiliation
Address
email

Abstract

Minimizing a sum of simple submodular functions of limited support is a spe-1

cial case of general submodular function minimization that has seen numerous2

applications in machine learning. We develop fast techniques for instances where3

components in the sum are cardinality-based, meaning they depend only on the4

size of the input set. This variant is one of the most widely applied in practice,5

encompassing, e.g., common energy functions arising in image segmentation and6

recent generalized hypergraph cut functions. We develop the first approximation7

algorithms for this problem, where the approximations can be quickly computed8

via reduction to a sparse graph cut problem, with graph sparsity controlled by the9

desired approximation factor. Our method relies on a new connection between10

sparse graph reduction techniques and piecewise linear approximations to concave11

functions. Our sparse reduction technique leads to significant improvements in12

theoretical runtimes, as well as substantial practical gains in problems ranging from13

benchmark image segmentation tasks to hypergraph clustering problems.14

1 Introduction15

Given a ground set V , a function f : 2V → R is submodular if for every A,B ⊆ V it satisfies f(A) +16

f(B) ≥ f(A ∩B) + f(A ∪B). Submodular functions are ubiquitous in combinatorial optimization17

and machine learning, arising, e.g., in image segmentation [22], hypergraph clustering [30], data18

subset selection [43], and document summarization [31]. Algorithms for minimizing submodular19

functions are well studied. Strongly-polynomial time algorithms for general submodular minimization20

exist [36, 17, 18], but their runtimes are impractical in most cases. The past decade has witnessed21

several advances in faster algorithms for decomposable submodular function minimization (DSFM),22

i.e., minimizing a sum of simpler submodular functions [9, 24, 39, 29, 35, 10, 21, 19]. This problem23

is defined by identifying a set E ⊆ 2V of subsets of the ground set. The goal is then to solve24

minimizeS⊆V f(S) =
∑
e∈E fe(S ∩ e), (1)

where for each e ∈ E, fe is a submodular function supported on a subset e ⊆ V . Functions of this25

form often arise as energy functions in computer vision [22, 23, 13], and generalized cut functions26

for hypergraph clustering and learning [12, 28, 30, 32, 41, 42], among other applications.27

This paper focuses on cardinality-based DSFM (Card-DSFM), where every component fe in the28

sum is a concave cardinality function, i.e., fe(A) = ge(|A|) for some concave function ge. A single29

concave cardinality function is effectively a function of one variable and is trivial to minimize.30

However, set functions obtained via sums of these functions are much more complex and have broad31

modeling power, making this one of the most widely studied and applied variants since the earliest32

work on DSFM [24, 39]. In terms of theory, previous research has addressed specialized runtimes33

and solution techniques [24, 39, 22, 41]. In practice, cardinality-based decomposable submodular34

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

functions frequently arise as higher-order energy functions in computer vision [22] and set cover35

functions [39]. The most widely used generalized hypergraph cut functions are also cardinality36

based [30, 32, 41, 42, 1]. Even previous research on algorithms for the more general DSFM problem37

tends to focus on cardinality-based examples in experimental results [9, 39, 19, 29].38

We present the first approximation algorithms for Card-DFSM, using a purely combinatorial ap-39

proach that relies on approximately reducing (1) to a sparse graph cut problem. The fact that40

concave cardinality functions are representable by graph cuts has previously been noted in different41

contexts [22, 39, 41]—this can be accomplished by combining simple graph gadgets, whose cut42

properties together model the function. However, previous techniques are limited in that they (i)43

focus only on exact reduction techniques, (ii) do not consider the density of the resulting graph, and44

(iii) do not address any questions regarding the optimality of such a reduction. Here we develop new45

approximate reduction methods leading to a sparse graph, which we show is optimally sparse in terms46

of the standard gadget reduction strategy. We show that representing a concave cardinality function47

with a sparse graph is equivalent to approximating a concave function with a piecewise linear curve,48

where the number of linear pieces determines the sparsity of the reduced graph. We develop a new49

algorithm for the resulting piecewise linear approximation problem, and prove new bounds on the50

number of edges needed to model different concave functions that arise in practice. Combining our51

reduction strategy with state of the art algorithms for maximum flow [15, 26, 40, 14], leads to fast52

runtime guarantees for finding approximate solutions to Card-DSFM. Our algorithm is also easy53

to implement and lead to substantial practical improvements on benchmark image segmentation54

experiments [19, 9, 29] and algorithms for hypergraph clustering [42].55

2 Background on Graph Reductions56

A nonnegative set function f : 2V → R+ on a ground set V is graph reducible if there exists a57

directed graph G = (Vf , Ef) on a larger node set Vf = V ∪ A ∪ {s, t}, which includes an auxiliary58

node setA as well as source and sink nodes s and t, whose s-t cut structure models f . More precisely,59

f is graph reducible if for every S ⊆ V we have60

f(S) = minimize
T⊆A

cutG({s} ∪ S ∪ T), (2)

where cutG is the cut function on the graph G. In words, this says that evaluating f(S) is equivalent61

to finding the minimum s-t cut penalty that could be obtained by placing S on the s-side of the cut62

and V \S on the t-side. Given such a graph, f can be minimized by finding the minimum s-t cut set63

U∗ ⊆ V ∪ A in G and taking S∗ = V ∩ U∗. When (2) holds, we say that G models f .64

Graph reduction strategy for Card-DFSM. In general, the function f(S) =
∑
e∈E fe(S ∩ e) is65

not a concave cardinality function, even if individual components fe in the sum are. However, in66

order to show f is graph reducible, it suffices to find a small reduced graph Ge for each e ∈ E that67

models fe in the sense of (2), and combine these together into a larger graph. A number of related68

approaches for this task have been developed [39, 22]. We review the reduction strategy of Veldt et69

al. [41], which we build on in our work. Modeling fe can be accomplished by combining a set of70

cardinality-based (CB) gadgets [41]. For a set e ⊆ V of size k = |e|, a CB-gadget is a small graph71

parameterized by positive weights (a, b). Each v ∈ e defines a node, and the gadget also involves a72

single auxiliary node ve. For each v ∈ e, there is a directed edge (v, ve) with weight a · (k − b), and73

a directed edge (ve, v) with weight a · b. The resulting graph gadget models the function74

fa,b(S) = a ·min{|S| · (k − b), (k − |S|) · b}. (3)
To see why, consider where we must place the auxiliary node ve when solving a minimum s-t cut75

problem involving this small graph gadget. If we place i = |S| nodes on the s-side, then placing ve on76

the s-side has a cut penalty of ab(k− i), whereas placing ve on the t-side gives a penalty of ai(k− b).77

To minimize the cut as in (2) for a fixed S ⊆ e, we choose the smaller of the two cut penalties.78

Veldt et al. [41] showed that any cardinality-based submodular function fe on a ground set e can be79

modeled by combining |e| − 1 CB-gadgets. Analogously, Stobbe and Krause [39] showed that a80

concave cardinality function on a ground set e can be decomposed into a sum of |e| − 1 threshold81

potentials [39] and can be represented by graph cuts, though they provided no explicit reduction82

strategy. Priori to this, Kohli et al. [22] highlighted a similar type of gadget for modeling a class of83

robust potential functions for image segmentation, noting that multiple gadgets could be combined to84

model arbitrary concave functions. Using any of these techniques, the function fe can be modeled in85

the sense of (2) using a graph G with O(|e|) nodes and O(|e|2) edges.86

2

3 Sparse Reductions via Piecewise Linear Approximation87

We now turn to a new and refined problem of finding sparse and approximate reduction strategies88

for Card-DFSM, which we prove can be cast as approximating a concave function with a piecewise89

linear curve. All proofs are given in the supplement, where we also derive a similar graph reduction90

scheme that is slightly more efficient for modeling symmetric functions, i.e., fe(A) = fe(e\A).91

3.1 The sparse approximate reduction problem92

We first introduce a special parameterized function with broad modeling power.93

Definition 1 A k-node combined gadget function (CGF) of order J is a function of the form:94

`(x) = z0 · (k − x) + zk · x+
∑J
j=1 aj min{x · (k − bj), (k − x) · bj}, (4)

parameterized by scalars z0 ≥ 0, zk ≥ 0, and vectors a = (aj) ∈ RJ>0 and b = (bj) ∈ RJ>0, where95

bj < bj+1 for j ∈ {1, 2, . . . , J − 1} and bJ < k.96

If we define a set function on a ground set e of size k by fe(S) = `(|S|), then fe is exactly the97

function that is modeled by combining J CB-gadgets with parameters (aj , bj)
J
j=1, and additionally98

placing a directed edge from a source node s to each v ∈ e of weight z0, and an edge from v ∈ e99

to a sink node t with weight zk. Previous reduction techniques amount to proving that any concave100

function g on an interval [0, k] (representing a submodular function fe(S) = g(|S|)) matches some101

k-node CGF of order k − 1 at integer inputs [41, 39]. We focus on a new sparse reduction problem.102

Definition 2 Let g : [0, k] → R+ be a nonnegative concave function and fix ε ≥ 0. The sparsest103

approximate reduction (SpAR) problem seeks a k-node CGF ` with minimum order J so that104

g(i) ≤ `(i) ≤ (1 + ε)g(i) for all i ∈ {0, 1, 2, . . . k}. (5)

This is equivalent to finding the minimum number of CB-gadgets needed to approximately model a105

concave cardinality function. Thus, solving this problem provides the sparsest reduction in terms106

of a standard reduction strategy. Without loss of generality, Definition 2 is restricted to considering107

functions that upper bound g. Any other approximating function could be scaled to produce an upper108

bound leading to the same guarantees for Card-DSFM. Importantly, we care about approximating the109

concave function g only at integer inputs, since we are ultimately concerned with modeling the set110

function fe(S) = g(|S|). Satisfying g(x) ≤ `(x) ≤ (1 + ε)g(x) for all x ∈ [0, k] is a much stronger111

requirement and may require more CB-gadgets than is actually necessary to approximate fe.112

Connection to piecewise linear approximation Our first result establishes a precise one-to-one113

correspondence between a certain class of piecewise linear functions and combined gadget functions.114

Lemma 1 The k-node CGF in (4) is nonnegative, piecewise linear, concave, and has exactly J + 1115

linear pieces. Conversely, let `′ : [0, k] → R+ be concave and piecewise linear with J + 1 linear116

pieces, and let mi be the slope of the ith linear piece and Bi be the ith breakpoint. Then `′ is117

uniquely characterized as the k-node CGF parameterized by ai = 1
k (mi −mi+1) and bi = Bi for118

i ∈ {1, 2, . . . J}, z0 = `′(0)/k, and zk = `′(k)/k.119

This result tells us that solving SpAR (Def 2) for g is equivalent to finding a concave piecewise linear120

function with the smallest number of linear pieces approximating g at integer points. Although some121

techniques for approximating a concave function with a piecewise linear curve already exist [34] and122

could be used as heuristics, these are ultimately unable to find optimal solutions for SpAR. First of123

all, these methods focus on approximating concave functions over continuous intervals rather than124

just at integer inputs. More importantly, they do not provide instance optimal approximations, but125

only give upper bounds on the number of linear pieces needed. We therefore turn to new methods126

that will allow us to exactly solve our sparse approximation problem.127

3.2 Optimal sparse approximate reduction128

Our goal is to find a piecewise linear function ` with a minimum number of linear pieces satisfying129

condition (5). This is equivalent to finding a minimum-sized collection L of linear functions that130

3

Algorithm 1 GREEDYPLCOVER(g, ε)

Input: ε ≥ 0, concave function g
Output: piecewise linear ` with fewest linear pieces such that g(i) ≤ `(i) ≤ (1 + ε)g(i)
L ← ∅, u← 0 //u = smallest integer not covered by approximating line
while u ≤ k do

u′, L← NEXTLINE(g, u, ε) //line covering widest range [u, u’-1]
L ← L ∪ {L}, u← u′

end while
Return `(x) = minL∈L L(x)

“cover” points {j, g(j)} for integers j, in the sense that (i) each linear function L ∈ L satisfies131

g(j) ≤ L(j) for all j ∈ {0, 1, . . . , k}, and (ii) for every j ∈ {0, 1, . . . , k} there exists some L ∈ L132

satisfying L(j) ≤ (1 + ε)g(j). Then, `(x) = minL∈L L(x) is the desired piecewise linear solution.133

We develop a simple method (Alg. 1) to grow a collection L satisfying these conditions. Each iteration134

considers the integer u that is not currently covered by a (1 + ε)-approximating line, and uses a135

subroutine NEXTLINE to find a line L that covers u and also satisfies g(t) ≤ L(t) ≤ (1 + ε)g(t) for136

the largest integer t. This is done by taking the line through the point {u, (1 + ε)g(u)} that has the137

minimum slope while still upper bounding every point {i, g(i)}. To provide intuition for this strategy,138

note that Lmust contain some line that provides a (1+ε)-approximation at {0, g(0)}. It can only help139

us to choose a line that provides this guarantee while also providing a (1 + ε)-approximation for the140

widest possible range {0, 1, . . . , t}. The same logic applies to finding linear pieces to approximate the141

function at remaining integer inputs. The supplementary material contains pseudocode for NEXTLINE142

and a proof of the following result.143

Theorem 2 Algorithm 1 solves the sparsest approximate reduction problem in O(k) operations.144

3.3 Bounds on optimal reduction size145

For a concave function g, an existing method of Magnanti and Stratila [33, 34] can find a piecewise146

linear function that approximates g over a continuous interval [a, b] with O(1
ε log b

a) linear pieces.147

Although this method does not optimally solving SpAR, it can be used to show the following148

worst-case upper bound on the number of linear pieces found by our instance-optimal method.149

Theorem 3 Let g : [0, k]→ R+ be concave and let ε ≥ 0. Algorithm 1 will return a piecewise linear150

function ` with at most O(min{k, 1ε log k}) linear pieces satisfying (5).151

Previous lower bounds on the number of linear pieces needed to approximate a concave function152

do not apply to our problem, as these are focused on approximating functions over continuous153

intervals [34]. Since k points on a concave function can always be covered using k linear pieces,154

proving meaningful lower bounds for our problem is more challenging. Nevertheless, using an155

existing lower-bound for approximating the square root function over a continuous interval as a156

black-box [34], we prove that the upper bound in Theorem 3 is nearly asymptotically tight.157

Theorem 4 Let g(x) =
√
x and ε ≥ k−δ for a constant δ ∈ (0, 2). Every piecewise linear `158

satisfying g(i) ≤ `(i) ≤ (1 + ε)g(i) for i ∈ {0, 1, . . . k} contains Ω(logγ(ε) k) linear pieces where159

γ(ε) = (1 + 2ε(2 + ε) + 2(1 + ε)
√
ε(2 + ε))2. This behaves as Ω(ε−1/2 log k) as ε→ 0.160

In many cases the number of linear pieces returned by Algorithm 1 will be far smaller than the161

bounds above and the number of pieces returned by previous approaches [34]. One of our central162

contributions is the following guarantee for a concave function that arises extensively in applications.163

Its proof is somewhat involved, and relies on bounding the number of iterations it takes to provide an164

approximation for subintervals of the form [kε1/2
j−1

, kε1/2
j

] for j = 1 to j = dlog2 log2 ε
−1e.165

Theorem 5 Let g(x) = x · (k − x) for a positive integer k. For ε > 0, the approximating function `166

returned by Algorithm 1 will have O(ε−1/2 log log ε−1) linear pieces.167

This result is significant in a number of ways. First of all, and somewhat surprisingly, the number of168

linear pieces needed to approximate g is independent of k. Our instance optimal algorithm therefore169

4

Algorithm 2 SPARSECARD(f, ε)

Input: ε ≥ 0, function f(S) =
∑
e∈E fe(S ∩ e) =

∑
e∈E ge(|S ∩ e|) on ground set V

Output: Set S′ ⊆ V satisfying f(S′) ≤ (1 + ε) minS⊆V f(S).
A ← ∅, E ← ∅ //initialize auxiliary node and edge set for reduced graph
for e ∈ E do

`e ← GREEDYPLCOVER(ge, ε) //1: Solve SpAR (Algorithm 1)
Ge = (e ∪ Ae, Ee)← CGFTOGADGET(`e) //2: Build combined gadget (Lemma 1)
A ← A∪Ae, E ← E ∪ Ee //3: Add gadget to graph

end for
G = (V ∪ A ∪ {s, t}, E) //Build graph G modeling f
T = MINSTCUT(G) //Find minimum s-t cut
Return S′ = T ∩ V //Ignore auxiliary nodes

leads to a significant improvement over theO(ε−1 log k) upper bound in Theorem 3 and the piecewise170

linear approximation that could be obtained using existing techniques [34]. More importantly, this171

theorem has significant implications for approximately modeling the concave cardinality function172

fe(S) = ce|S||e\S| (where ce can be any positive constant) using graph cuts. Although previous173

exact graph reduction techniques [22, 39, 42] require O(|e|) nodes and O(|e|2) edges to model this174

function, we can approximate it with only O(|e|ε−1/2 log log ε−1) edges. This savings is particularly175

significant given how extensively this function appears in practice. This function is a commonly used176

region potential in image segmentation, and shows up frequently in work on DSFM [9, 19, 39, 29]. It177

also appears often in hypergraph clustering applications, where it results from a clique expansion178

of a hypergraph [2, 1, 7, 16, 46], which replaces each hyperedge e with a clique on nodes in e. The179

cut function of the resulting graph is a decomposable submodular function whose components have180

the form fe(S) = ce|S||e\S|. This arises similarly as the cut function of a graph obtained from181

co-occurrence relationships, or a graph obtained from a projection of a bipartite graph [8]. Our results182

provide a useful new type of sparsifier for all of these types of graphs.183

Theorem 5 also has implications for sparsifying a complete graph, a problem of interest in the184

theoretical computer science literature. Existing sparsifiers model the cut properties of a complete185

graph on n nodes with O(nε−2) edges [6]. This is tight for spectral sparsifiers [6], as well as for186

degree-regular cut sparsifiers with uniform edge weights [3]. Our result implies that if we are willing187

to include a small number of additional nodes and use directed edges, the cut properties of the188

complete graph can be modeled using only O(n) nodes and O(nε−1/2 log log ε−1) edges.189

4 Theoretical Runtime Analysis and Comparison190

The ability to approximately model a single concave cardinality function makes it possible to quickly191

obtain an arbitrarily good approximate solution to an instance of Card-DSFM by reducing it to a192

minimum s-t cut problem on a sparse graph. Define a function f on a ground set V by193

f(S) =
∑
e∈E fe(S ∩ e) =

∑
e∈E ge(|S ∩ e|), (6)

where each ge is concave. We assume each fe is nonnegative; if not we can adjust the objective by194

a constant without affecting optimal solutions. Algorithm 2 gives pseudocode for our new method195

SPARSECARD for minimizing (6). The method finds a sparse approximate graph reduction for each196

concave function ge using Algorithm 1, combines these into a larger graph whose cut properties197

approximate f , and then applies a minimum s-t cut solver to that graph. Finding sparse reductions is198

fast, so the asymptotic runtime guarantee is just the time it takes to solve the cut problem, which can199

be accomplished using any algorithm for solving the dual maximum s-t flow problem [15, 14, 26, 40].200

Theorem 6 Let n = |V | and R = |E|. When ε = 0, the graph constructed by SPARSECARD201

will have O(
∑
e∈E |e|) nodes and O(

∑
e∈E |e|2) edges. When ε > 0, the graph will have O(n +202 ∑

e∈E ε
−1 log |e|) nodes and O(ε−1

∑
e∈E |e| log |e|) edges. In either case, and the method will203

return a set T satisfying f(T) ≤ (1 + ε) minS⊆V f(S).204

The graph returned by SPARSECARD can also be asymptotically sparser for specialized concave205

functions, such as the popular clique expansion function in Theorem 5. In the remainder of the206

5

Table 1: Runtimes for Card-DFSM for various methods, where µ =
∑
e |e|, and µ2 =

∑
e |e|2.

Tmf (N,M) is the time to solve a max-flow problem with N nodes and M edges.
Method Discrete/Cont Runtime

Kolmogorov SF [24] Discrete Õ(µ2)
IBFS [11, 9] Discrete Õ(n2θmax + n

∑
e |e|4)

AP [35, 9, 29] Continuous Õ(nRθavgµ)
RCDM [10, 9] Continuous Õ(n2Rθavg)
ACDM [10, 9] Continuous Õ(nRθavg)
Axiotis et al. [4] Discrete Õ(maxe |e|2 ·

(∑
e |e|2θe + Tmf (n, n+ µ2)

)
SPARSECARD ε = 0 Discrete Õ(Tmf (µ, µ2)) = Õ

(
µ2 + µ3/2

)
SPARSECARD ε > 0 Discrete Õ

(
Tmf (n+ R

ε ,
1
εµ)
)

= Õ
(
µ
ε + (n+ R

ε)3/2
)

section, we provide a careful runtime comparison between SPARSECARD and competing runtimes207

for Card-DSFM. We focus on each runtime’s dependence on n = |V |, R = |E|, and support sizes208

|e|, and use Õ notation to hide logarithmic factors of n, R, and 1/ε. To easily compare weakly209

polynomial runtimes, we assume that each fe has integer outputs, and assume that log(maxS f(S))210

is small enough that it can also be absorbed by Õ notation. Our primary goal is to highlight the211

runtime improvements that are possible when an approximate solution suffices. Among algorithms212

for DSFM, SPARSECARD is unique in its ability to quickly find solutions with a priori multiplicative213

approximation guarantees. Previous approaches for DSFM focus on either obtaining exact solutions,214

or finding a solution to within an additive approximation error ε > 0 [4, 9, 29, 19]. In the latter case,215

setting ε small enough will guarantee an optimal solution in the case of integer output functions.216

However, these results provide no a priori multiplicative approximation guarantee, which is the217

traditional focus of approximation algorithms. Furthermore, using a larger value of ε for these218

additive approximations only improves runtimes in logarithmic terms. In constrast, setting ε > 0 will219

often lead to substantial runtime decreases for SPARSECARD.220

Competing runtime guarantees. Table 1 lists runtimes for existing methods for DSFM. We also221

give the asymptotic runtime for SPARSECARD when applying the recent maximum flow algorithm222

of van den Brand et al. [40]. While this leads to the best theoretical guarantees for our method,223

asymptotic runtime improvements over competing methods can also be shown using alternative fast224

algorithms for maximum flow [14, 26, 15]. For the submodular flow algorithm of Kolmogorov [24],225

we have reported the runtime guarantee provided specifically for Card-DSFM. While other approaches226

have frequently been applied to Card-DSFM [9, 39, 29, 19], runtimes guarantees for this case have not227

been presented explicitly and are more challenging to exactly pinpoint. Runtimes for most algorithms228

depend on certain oracles for solving smaller minimization problems at functions fe in an inner229

loop. For e ∈ E, let Oe be a quadratic minimization oracle, which for an arbitrary vector w solves230

miny∈B(fe) ‖y + w‖ where B(fe) is the base polytope of the submodular function fe (see [9, 5, 19]231

for details). Let θe be the time it take to evaluate the oracle at e ∈ E, and define θmax = maxe∈E θe232

and θavg = 1
R

∑
e∈E θe. Although these oracles admit faster implementations in the case of concave233

cardinality functions, it is not immediately clear from previous work what is the best possible runtime.234

When w = 0, solving miny∈B(fe) ‖y + w‖ takes O(|e| log |e|) time [19], so this serves as a best235

case runtime we can expect for the more general oracle Oe based on previous results. We note also236

that in the case of the region potential function fe(A) = |A||e\A|, Ene et al. [9] highlight that an237

O(|e| log |e|+ |e|τe) algorithm can be used, where τe denotes the time it take to evaluate fe(S∩e) for238

any S ⊆ e. In our runtime comparisons will use the bound θe = Ω(|e|), as it is reasonable to expect239

that any meaningful submodular function we consider should take a least linear time to minimize.240

Fast approximate solutions (ε > 0). Barring the regime where support sizes |e| are all very small,241

the accelerated coordinate descent method (ACDM) of Ene et al. [10] provides the fastest previous242

runtime guarantee. For a simple parameterized runtime analysis, consider a DSFM problem where243

the average support size is (1/R)
∑
e |e| = Θ(nα) for α ∈ [0, 1], and R = Θ(nβ), where β ≥ 1−α244

must hold if we assume each v ∈ V is in the support for at least one function fe. An exact runtime245

comparison between SPARSECARD and ACDM depends on the best runtime for the oracle Oe for246

concave cardinality functions. If an O(|e| log |e|) oracle is possible, the overall runtime guarantee247

for ACDM would be Ω(n1+α+β). Meanwhile, for a small constant ε > 0, SPARSECARD provides a248

(1 + ε)-approximate solution in time Õ(nα+β + max{n3/2, n3β/2}), which will faster by at least249

6

a factor Õ(
√
n) whenever β ≤ 1. When β > 1, finding an approximation with SPARSECARD is250

guaranteed to be faster whenever R = o(n2+2α). If the best case oracle Oe for concave cardinality251

functions is ω(|e| log |e|), the runtime improvement of our method is even more significant.252

Guarantees for exact solutions (ε = 0). As an added bonus, running SPARSECARD with ε = 0253

leads to the fastest runtime for finding exact solutions in many regimes. In this case, we can guarantee254

SPARSECARD will be faster than ACDM when the average support size is Θ(nα) and R = o(n2−α).255

SPARSECARD can also find exact solutions faster than other discrete optimization methods [24, 4, 11]256

in wide parameter regimes. Unlike SPARSECARD, these methods are designed for problems where257

all support sizes are small, but become impractical if even a single function has a large support size.258

The runtime guarantee for SPARSECARD when ε = 0 can be matched asymptotically by combining259

existing exact reduction techniques [22, 39, 41] with fast maximum flow algorithms. However, our260

method has the practical advantage of finding the sparsest exact reduction in terms of CB-gadgets.261

This results in a reduced graph with roughly half the number of edges used by the reduction of Veldt262

et al. [41]. Analogously, while Stobbe and Krause [39]) showed that a concave cardinality function263

can be decomposed as a sum of modular functions plus a combination of |e| − 1 threshold potentials,264

our approximation technique will find a linear combination with b|e|/2c threshold potentials. This265

amounts to the observation that any k + 1 points {i, g(i)} can be joined by bk/2c+ 1 lines instead266

of using k. Overall though, the most significant advantage of SPARSECARD over existing reduction267

methods is its ability to find fast approximate solutions with sparse approximate reductions.268

5 Experiments269

In addition to its strong theoretical guarantees, SPARSECARD is very practical and leads to substantial270

improvements in benchmark image segmentation problems and hypergraph clustering tasks. We focus271

on DSFM problems that simultaneously include component functions of large and small support,272

which are common in computer vision and hypergraph clustering applications [38, 9, 41, 32, 37].273

We ran experiments on a laptop with a 2.2 GHz Intel Core i7 processor and 8GB of RAM. The274

supplement includes code for our algorithms and experiments. We consider public datasets previously275

made available for academic research, and use existing open source software for competing methods.1276

Benchmark Image Segmentation Tasks. SPARSECARD provides faster approximate solutions277

for standard image segmentation tasks previously used as benchmarks for DSFM [19, 29, 9]. We278

consider the smallplant and octopus segmentation tasks from Jegelka et al. [20, 19]. These amount to279

minimizing a decomposable submodular function on a ground set of size |V | = 427 · 640 = 273280,280

where each v ∈ V is a pixel from a 427× 640 pixel image and there are three types of component281

functions. The first type are unary potentials for each pixel/node, i.e., functions of support size 1282

representing each node’s bias to be in the output set. The second type are pairwise potentials from a 4-283

neighbor grid graph; pixels i and j share an edge if they are directly adjacent vertically or horizontally.284

The third type are region potentials of the form fe(A) = |A||e\A| for A ⊆ e, where e represents285

a superpixel region. The problem can be solved via maximum flow even without sophisticated286

reduction techniques for cardinality functions, as a regional potential function on e can be modeled287

by placing a clique of edges on e. We compute an optimal solution using this reduction.Compared288

with the exact reduction method, running SPARSECARD with ε > 0 leads to much sparser graphs,289

much faster runtimes, and a posteriori approximation factors that are significantly better than (1 + ε).290

In Table 2 we list the sparsity, runtime, and a posteriori guarantee obtained for a range of ε values on291

the smallplant dataset using the superpixel segmentation with 500 regions.292

We also compare against recent C++ implementations of ACDM, RCDM, and Incidence Relation AP293

(an improved version of the standard AP method [35]) provided by Li and Milenkovic [29]. These use294

the divide-and-conquer method of Jegelka et al. [19], implemented specifically for concave cardinality295

functions, to solve the quadratic minimization oracleOe for region potential functions. Although these296

continuous optimization methods come with no a priori approximation guarantees, we can compare297

them against SPARSECARD by computing a posteriori approximations obtained using intermediate298

solutions returned after every few hundred iterations. Figure 1 displays approximation ratio versus299

1Image datasets: http://people.csail.mit.edu/stefje/code.html. Hypergraph clustering
datasets: www.cs.cornell.edu/~arb/data/. DSFM algorithms: from github.com/lipan00123/
DSFM-with-incidence-relations (MIT license); Hypergraph clustering algorithms: github.com/
nveldt/HypergraphFlowClustering (MIT license).

7

http://people.csail.mit.edu/stefje/code.html
www.cs.cornell.edu/~arb/data/
github.com/lipan00123/DSFM-with-incidence-relations
github.com/lipan00123/DSFM-with-incidence-relations
github.com/nveldt/HypergraphFlowClustering
github.com/nveldt/HypergraphFlowClustering

Table 2: Results from SPARSECARD for different ε > 0 on the smallplant instance with 500
superpixels. Sparsity is the fraction of edges in the approximate graph reduction compared with the
exact reduction. Finding the exact solution on the dense exact reduced graph took ≈20 minutes.

ε 1.0 0.2336 0.0546 0.0127 0.003 0.0007 0.0002
Approx.−1 4 · 10−3 2 · 10−3 6 · 10−4 6 · 10−5 3 · 10−5 7 · 10−6 7 · 10−7

Sparsity 0.013 0.017 0.02 0.035 0.06 0.108 0.196
Runtime 4.1 5.6 6.7 11.5 24.3 41.4 74.3

0 10 20 30 40 50 60
10-6
10-5
10-4
10-3
10-2
10-1

 oct, 200 superpixels

Runtime (seconds)

A
pp

ro
x

R
at

io
 -

 1

0 10 20 30 40 50 60
10-7
10-6
10-5
10-4
10-3
10-2
10-1

 oct, 500 superpixels

Runtime (seconds)

A
pp

ro
x

R
at

io
 -

 1

0 10 20 30 40 50 60
10-6
10-5
10-4
10-3
10-2
10-1
100

 plant, 200 superpixels

Runtime (seconds)

A
pp

ro
x

R
at

io
 -

 1

0 10 20 30 40 50 60
10-6
10-5
10-4
10-3
10-2
10-1
100

 plant, 500 superpixels

Runtime (seconds)

A
pp

ro
x

R
at

io
 -

 1

Figure 1: Approximation factor minus 1 vs. runtime for solutions returned by SPARSECARD and
competing methods on four image segmentation tasks. We display the average of 5 runs for competing
methods, with lighter colored region showing upper and lower bounds from these runs. SPARSECARD
is deterministic and was run once for each ε on a decreasing logarithmic scale. Our method maintains
an advantage even against post-hoc best case parameters for competing approaches: ACDM-best is
the best result obtained by running ACDM for a range of empirical parameters c for each dataset and
reporting the best result. The default is c = 10 (blue curve). Best post-hoc results for the plots from
left to right were c = 25, 10, 50, 25. It is unclear how to determine the best c in advance.

runtime for four DSFM instances (two datasets × two superpixel segmentations). SPARSECARD was300

run for a range of ε values on a decreasing logarithmic scale from 1 to 10−4, and obtains significantly301

better results on all but the octopus with 500 superpixels instance. This is the easiest instance;302

all methods obtain a solution within a factor 1.001 of optimality within a few seconds. ACDM303

depends on a hyperparameter c controlling the number of iterations in an outer loop. Even when304

we choose the best post-hoc c value for each dataset, SPARSECARD maintains its overall advantage.305

Note that we focus on comparisons with continuous optimization methods rather than other discrete306

optimization methods, as the former are better equipped for our goal of finding approximate solutions307

to DSFM problems involving functions of large support. To our knowledge, no implementations for308

the methods of Kolmogorov [24] or Axiotis et al. [4] exist. Meanwhile, IBFS [11] is designed for309

finding exact solutions when all support sizes are small. Recent empirical results [9] confirm that this310

method is not designed to handle the large region potential functions we consider here.311

Hypergraph local clustering. Graph reduction techniques have been frequently and success-312

fully used as subroutines for hypergraph local clustering and semi-supervised learning meth-313

ods [32, 42, 28, 44]. Replacing exact reductions with our approximate reductions can lead to signifi-314

cant runtime improvements without sacrificing on accuracy, and opens the door to running local clus-315

tering algorithms on problems where exact graph reduction would be infeasible. We illustrate this by316

using SPARSECARD as a subroutine for an existing method called HYPERLOCAL [42]. This algorithm317

finds local clusters in a hypergraph by repeatedly solving Card-DSFM problems corresponding to hy-318

pergraph minimum s-t cuts. For these DSFM problems, e ∈ E is a hyperedge and fe(A) is the penalty319

for cutting a hyperedge so that nodes inA ⊆ e are on one side of the cut. HYPERLOCAL was originally320

designed to handle only the δ-linear penalty fe(A) = min{|A|, |e\A|, δ}, for parameter δ ≥ 1, which321

can already be modeled sparsely with a single CB-gadget. SPARSECARD makes it possible to sparsely322

model any concave cardinality penalty. We specifically use approximate reductions for the weighted323

clique penalty fe(A) = (|e| − 1)−1|A||e\A|, the square root penalty fe(A) =
√

min{|A|, |e\A|},324

and the sublinear power function penalty fe(A) = (min{|A|, |e\A|})0.9, all of which require O(|e|2)325

edges to model exactly using previous reduction techniques. Weighted clique penalties in particular326

have been used extensively in hypergraph clustering [1, 44, 25, 46], including by methods specifically327

designed for local clustering and semi-supervised learning [27, 44, 45].328

We consider a hypergraph clustering problem where nodes are 15.2M questions on329

stackoverflow.com and each of the 1.1M hyperedges defines a set of questions answered by330

8

Table 3: Average F1 score and standard deviation for detecting 45 local clusters in a stackoverflow
question hypergraph using HyperLocal [41] + SPASECARD with four hyperedge cut penalty functions.
The δ-linear penalty had the fastest runtime (26 seconds on average) as it has a sparse optimal (ε = 0)
reduction. For ∆Time, we compute the ratio between the runtime of δ-linear and the runtime of each
method on all 45 clusters, then report the mean and standard deviation of these ratios. The # Best row
indicates the number of times a method obtains the highest F1 score out of the 45 clusters.

δ-linear clique x0.9 sqrt

ε = 0 ε = 1 ε = 0.1 ε = 1 ε = 0.1 ε = 1 ε = 0.1

F1 0.53 ±0.22 0.56 ±0.19 0.56 ±0.19 0.54 ±0.20 0.54 ±0.21 0.42 ±0.18 0.42 ±0.19

∆Time 1 1.32 ±0.33 1.81 ±0.43 1.17 ±0.25 2.04 ±0.42 2.02 ±0.99 3.19 ±1.4

Best 7 10 16 8 3 0 1

the same user. The mean hyperedge size is 23.7, the maximum size is over 60k, and there are331

2165 hyperedges with at least 1000 nodes. Questions with the same topic tag (e.g., “common-lisp”)332

constitute small labeled clusters in the dataset. Previous results show that HYPERLOCAL can detect333

clusters quickly with the δ-linear penalty by solving localized s-t cut problems near a seed set.334

Applying exact graph reductions for other concave cut penalties is infeasible, due to the extremely335

large hyperedge sizes, and using a clique expansion after simply removing large hyperedges was336

shown to perform poorly [42]. Using SPARSECARD as a subroutine opens up new possibilities.337

Following an existing approach [42], we seek to detect 45 labeled clusters using a random seed set of338

5% of each cluster. Table 1 reports average F1 scores and relative runtimes for four hyperedge cut339

penalties. Given the natural variation in cluster structure and size, standard deviations should not340

be viewed as error bars for each approach per se, but these provide a rough indication for how the341

performance of each method varies across clusters. Detailed results for each cluster are included in the342

supplement. Importantly, cut penalties that previously could not be used on this dataset (clique, x0.9)343

obtain the best results for most clusters. The square root penalty does not perform particularly well344

on this dataset, but it is instructive to consider its runtime. Theorem 4 shows that asymptotically this345

function has a worst-case behavior in terms of the number of CB-gadgets needed to approximate it.346

We nevertheless obtain reasonably fast results for this penalty function, indicating that our techniques347

can provide effective sparse reductions for any concave cardinality function of interest. We also ran348

experiments with ε = 0.01, which led to noticeable increases in runtime but only very slight changes349

in F1 scores. This indicates why exact reductions are not possible in general, while also showing that350

our sparse approximate reductions serve as fast and very good proxies for exact reductions.351

6 Conclusion and Discussion352

We have introduced a sparse graph reduction technique leading to the first approximation algorithms353

for cardinality-based DSFM. Our method provides an optimal reduction strategy in terms of previously354

considered graph gadgets, comes with improved theoretical runtime guarantees over competing355

methods, and leads to significant improvements in benchmark image segmentation and hypergraph356

clustering experiments. An interesting direction for future research is to explore lower bounds or357

improved techniques for other possible graph reduction strategies. Regarding potential limitations358

of our work, our method applies only to the cardinality-based variant of the problem, whereas most359

existing methods solve a more general problem. Nevertheless, Card-DSFM is one of the most widely360

applied variants in practice, which highlights the utility of developing better theory and algorithms361

for this special case. Another limitation is that our method is not as easy to parallelize as continuous362

optimization methods. An open question is whether better specialized (parallel or serial) runtimes363

can be obtained for continuous methods for Card-DSFM. Finally, while our research focuses on faster364

algorithms for a fundamental optimization task, there are ways in which tools for image segmentation365

and clustering (which are downstream applications of our work) can result in negative societal impacts366

depending on their use. For example, image segmentation could be used in illicit targeted video367

surveillance. Clustering methods could be used to de-anonymized private information in a social368

network, or to segment a population of voters for micro-targeted political campaigns that potentially369

lead to increased political polarization. Nevertheless, algorithms for decomposable submodular370

function minimization, as well as the more specific tasks of image segmentation and hypergraph371

clustering, remain very general and are also broadly useful for many positive applications.372

9

References373

[1] Sameer Agarwal, Kristin Branson, and Serge Belongie. Higher order learning with graphs.374

In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages375

17–24, New York, NY, USA, 2006. ACM.376

[2] Sameer Agarwal, Jongwoo Lim, Lihi Zelnik-Manor, Pietro Perona, David Kriegman, and377

Serge Belongie. Beyond pairwise clustering. In Proceedings of the 2005 IEEE Computer378

Society Conference on Computer Vision and Pattern Recognition, CVPR ’05, pages 838–845,379

Washington, DC, USA, 2005. IEEE Computer Society.380

[3] Noga Alon. On the edge-expansion of graphs. Comb. Probab. Comput., 6(2):145–152, June381

1997.382

[4] Kyriakos Axiotis, Adam Karczmarz, Anish Mukherjee, Piotr Sankowski, and Adrian Vladu.383

Decomposable submodular function minimization via maximum flow. arXiv:2103.03868, 2021.384

[5] Francis Bach. Learning with Submodular Functions: A Convex Optimization Perspective. Now385

Publishers Inc., Hanover, MA, USA, 2013.386

[6] Joshua Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. SIAM387

Review, 56(2):315–334, 2014.388

[7] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-order organization of complex389

networks. Science, 353(6295):163–166, 2016.390

[8] Austin R. Benson, Paul Liu, and Hao Yin. A simple bipartite graph projection model for391

clustering in networks. arXiv preprint: https://arxiv.org/abs/2007.00761, 2020.392

[9] Alina Ene, Huy Nguyen, and László A Végh. Decomposable submodular function minimization:393

discrete and continuous. In Advances in Neural Information Processing Systems, NeurIPS ’17,394

pages 2870–2880, 2017.395

[10] Alina Ene and Huy L. Nguyen. Random coordinate descent methods for minimizing de-396

composable submodular functions. In Proceedings of the 32nd International Conference397

on International Conference on Machine Learning - Volume 37, ICML’15, pages 787–795.398

JMLR.org, 2015.399

[11] A. Fix, T. Joachims, S. M. Park, and R. Zabih. Structured learning of sum-of-submodular higher400

order energy functions. In 2013 IEEE International Conference on Computer Vision, pages401

3104–3111, 2013.402

[12] Kimon Fountoulakis, Pan Li, and Shenghao Yang. Local hyper-flow diffusion. arX-403

iv/2102.07945, 2021.404

[13] D. Freedman and P. Drineas. Energy minimization via graph cuts: settling what is possible.405

In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,406

volume 2 of CVPR ’05, pages 939–946 vol. 2, 2005.407

[14] Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster408

than Goldberg-Rao. arXiv:2101.07233, 2021.409

[15] Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM, 45(5):783–410

797, September 1998.411

[16] Scott W. Hadley. Approximation techniques for hypergraph partitioning problems. Discrete412

Applied Mathematics, 59(2):115 – 127, 1995.413

[17] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial414

algorithm for minimizing submodular functions. J. ACM, 48(4):761–777, July 2001.415

[18] Satoru Iwata and James B. Orlin. A simple combinatorial algorithm for submodular function416

minimization. In Proceedings of the 2009 Annual ACM-SIAM Symposium on Discrete Algo-417

rithms, SODA ’09, pages 1230–1237, Philadelphia, PA, USA, 2009. Society for Industrial and418

Applied Mathematics.419

10

[19] Stefanie Jegelka, Francis Bach, and Suvrit Sra. Reflection methods for user-friendly submodular420

optimization. In Proceedings of the 26th International Conference on Neural Information421

Processing Systems, NeurIPS ’13, pages 1313–1321, 2013.422

[20] Stefanie Jegelka and Jeff Bilmes. Submodularity beyond submodular energies: Coupling edges423

in graph cuts. In CVPR 2011, pages 1897–1904, 2011.424

[21] Stefanie Jegelka, Hui Lin, and Jeff A Bilmes. On fast approximate submodular minimization.425

In Advances in Neural Information Processing Systems, NeurIPS ’11, pages 460–468, 2011.426

[22] Pushmeet Kohli, Philip HS Torr, et al. Robust higher order potentials for enforcing label427

consistency. International Journal of Computer Vision, 82(3):302–324, 2009.428

[23] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE429

Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, Feb 2004.430

[24] Vladimir Kolmogorov. Minimizing a sum of submodular functions. Discrete Appl. Math.,431

160(15):2246–2258, October 2012.432

[25] Tarun Kumar, Sankaran Vaidyanathan, Harini Ananthapadmanabhan, Srinivasan Parthasarathy,433

and Balaraman Ravindran. Hypergraph clustering by iteratively reweighted modularity maxi-434

mization. Applied Network Science, 5(1):52, 2020.435

[26] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear436

programs in Õ
√
rank iterations and faster algorithms for maximum flow. In 2014 IEEE 55th437

Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.438

[27] Jianbo Li, Jingrui He, and Yada Zhu. E-tail product return prediction via hypergraph-based local439

graph cut. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge440

Discovery and Data Mining, KDD ’18, pages 519–527, New York, NY, USA, 2018. Association441

for Computing Machinery.442

[28] Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. In443

Advances in Neural Information Processing Systems 30, NeurIPS ’17, pages 2308–2318, 2017.444

[29] Pan Li and Olgica Milenkovic. Revisiting decomposable submodular function minimization445

with incidence relations. In Proceedings of the 32nd International Conference on Neural446

Information Processing Systems, NeurIPS’18, page 2242–2252, 2018.447

[30] Pan Li and Olgica Milenkovic. Submodular hypergraphs: p-laplacians, Cheeger inequalities448

and spectral clustering. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th449

International Conference on Machine Learning, volume 80 of ICML ’18, pages 3014–3023.450

PMLR, 2018.451

[31] Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization.452

In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:453

Human Language Technologies, pages 510–520, Portland, Oregon, USA, June 2011. Association454

for Computational Linguistics.455

[32] Meng Liu, Nate Veldt, Haoyu Song, Pan Li, and David F. Gleich. Strongly local hypergraph456

diffusions for clustering and semi-supervised learning. In TheWebConf 2021, volume cs.SI,457

2021.458

[33] Thomas L. Magnanti and Dan Stratila. Separable concave optimization approximately equals459

piecewise linear optimization. In IPCO 2004, pages 234–243, 2004.460

[34] Thomas L Magnanti and Dan Stratila. Separable concave optimization approximately equals461

piecewise-linear optimization. arXiv preprint arXiv:1201.3148, 2012.462

[35] Robert Nishihara, Stefanie Jegelka, and Michael I. Jordan. On the convergence rate of decom-463

posable submodular function minimization. In Proceedings of the 27th International Conference464

on Neural Information Processing Systems, NeurIPS ’14, pages 640–648, 2014.465

11

[36] James B. Orlin. A faster strongly polynomial time algorithm for submodular function minimiza-466

tion. Mathematical Programming, 118(2):237–251, May 2009.467

[37] Pulak Purkait, Tat-Jun Chin, Alireza Sadri, and David Suter. Clustering with hypergraphs: the468

case for large hyperedges. IEEE transactions on pattern analysis and machine intelligence,469

39(9):1697–1711, 2016.470

[38] I. Shanu, C. Arora, and P. Singla. Min norm point algorithm for higher order MRF-MAP471

inference. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR ’16,472

pages 5365–5374, 2016.473

[39] Peter Stobbe and Andreas Krause. Efficient minimization of decomposable submodular func-474

tions. In Proceedings of the 23rd International Conference on Neural Information Processing475

Systems, NeurIPS ’10, pages 2208–2216, 2010.476

[40] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao477

Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly linear time for478

dense instances. arxiv:2101.05719, 2021.479

[41] Nate Veldt, Austin R. Benson, and Jon Kleinberg. Hypergraph cuts with general splitting480

functions. arXiv preprint: 2001.02817, 2020.481

[42] Nate Veldt, Austin R. Benson, and Jon Kleinberg. Minimizing localized ratio cut objectives482

in hypergraphs. In Proceedings of the 26th ACM SIGKDD International Conference on483

Knowledge Discovery and Data Mining, KDD ’20, pages 1708–1718, New York, NY, USA,484

2020. Association for Computing Machinery.485

[43] Kai Wei, Rishabh Iyer, and Jeff Bilmes. Submodularity in data subset selection and active486

learning. In International Conference on Machine Learning, pages 1954–1963. PMLR, 2015.487

[44] Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph488

clustering. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge489

Discovery and Data Mining, KDD ’17, pages 555–564, New York, NY, USA, 2017. Association490

for Computing Machinery.491

[45] Dengyong Zhou, Jiayuan Huang, and Bernhard Schölkopf. Learning with hypergraphs: Clus-492

tering, classification, and embedding. In Proceedings of the 19th International Conference on493

Neural Information Processing Systems, NeurIPS ’06, pages 1601–1608, 2006.494

[46] J. Y. Zien, M. D. F. Schlag, and P. K. Chan. Multilevel spectral hypergraph partitioning with495

arbitrary vertex sizes. IEEE Transactions on Computer-Aided Design of Integrated Circuits and496

Systems, 18(9):1389–1399, Sep. 1999.497

Checklist498

1. For all authors...499

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s500

contributions and scope? [Yes]501

(b) Did you describe the limitations of your work? [Yes] See Section 6.502

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See503

Section 6.504

(d) Have you read the ethics review guidelines and ensured that your paper conforms to505

them? [Yes]506

2. If you are including theoretical results...507

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Yes, all508

assumptions are included in theorem statements.509

(b) Did you include complete proofs of all theoretical results? [Yes] Yes, detailed proofs510

are included in the supplement, with intuition and proof sketches in the main text.511

3. If you ran experiments...512

12

(a) Did you include the code, data, and instructions needed to reproduce the main experi-513

mental results (either in the supplemental material or as a URL)? [Yes] All code and514

data is included as a part of the supplement.515

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they516

were chosen)? [Yes] See Section 5. Continuous optimization methods for DSFM rely517

on zero or very few hyperparameters. For local clustering experiments, we follow the518

settings and instructions from previous work. A detailed explanation of parameter519

settings is included in the supplement.520

(c) Did you report error bars (e.g., with respect to the random seed after running experi-521

ments multiple times)? [Yes] See Section 5522

(d) Did you include the total amount of compute and the type of resources used (e.g., type523

of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5 for details.524

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...525

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 5.526

(b) Did you mention the license of the assets? [Yes] See Section 5.527

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]528

The implementations for code and experimental results are provided.529

(d) Did you discuss whether and how consent was obtained from people whose data530

you’re using/curating? [Yes] See Section 5. All datasets we use were previously made531

available online explicitly for the purpose of academic research.532

(e) Did you discuss whether the data you are using/curating contains personally identifiable533

information or offensive content? [Yes] As highlighted for the previous question, we534

use public datasets curated for academic research.535

5. If you used crowdsourcing or conducted research with human subjects...536

(a) Did you include the full text of instructions given to participants and screenshots, if537

applicable? [N/A]538

(b) Did you describe any potential participant risks, with links to Institutional Review539

Board (IRB) approvals, if applicable? [N/A]540

(c) Did you include the estimated hourly wage paid to participants and the total amount541

spent on participant compensation? [N/A]542

13

	Introduction
	Background on Graph Reductions
	Sparse Reductions via Piecewise Linear Approximation
	The sparse approximate reduction problem
	Optimal sparse approximate reduction
	Bounds on optimal reduction size

	Theoretical Runtime Analysis and Comparison
	Experiments
	Conclusion and Discussion

