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ABSTRACT

Machine learning models of music typically break down the task of composition
into a chronological process, composing a piece of music in a single pass from
beginning to end. Human composers on the other hand write music in a nonlin-
ear fashion, scribbling motives here and there, often revisiting choices previously
made. We introduce COCONET, a deep convolutional inpainting model trained
to reconstruct partial scores. Our model is an instance of ConvNADE Uria et al.
(2016), however we wrap the NADE sampling procedure in a blocked Gibbs pro-
cess to improve sample quality. We show the versatility of our method on three
generative tasks: conditioned rewriting, partial score completion, and uncondi-
tioned polyphonic music generation.

1 INTRODUCTION

Machine learning can be used to create compelling art. This was shown recently by Deep-
Dream (Mordvintsev et al., 2015), an optimization process that created psychedelic transformations
of images that bent our visual imagination. A similar idea underlies a variety of style transfer algo-
rithms (Gatys et al., 2015), which impose textures and colors from one image onto another. More
recently, the multistyle pastiche generator (Dumoulin et al., 2016) exposes adjustable knobs that
allow users of the system fine-grained control over style transfers. Neural doodle (Champandard,
2016) further closes the feedback loop between user and algorithm.

We wish to bring similar artistic tools to the domain of music. Whereas previous work in music has
relied mainly on sequence models such as Hidden Markov Models (HMMs, Baum & Petrie (1966))
and Recurrent Neural Networks (RNNs, Rumelhart et al. (1988)), we instead employ convolutional
neural networks due to their locality and invariance properties. Moreover, convolutional neural
networks have shown to be extremely versatile once trained, as shown by a variety of creative abuses
in the literature. (Mordvintsev et al., 2015; Gatys et al., 2015; Almahairi et al., 2015; Lamb et al.,
2016)
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Figure 1: Unconditioned musical composition with Coconet

Section 2 discusses other work in the domain of music. In Section 3 we highlight NADE, the
framework that encompasses our approach. Section 4 introduces the musical equivalent of image
inpainting, the task we train our model to solve. The details of our convolutional model are laid
out in Section 5, which includes discussion of the sampling procedure. Results of quantitative and
qualitative evaluations are reported in Section 6, and Section ?? concludes.

2 RELATED WORK

Sequence models such as HMMs and RNNs are a natural choice for modeling music. However,
one of the challenges in adapting such models to music is that music generally consists of multiple
interdependent streams of events. This can be most clearly seen in the notion of counterpoint,
which refers to the relationships between the movement of individual instruments in a musical work.
Compare this to typical sequence domains such as speech and language, which involve modeling a
single stream of events: a single speaker or a single stream of words.

Successful application of sequence models to music hence requires serializing or otherwise re-
representing the music to fit the sequence paradigm. For instance, Liang (2016) serialize four-part
Bach chorales by interleaving the parts, while Allan & Williams (2005) construct a chord vocabulary.
Boulanger-Lewandowski (2014) adopt a piano roll representation, which is a binary matrix X such
that xij is hot if some instrument is playing pitch i at time j. To model the joint probability distribu-
tion of the multi-hot pitch vector xj , they employ a Restricted Boltzmann Machine (RBM (Smolen-
sky, 1986; Hinton et al., 2006)) or Neural Autoregressive Distribution Estimator (Uria et al., 2016)
at each time step.

Moreover, the behavior of human composers does not fit the chronological mold assumed by previ-
ous authors. A human composer might start his work with a coarse chord progression and iteratively
refine it, revisiting choices previously made. Sampling according to xt ∼ p(xt|x<t), as is common,
cannot account for the kinds of timeless dependencies that composers employ. Not only does this
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limit the compositional abilities of chronological models, it also limits their usefulness as composi-
tional aids.

Hadjeres et al. (2016) sidestep the choice of causal factorization and instead employs an undirected
Markov model to learn the relationships between neighboring notes in a score. Sampling involves
Markov Chain Monte Carlo (MCMC) using the model as a Metropolis-Hastings (MH) objective.
The model permits constraints on the state space to support tasks such as melody harmonization.
However, the Markov assumption is severely limiting.

3 NADE

Instead, we turn to the Neural Autoregressive Distribution Estimator (NADE, Uria et al. (2016)) and
its extensions. A NADE models a multivariate distribution p(x) through a factorization

pθ(x) =
∏
d

pθ(xod | xo<d
) (1)

where o is a permutation, and the parameters θ are shared among the conditionals. NADE can be
trained for all orderings o simultaneously using the orderless NADE (Uria et al., 2016) training
procedure. This procedure relies on the observation that, thanks to parameter sharing, computing
pθ(xoc | xo<d

) for all c ≥ d is no more expensive than computing it only for c = d. Hence for a
given o and d we can simultaneously obtain partial losses for all orderings that agree with o up to d.

A NADE thus trained offers random access to conditional distributions pθ(xi|xJ) based on any set
of contextual variables xJ that might already be known. Our approach to modeling music can be
seen as an instance of ConvNADE (Uria et al., 2016), in which pθ consists of a convolutional neural
network.

4 MUSICAL COMPOSITION AS INPAINTING

We consider the musical equivalent of inpainting, a versatile setting that generalizes popular tasks
such as melody harmonization, partial score completion and composition from scratch. Inpaint-
ing (Bertalmio et al., 2000) is the task of restoring damaged or missing parts of an image. In machine
learning, image inpainting has found popularity as an unsupervised learning task, where a model is
trained to reconstruct an image after it has been corrupted by a random process (Vincent et al., 2008;
Pathak et al., 2016).

Inpainting readily carries over to music when we view it as a stack of piano rolls represented by the
binary three-tensor x ∈ {0, 1}I×T×P . Here I denotes the number of instruments, T the number of
time steps, P the number of pitches, and xi,t,p = 1 iff the ith instrument plays pitch p at time t. We
will assume each instrument plays exactly one pitch at a time, that is,

∑
p xi,t,p = 1 for all i, t.

For the present work we will restrict ourselves to the study of four-part Bach chorales as used in
prior work (Allan & Williams, 2005; Boulanger-Lewandowski, 2014). Hence we assume I = 4
throughout. We discretize pitch according to equal temperament, but constrain ourselves to only the
range that appears in our training data (MTS ? pitches 36 through 88). Time is discretized at the
level of 16th notes for similar reasons.

Given a training example x ∼ p(x), we randomly choose a mask m ∈ {0, 1}I×T where mi,t = 0
indicates that xi,t is to be corrupted. We obtain the corrupted example by a broadcasted elementwise
multiplication

x̃i,t,p = xi,t,pmi,t (2)

and ask the model to reconstruct x given x̃ and m. The loss function is given by
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L(x;m, θ) = −
∑
i,t

(1−mi,t) log pθ(xi,t | xm,m) (3)

= −
∑
i,t,p

(1−mi,t)xi,t,p log pθ(xi,t,p | xm,m) (4)

where pθ refers to the probability under the model parameterized by θ and xm denotes the variables
xi,t,p with mi,t = 1. We wish to minimize the expected loss

Ex∼p(x)Em∼p(m)L(x;m, θ). (5)

This loss function is equivalent to that used by Uria et al. (2016), and we follow their approach in
estimating the expectations by sampling. Per Equation 3, the loss for any one sample (x,m) consists
of M =

∑
i,t 1 −mi,t terms of the form log pθ(xi,t | xm,m). To ensure consistent estimation of

the negative log-likelihood of the joint pθ(x), the sample losses need to be rebalanced. Uria et al.
(2016) address this issue by reweighting the losses according to the number of terms M :

L̃(x;m, θ) =
IT

M
L(x;m, θ). (6)

We instead explore the use of a sampling procedure for m that satisfies

p(m) ∝ IT

M
, (7)

which proceeds by first sampling a mask size 0 < M ≤ IT according to categorical probabili-
ties p(M) ∝ IT

M and subsequently choosing uniformly randomly among the set of masks of size
M . We suspect that sampling with appropriate probabilities in the first place is better than scaling
contributions after the fact. However, it is plausible that neither strategy is particularly helpful due
to effects of parameter sharing that are difficult to analyze, or even because some terms are simply
harder to model than others. Therefore we additionally consider simply i.i.d sampling each element
mi,t according to a Bernoulli distribution.

For the task of inpainting, we might wish to increase the difficulty by emphasizing masks that corrupt
large contiguous regions, as otherwise the model might learn only superficial local relationships.
This is discussed in Pathak et al. (2016) for the case of image inpainting, where a model might learn
only that pixels are similar to their neighbors. Similar low-level relationships hold in our case, as our
piano roll representation is binary and very sparse. For instance, we might mask out only a single
sixteenth step in the middle of a long-held note, in which case reconstructing the masked out step
does not require any deep understanding of music.

5 COUNTERPOINT BY CONVOLUTION

We approach the task outlined above using a deep convolutional neural network (LeCun & Bengio,
1995). This choice is motivated by the locality of contrapuntal rules and their near-invariance to
translation, both in time and in the frequency spectrum.

The input to the model consists of the piano rolls x concatenated with the (broadcasted) masks m
along the first axis:

h0
i,t,p = xi,t,p (8)

h0
I+i,t,p = mi,t (9)
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where the first dimension ranges over channels and the time and pitch dimensions are convolved
over.

al = BN(Wl ∗ hl−1; γl, βl) (10)

hl = ReLU(al + hl−2) for 3 < l < L− 1 and l = 0 mod 2 (11)

hL = aL (12)

With the exception of the first and final layers, all of our convolutions preserve the size of the input.
That is, we use “same” padding throughout and all activations hl, 1 < l < L have 128 channels.
The network consists of 64 layers with 3× 3 filters on each layer. After each convolution we apply
batch normalization Ioffe & Szegedy (2015) (denoted by BN(·)) with statistics tied across time and
pitch. After every second convolution, we introduce a skip connection from the hidden state two
levels below to reap the benefits of residual learning He et al. (2015).

Finally, we obtain independent predictions for the pitch at each instrument/time pair:

p̂θ(xi,t,p | xm,m) =
exp(hLi,t,p)∑
p exp(h

L
i,t,p)

(13)

Based on the predictions, we compute the loss (Equation 3) and optimize with respect to the pa-
rameters θ = W1, γ1, β1, . . . ,WL−1, γL−1, βL−1 by stochastic gradient descent with step size
determined by Adam (Kingma & Ba, 2014).

To sample from the model, we start with an empty (zero everywhere) piano roll x0 and mask m0

and populate them iteratively by the following process (Algorithm 1). We feed the piano roll xs
and mask ms into the model to obtain a set of categorical distributions pθ(xi,t|xsms ,ms) for (i, t)
such that ms

i,t = 0. As the xi,t are not conditionally independent, we cannot simply sample from
these distributions independently. However, if we sample from one of them, we can compute new
conditional distributions for the others. Hence we randomly choose one (i, t)s+1 to sample from,
and let xs+1

i,t equal the one-hot realization. Update the mask so that ms+1
i,t = 1 and repeat until the

piano roll is populated. This procedure is easily generalized to tasks such as melody harmonization
and partial score completion by starting with a nonempty piano roll.

Algorithm 1 Sampling from the model.
Given an initial piano roll x and mask m
while

∑
i,tmi,t < IT do

Choose (i, t) ∼ Uniform((i, t) : mi,t = 0)
Choose p ∼ pθ(xi,t,p|xm,m)
xi,t,p ← 1
mi,t ← 1

end while

5.1 GIBBS SAMPLING

We find that when starting with an empty piano roll, a single pass of sequential generation yields
poor samples. Instead, we make multiple passes: each time, we mask out some part of the piano roll
and then repopulate it. This is a form of blocked Gibbs sampling (Liu, 1994), where each block is
itself sampled sequentially using Algorithm 1. The procedure is specified by Algorithm 2.

Blocked sampling is crucial for mixing, as the high temporal resolution of our representation causes
strong correlations between consecutive notes. For instance, without blocked sampling, it would
take many steps to snap out of a long-held note.
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Algorithm 2 Sampling from the model by blocked Gibbs.
Given an initial piano roll x and mask m
loop n times

if not the first iteration then
Choose m ∼ p(m) . Determine a block to resample
xi,t ← 0 ∀(i, t) : mi,t = 0

end if
while

∑
i,tmi,t < IT do . Sample from the joint distribution of x¬m

Choose (i, t) ∼ Uniform((i, t) : mi,t = 0)
Choose p ∼ pθ(xi,t,p|xm,m)
xi,t,p ← 1
mi,t ← 1

end while
end loop

Table 1: Negative log-likelihood (NLL) in nats per note on the validation set for the BACH dataset.

Model Note-level NLL

Bachbot (Liang, 2016) 0.477
Coconet, balanced by scaling 0.55± 1.31
Coconet, balanced by sampling 0.95± 1.51
Coconet, i.i.d Bernoulli(0.25) 0.63± 1.58
Coconet, i.i.d Bernoulli(0.50) 0.92± 2.24

6 EVALUATION

We evaluate our approach on the JSB dataset that is also used by previous authors (Allan & Williams,
2005; Boulanger-Lewandowski, 2014; Liang, 2016). The dataset consists of 382 four-part Bach
chorales. We compare with Liang (2016); Boulanger-Lewandowski (2014) based on note-level like-
lihood. Note that our train/valid/test folds differ from those used by other authors.

However, evaluation of generative models is hard (Theis et al., 2015). The gold standard for eval-
uation is qualitative comparison by humans, and we therefore report results of a human evaluation
study. Our model is able to achieve compelling results on three tasks: conditioned rewriting, partial
score completion, and unconditioned polyphonic generation.

Conditioned rewriting refers to the case where the initial piano roll x0 is taken from the validation
set, and the mask m is one everywhere, and the piece is rewritten using Algorithm 2. In partial score
completion, we similarly initialize the initial piano roll with an existing piece, but mask out part of
it and repopulate it in a single pass of Algorithm 1. Finally, unconditioned generation starts with an
empty piano roll and mask, and populates using Algorithm 2.

6.1 EVALUATING LOG-LIKELIHOOD

To estimate the log-likelihood of the data 1x, 2x, . . . , nx, we uniformly choose a random ordering
jo for each jx, and compute the log-likelihood for each data point according to

log p̂θ(
jx) =

∑
d

log pθ(xjod |xjo<d,jo<d
) (14)

We repeat this procedure k times and average across all point estimates. The numbers for our models
in Table 1 were obtained with k = 10.
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6.2 HUMAN EVALUATIONS

We carried out a listening test using Amazon’s MTurk to evaluate how our models compare to Bach.
The natural question to answer is if music generated by our model can be indistinguishable from
music composed by Bach. As the musical background of participants on MTurk is quite varied,
we opt for another question, “which musical fragment do you prefer?”. The goal is to assess if our
model is able to generate music that could pass as music.

The study design is as follows: we compare three of our models to Bach chorales. The two models
BERNOULI(0.5) and BALANCED BY SAMPLING explores the impact of different blankout proce-
dures, while DENOISING is a variation to the blankout procedure where the pianoroll is perturbed
instead. For each of our models, we generate four samples from a blank pianoroll. For the Bach set,
We randomly crop four samples from the chorale validation set. Resulting in four sets of sounds
four sounds. All of the samples are two measures long, lasting twelve seconds. For each MTurk hit,
two sounds are presented. These sounds are selected by first randomly choosing two sets, and then
randomly choosing one sample from each set. Participants are then asked to rate which one of the
two samples they prefer on a Likert scale. The study result in 192 ratings, where each model was
involved in 92 pairwise comparisons. Figure 2 reports the number of times in a pairwise comparison
a model/Bach was more preferred.

We performed post-hoc pairwise comparisons using Wilcoxon Signed Rank test. Bach was preferred
over our balanced by sampling model. The pairs that did not show a statistically significant differ-
ence include BERNOULI(0.5) vs Bach, DENOISING vs Bach, and BERNOULI(0.5) vs DENOISING.
This means in this setting users did not prefer fragments from Bach chorales over our two models
DENOISING and BERNOULI(0.5), and also they did not have a preference between our DENOISING
and BERNOULI(0.5) model.

Figure 2: MTurk results from human evaluations on unconditioned generation.

7 CONCLUSION

We introduced a convolutional approach to modeling musical scores rooted in the NADE (Uria
et al., 2016) framework and image inpainting Pathak et al. (2016). Participants in a user study
preferred musical fragments generated by our model Coconet and those composed by Bach about
equally often. We hope that this versatile model brings to the domain of music the kind of artistic
exploration pioneered by Deep Dream (Mordvintsev et al., 2015).
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