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Abstract—Lack of reliable, low-cost, and accessible hardware
poses significant challenges for robotics and AI education,
while hands-on experience has been demonstrated to enrich
the learning experience. In order to address this challenge, we
developed a low-cost and open-source quadruped robot, Pupper,
and comprehensive AI curriculum. The robot features torque-
controllable brushless motors with high specific power that
enable testing of impedance and torque-based machine learning
and optimization control approaches. Pupper can be built from
the ground up in under 8 hours for a total cost under 2000,
with all components either easily purchased or 3D printed.
The accompanying curriculum goes through hardware building,
basics in robotics (PID, FK, IK), simulation, and robot learning
(RL). By the end of the curriculum, the students are able to train
an end-to-end locomotion policy and deploy it on the physical
Pupper robot.

Index Terms—Education, Robot Learning, Legged Locomotion

I. INTRODUCTION

The Pupper robot is an open-source, full-stack robotics plat-
form that is designed to teach fundamental robotics concepts
in a cost-effective and accessible manner while still meeting
state-of-the-art research demands. With the fast-paced iteration
of the AI/robotics field, it is essential to teach novel methods
in fields such as task-planning, sim-to-real, and reinforcement
learning in an educational setting while interfacing with actual
hardware. Taking inspiration from other high-performance
quadruped robots such as MIT Cheetah, Unitree GO1, and
Anymal, we sought to create a more affordable quadruped
robot that can support state-of-the-art research while meeting
educational demands. The Pupper robot and the accompanying
curriculum was designed in tandem between students from the
Stanford Robotics club and the non-profit organization Hands-
On Robotics.

II. BACKGROUND AND MOTIVATION

A. Current state of AI Robotics Courses

The absence of accessible, open-source hardware poses
challenges for successful AI and robotics education. Char-
acterizing how hardware components affect a robot’s over-
all performance is critical to understanding its fundamental
strengths and limitations. Also, rapid progress in AI research
necessitates teaching the latest techniques to equip students
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Fig. 1. Pupper Robot: a low-cost, agile quadruped designed for teaching
an AI/Robotic curriculum and for studying novel reinforcement learning
techniques

with relevant skills. Unfortunately, many open-source robot
platforms do not easily integrate with the most recent devel-
opments in AI, posing a barrier to effectively teaching about
the field’s dynamic landscape.

To our knowledge, few classes teach both AI and hands-on
robotics curriculum in the same course. We examined the cur-
riculum for the top 10 ranked engineering schools according
to US News for 2024: Massachusetts Institute of Technology,
Stanford University, University of California, Berkeley, Purdue
University, Carnegie Mellon University, Georgia Institute of
Technology, California Institute of Technology, University of
Michigan, University of Texas at Austin, and Texas A&M.
We found that these universities commonly teach hands-on
robotics classes (which we define as courses in which students
build their own hardware). However, within these classes it is
very rare for students to learn and deploy machine learning
models beyond simple API calls to MobileNet and other
older computer vision libraries. Typically, computer vision
models are used for autonomous navigation for vehicles such
as TerraBots and MIT Racecar [citation]. We found that rarely,
students are given the opportunity to use mobile manipulators,
particularly for end-of-class projects. However, manipulators
are expensive, never constructed by the students, and not often
integrated into the core curriculum. We were unable to find a



single class teaching applications of reinforcement learning or
LLMs for deployment on hardware students build. We believe
it is essential for these topics to built into the core curriculum
of AI and robotics classes through labs - not just final projects.

Jaden Compare to CS274A, talk about why stanford is a
good point of comparison

B. Current State of the Art Robots

• Gabrael
• Comparison to other robots, MIT Cheetah, Solo, Anymal,

etc. Focus on speed, weight, cost, time to build, etc. (not
open source)

Reference Platform Robot Type Cost (USD) Weight (lbs) Fully Open Source Open Curriculum
1 Ours Quadruped 2376 7 ✓ ✓
2 SOLO 12DoF Quadruped 2800 ✓
2 Mini Cheetah Quadruped 2800 ✓
2 Doggo Quadruped 2800 ✓
2 Unitree Go1 Quadruped 2800 ✓

TABLE I
CAPTION

C. Current State of AI Robotics Educational Platforms

• Liana
• Comparison to other robotics and AI education meth-

ods, closed-source and expensive materials, hardware-less
courses, etc.

Reference Platform Robot Type Cost (USD) Weight (lbs) Fully Open Source Open Curriculum
1 Ours Quadruped 2376 7 ✓ ✓
2 MIT Racecar 4 wheeler 2800 ✓
2 Turtlebot 4 wheeler 2800 ✓

TABLE II
CAPTION

III. OUR PLATFORM

A. Robot Design

• Gabrael
• Labeled CAD fig
• Materials and fabrication
• system architecture

B. Robot Characterization

1) Motor Current and Torque Relationships: For Pupper to
be used as a platform for researching and deploying novel
learning and optimization methods, accurate physical robot
models are necessary to calculate motor current commands.
To understand the actuator limits, torque-current relationship,
and control bandwidth, the Pupper actuator was tested in a
dynamometer. The results are summarized in Fig. 2. When
doing positive work, the actuator’s peak torque was 1.8Nm,
and while doing negative work 3.2Nm. The maximum contin-
uous measured torque was 1.0Nm.

Motor friction was modeled well by Coulomb and damping
terms.

τf = −0.021Nmsgn (ω)− 0.045
Nms
rad

ω − 10.0 sgn(ω)|τm|
(1)

where τf is the total friction in Nm, ω is the output velocity
in rrad

s , and τm is the motor torque at the gearbox input in Nm.
In this model, an R2 value of over 0.999 was achieved. The
motor torque is given by

τm = 0.0069
Nm
A

i (2)

where i is the motor current in A. The output current is
modeled as

τoutput = 36τm + τf (3)

where τoutput is the output torque, and the factor of 36
comes from the 36:1 reduction ratio.

To predict the motor current necessary to achieve desired
torque commands, the friction model was inverted. Arbitrary
torques can be commanded within 1% error at constant motor
velocities. However, stiction cannot be predicted because the
inverted model only corrects for velocity-dependent friction,
leading to 28% torque error when the actuator has zero
velocity.

Rotor inertia was estimated using the torque-current rela-
tionship by meeasuring the output acceleration at fixed torques.
Figure 3 shows a bode plot determining the bandwidth of the
actuator, where sinusoidal currents were commanded and the
magnitude of the output torque was measured as a function of
frequency.

Fig. 2. Measured torque versus commanded current across several motor
velocities. The asymmetry between the positive and negative current cases is
due to nonlinear friction in the actuator.

2) Maximum Kinetic Energy of Joints: For Pupper to be
used in educational settings, it must be safe for students to
use in a hands-on manner, meaning that the maximum kinetic
energy of the robot should be limited.

Gabrael to fill in maximum KE calculation. Cite some-
thing saying that is less than the other robots as a
comparison



Fig. 3. Actuator frequency response. A sinusoidal current command ranging
from 0A to 5A was commanded while the frequency increased from 0Hz to
40Hz. The gain of the resulting torque was measured.

3) Repeatability: For Pupper to be used in educational
settings where novel learning and optimization methods are
tested and compared against each other, Pupper must be
reproducible across various builds. To measure this, a baseline
task was used, where each robot would complete the sprint
independently, and the results compared to give a marker of
repeatability.

Task Overview: Three total robots were built, at different
times at different universities. One was built by the authors,
and the two others were built by undergraduate engineer-
ing students at Massachusetts Institute of Technology and
Worcester Polytechnic Institute in under a day. To study
repeatability, a simple Sprint task was designed. As outlined
in Fig. 4, Pupper will traverse an unobstructed 5m course as
fast as possible. This task will test Pupper’s speed of locomo-
tion under standardized settings, a long-standing goal of the
legged-robotics community. Achieving high-speed locomotion
requires tightly coordinating full-body motion while managing
ground impacts and destabilizing perturbations. To standardize
the robot’s gait during this task, a trotting controller that
generates foot position targets as a function of time and
desired velocity in the horizontal plane was implemented.
The architecture is similar to the position-based controller
in Stanford Doggo (cite) and the Foot Trajectory Generator
(FTG) architecture formalized in (cite).

Fig. 4. The Sprint task requires the robot to travel five meters forward as fast
as possible.

Task Results: The three robots, each built at a different
university, completed the sprint task with an average speed of
0.66 m/s, and a standard deviation of 0.025. Fig. 5 illustrates

the interquartile regions for these sprint speeds across the trials
for each robot. Fig 6 compares the total electrical power of
each of the robots when performing the sprint task. In terms
of the sprint speeds and the sprint electrical power, all robots
exhibited repeatable results within small error of each other.

Fig. 5. Comparison of sprint speeds between three different Pupper robots
built at three different institutions. The stem and whiskers indicate the
interquartile range of the sprint results. All three robots recorded repeatable
sprinting speeds within low relative error of each other.

Fig. 6. Comparison of total motor electrical power across the three Pupper
robots for the Sprint task.

C. Applications in Reinforcement Learning, Computer Vision,
and Large Language Models

Jaden - show different cadence with different speeds

Pupper is a capable platform for deployment of SoTA
robot learning methods, in particular for students with little
past experience. Pupper has a custom hardware setup for
Luxonis OAK-D lite depth cameras, and students have applied
learning-based techniques to enable Pupper to follow balls, and
detect gestures - all using onboard processing. Pupper also
has a simple API to query Large Language Models (LLMs),
allowing control of Pupper using natural language input or
voice commands. By the end of our curriculum, students are
able to train end-to-end locomotion policies, implement object
tracking, and solve task planning problems with LLMs on the
physical Pupper robot.

Pupper is a paricularly capable platform for teaching re-
inforcement learning. We offer a physically accurate Unified



Robot Description Format (URDF) model for rapid experi-
mentation and straight forward integration with robot learning
environments such as Nvidia Isaac Gym [reference]. Using
Isaac Gym, agile locomotion policies can be trained in under
20 minutes.

We find that Pupper is sufficiently performant to demon-
strate the effects of different training methods. In [ref figure]
we show that domain randomization is essential for walking
performance on Pupper. By guiding students through lab
with and without randomization, students are able learn the
importance of this technique for deployment of learning algo-
rithms on physical robots. Pupper also demonstrates emergent
locomotion behavior. In [ref figure] we show that Pupper is
capable of learning different locomotion styles when trained
with different desired velocity commands.

Jaden TODO - add bar chart for cadence vs velocity,
add figure for speed tracking with and without doman
randomization

D. Curriculum Design

We determined four fundamental AI Robotics topics:
control, kinematics, locomotion, and hardware familiarity.
Through a series of 7 hands-on modules, our curriculum
familiarizes students with these four topics.

Modules 1 and 2 provide an introduction to the actuator
controller design. The mechanics of the brushless motors, their
gear boxes and motor controllers, and the theory of simple
control algorithms are taught via a lecture. Next, students
construct a single leg of the robot mounted upside down on
a metal plate to create what mimics a 3 degree of freedom
robot arm. Using this arm and premade starter code, students
program Bang-Bang and PD controllers and deploy them to the
arm. Experimenting by changing parameters such as controller
constants and loop rates, students gain real-world intuition on
how these controllers work.

Modules 3 and 4 cover the derivation of the inverse kine-
matics for the 3 degree of freedom robot arm. This arm
eventually becomes one of the 4 legs of the quadruped, so
these kinematics are central to the locomotion of the robot.
The modules culminate in implementing the kinematics in
simulation and transferring to the real robot arm, introducing
students to the Sim2Real pipeline.

Module 5 is dedicated to introducing students to the concept
of Reinforcement Learning and its applications in robotics.
A premade codebase allows for students to train a policy in
simulation and then deploy the policy onto the physical robot.

Module 6, titled ”Pupper Assembly”, guides students
through the entire assembly of the robot. This includes wiring,
construction of the 3D-printed legs and body, setting the IDs of
each of the 12 actuators, flashing the controller to the Teensy
microcontroller, and binding the hand-held transmitter to the
on-board receiver.

E. Course Outcomes

Thus far, our curriculum has been taught as independent
study at Washington University in St. Louis, Foothill college,

and at Stanford 4 times. The class enrollment at Stanford was
9, 17, 4, 15 for each of the four quarters the curriculum was
taught. Students were undergraduates at all levels and had
majors in mechanical engineering, computer science, electrical
engineering, and mathematics. Students gave unanimously
positive feedback. In a survey to students in the fourth offering
of the course, students unanimously cited that they were more
likely to continue in the fields of AI and robotics after taking
the class than before.

The curriculum was advertised as introductory in AI and
robotics, and most students (particularly first-years) had no ex-
perience in AI or robotics before taking the course. However,
students were still able to develop impressive final projects
using SoTA robot learning techniques. In fall of 2021, a
group of 3 students developed a simple implementation of
rapid-motor adaptation [citation] for Pupper and a group of 4
students used RL to endow Pupper with different locomotion
styles based on a velocity command. In winter of 2023, 2
students added a vision setup to Pupper using Luxonis Oak-D
Lite and gave Pupper the ability to autonomously track people.
Also in winter of 2023, 2 students implemented [cite ChatGPT
for Robotics] a simple method for using LLMs to task-plan
for Pupper - endowing it with the ability to follow complex,
nuanced text commands from users based on an API library
developed in a previous final project. This final projects later
became a task-planning lab completed by all students. Other
student final projects included human pose-tracking, speech
recognition, learning agility, and ball following for Pupper.
These final projects showcase the diversity of AI methods
that can be deployed on Pupper for students with limited
experience.

IV. DISCUSSION
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