
Under review as a conference paper at ICLR 2019

HIERARCHICAL REINFORCEMENT LEARNING WITH
HINDSIGHT

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a new Hierarchical Reinforcement Learning (HRL) framework that
can accelerate learning in tasks involving long time horizons and sparse rewards.
Our approach improves sample efficiency by enabling agents to simultaneously
learn a hierarchy of short policies that operate at different time scales. Our method
can also learn policy hierarchies with an arbitrary number of levels. Indeed, our
framework is the first HRL approach to show results in which a 3-level agent
outperforms both 2-level and 1-level agents in tasks with continuous state and
action spaces. We demonstrate experimentally in both grid world and simulated
robotics domains that our approach can significantly boost sample efficiency. A
video illustrating our results is available at https://www.youtube.com/
watch?v=i04QF7Yi50Y.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms often struggle in continuous domains that involve long
time horizons and sparse rewards. A major reason for this outcome is that many RL agents learn
using 1-Step Temporal Difference (TD) methods(Sutton & Barto (1998)), which is limited to per-
forming credit assignment one time step at a time. Hierarchical Reinforcement Learning, in which
agents learn multiple policies that act at different time scales, can potentially help with accelerating
credit assignment. Consider a 2-level agent in which the higher level proposes subgoal states for
the lower level to achieve. Assuming each subgoal from the higher level can consist of at most 4
primitive actions from the lower level, 1 time step at the higher level equates to a maximum of 4
time steps at the lower level. If this agent was given a task to achieve some goal state that requires
at least 16 primitive actions, the 2-level agent could learn a policy that achieves the goal using as
few as 4 iterations of 1-Step TD. On the other hand, a flat agent may need to perform 16 iterations
of 1-step TD.

Yet HRL agents with multiple levels are difficult to train due to the issue of non-stationary transition
functions. When an agent uses a hierarchy of policies, as soon as one of the policies within the
hierarchy changes, the state transition function for all levels above the level that changed now have
a different transition function. A different transition function often means that a level needs to learn
a new policy for the new RL problem. The end result is that agents are often forced to learn the
policies of the hierarchy bottom-up instead of in parallel, which may entirely diminish the benefits
that HRL can provide.

We introduce a new HRL framework that enables agents to learn the policies within the hierarchy
in parallel and in an end-to-end manner. Our framework contains two components: (i) an MDP
transformation operation that enables agents to learn the policies within the hierarchy in parallel
and (ii) Hindsight Experience Replay (HER)(Andrychowicz et al. (2017)), which helps each level
learn an effective policy when the reward function is sparse. In addition, the policy hierarchies that
our framework learns can support an arbitrary number of policy levels. Indeed, to the best of our
knowledge, our HRL framework is the first to show results in which 3-level agent outperforms both
2-level and 1-level agents in tasks that involve continuous state and action spaces.

There are other automated hierarchical RL approaches that can work in tasks with continuous state
and action spaces (Nachum et al. (2018), Bacon et al. (2016), Vezhnevets et al. (2017), Konidaris
& Barto (2009), Schmidhuber (1991)). Relative to these other HRL approaches, our method has

1

https://www.youtube.com/watch?v=i04QF7Yi50Y
https://www.youtube.com/watch?v=i04QF7Yi50Y

Under review as a conference paper at ICLR 2019

at least 1 of the following 2 advantages: (i) the ability to learn the policies within the hierarchy in
parallel and (ii) the ability to learn more than 2 policies.

We evaluated our approach on both grid world tasks and more complex simulated robotics environ-
ments. For each task, we evaluated agents with 1, 2, and 3 levels of hierarchy. In all tasks, agents
using 2 and 3 levels of hierarchy significantly outperformed agents that learned a flat policy. Fur-
ther, in many of the challenging tasks, agents using 3 levels of hierarchy significantly outperformed
agents using 2 levels of hierarchy. In addition, we compared our approach against another HRL al-
gorithm HIRO(Nachum et al. (2018)) on two simulated robotics tasks. Our approach outperformed
HIRO on both tasks.

2 BACKGROUND

The particular sequential decision making problem we are interested in solving is a Markov Decision
Process (MDP) augmented with a set of goals G we would like an agent to learn. In this paper,
a goal is just a state or a set of states. We define an MDP augmented with a set of goals as a
Universal MDP (UMDP). A UMDP is a tuple U = (S,G,A, T,R, γ), in which S is the set of
states; G is the set of goals; A is the set of actions; T is the transition probability function in
which T (s, a, s′) is the probability of transitioning to state s′ when action a is taken from state s;
R is the reward function; γ is the discount rate. At the beginning of each episode in a UMDP,
a fixed goal g ∈ G is assigned that defines the reward function for the duration of that episode.
The solution to a UMDP is a control policy π : S → A that maximizes the the value function
vπ(s, g) = Eπ[

∑∞
n=0 γ

nRt+n+1|st = s, gt = g] for an initial state s and goal g.

In order to implement hierarchical agents in tasks with continuous state and actions spaces, we
will use two techniques from the RL literature: (i) the Universal Value Function Approxima-
tor (UVFA)(Schaul et al. (2015)) and (ii) Hindsight Experience Replay (Andrychowicz et al.
(2017)). The UVFA will be used to estimate the action-value function of a policy π, qπ(s, g, a) =
Eπ[

∑∞
n=0 γ

nRt+n+1|st = s, gt = g, at = a] in tasks that involve continuous state and action
spaces. In our experiments, the UVFAs used will be in the form of feed-forward neural networks.
UVFAs are important for learning goal-conditioned policies because they can potentially generalize
Q-values from certain regions of (state, goal, action) tuple space to other regions of the tuple space.
Yet UVFAs are less helpful in difficult tasks that use sparse reward functions. In these tasks when
the sparse reward is rarely achieved, the UVFA will not have large regions of the (state, goal, action)
tuple space with relatively high Q-values that it can transfer to other regions. For this reason, we
also use Hindsight Experience Replay (Andrychowicz et al. (2017)) in our approach. HER is a data
augmentation technique that creates copies of the traditional [state, action, reward, next state, goal]
that are created in traditional off-policy RL. The original goal element is replaced with a state that
was actually achieved during the episode, which guarantees that at least one of the HER transitions
will contain the sparse reward. These HER transitions in turn help the UVFA learn about regions of
the (state, goal, action) tuple space that should have relatively high Q-values, which the UVFA can
then potentially transfer to the other areas of the tuple space.

3 APPROACH

We introduce a framework that can learn the policies contained within a larger hierarchical policy in
parallel. The framework contains two components. The first component is a UMDP transformation
operation that will make it possible to learn the policies within the hierarchy simultaneously. The
second element is Hindsight Experience Replay(Andrychowicz et al. (2017)), which will make it
easier for each policy in the hierarchy to learn effective goal-conditioned policies in challenging,
sparse-reward tasks. Before discussing each of these components, we will first provide more detail
on the hierarchical policy we seek, and why it is difficult to learn the individual policies within the
hierarchy in parallel.

2

Under review as a conference paper at ICLR 2019

Neural
Network

State Subgoal

Action

Low-Level Policy
𝜋0

Neural
Network

State Goal

High-Level Policy
𝜋1

Subgoal

Time

Low-Level Policy
𝜋0

Mid-Level Policy
𝜋1

High-Level Policy
𝜋2

a2

a1

a0

Figure 1: (Left) Policy architecture of an agent with 2 levels of hierarchy that operates in a contin-
uous domain. (Right) Maximum time scales for each policy within a 3-level hierarchy when H=4.
The time scale grows exponentially at each successive level.

3.1 DESIRED HIERARCHICAL POLICY

We seek to learn a hierarchical policy Πk−1 consisting of k individual policies π0, . . . , πk−1, in
which k is a hyperparameter chosen by the user. We require that the hierarchical policy Πk−1 have
the following properties.

Each policy will be a deterministic mapping of states and goals to actions: πi : Si,Gi → Ai. The
action space for all policies except the bottom-most level will be a desired subgoal state for the next
level to achieve: Ai:i>0 = S. The actions output by the base policy π0 will be the set of primitive
actions that are available to the agent. Figure 1(Left) shows the architecture of a k = 2 level policy
hierarchy.

In addition, we require that Πk−1 be nested. The subgoal state output by policy πi within the
hierarchy should require at most H actions from the policy one level below πi−1, in which H , or
the maximum horizon of a subgoal action, is another parameter provided by the user. The nested
structure is critical because it results in policies that operate at time scales that increase exponentially
with the level of the policy. Policies that act with exponentially increasing time scales are important
because they can exponentially reduce the length of the sequence of actions that each policy needs
to learn. Consider the k = 3 level hierarchical policy in Figure 1(Right), in which the the maximum
horizon of a subgoal H = 4 actions. In this example, the time scale of the π0, π1, and π2 are 1, 4,
and 16 primitive actions, respectively. If a task required 64 primitive actions, each of the policies
would only need to learn sequences of 4 actions each.

Combining the action space for each policy and the desired nested structure of the policy hierarchy,
the transition function for level i : i > 0, Ti|Πi−1

(state, action), will work as follows. The subgoal
action selected ai by level i is assigned to be the goal of level i − 1: gi−1 = ai. πi−1 then has at
most H attempts to achieve gi−1. When either πi−1 runs out of H attempts or a goal gn, n ≥ i− 1,
is achieved, the transition function terminates and the agents current state is returned. The state
transition for function is labeled as Ti|Πi−1

because it depends on the full policy hierarchy below
level i, Πi−1, to determine the next state. The full state transition function for level i : i > 0
is provided in Algorithm 2, which is listed in the Appendix due to space constraints. The base
transition function T0 is assumed to be provided by the task.

3.2 CHALLENGES WITH LEARNING POLICIES IN PARALLEL

Without further changes, it is not possible to train these policies in parallel for two reasons. The
first reason is the issue of non-stationary state transition functions. As soon as an update is made

3

Under review as a conference paper at ICLR 2019

to the policy at level i, the state transition function for all levels n > i, Tn|Πn−1
, will automatically

change. This means that any previous updates made to level i’s Q-function Qi|Πi−1
may be obsolete

and any replay transitions that are stored may be invalid as they could violate the expectation of the
Q-function, which assumes a stationary transition function.

The second key reason is that each level would not be able to explore. If level i proposed a subgoal
ai for level i − 1 to achieve, and level i − 1 acted with a noisy policy when trying to achieve ai,
this would result in some transition [state, action, reward, next state, goal] for level i. However, this
transition could not be used to update level i’s Q-functionQi|Πi−1

because this transition was created
with a different transition function than Ti|Πi−1

as Πi−1 was not followed. The use of this transition
would thus violate the expectation of the Q-function, Qi|Πi−1

, which requires a stationary transition
function. Yet, each level in the hierarchy needs to be able to explore. Due to the deterministic nature
each policy πi, an off-policy strategy, in which level i uses a behavioral policy πib to explore the
environment while optimizing a different target policy πi, would be required.

As a consequence of not being able to learn these policies in parallel, an agent would be forced to
learn one policy at a time, bottom-up. Only when the level i − 1 policy πi−1 has converged to a
near-optimal policy, can the level i be trained. This is clearly unsatisfying because (i) it would be
difficult to know when a policy πi has converged when it is not known beforehand which (initial
state, goal) combinations πi will need to learn to achieve and (ii) learning the policies within the
hierarchy in parallel could be much faster.

3.3 LEARNING POLICIES SIMULTANEOUSLY VIA HINDSIGHT ACTIONS

In order for an agent to learn the policies within the hierarchy in parallel, there are two obstacles that
need to be overcome: (i) the non-stationary state transition functions and (ii) the inability to explore.
We next derive a potential solution to the non-stationarity issue, which will also happen to solve the
exploration problem.

The non-stationary state transition function issue will continue to hinder the training of level i’s
policy πi until the lower level policy hierarchy Πi−1 has stabilized. But Πi−1 will not stabilize until
each π ∈ Πi−1 has converged to its optimal policy π∗. Thus, in order to learn all policies in parallel,
each policy needs to be trained with respect to its optimal lower level policy hierarchy Π∗i−1. In
other words, in order to learn the policies simultaneously, each level i needs to learn the policy πi
that maximizes the action-value function function qπi|Π∗i−1

.

The next challenge lies in how to learn the level i’s estimated Q-functionQπi|Π∗i−1
when level i does

not have access to the optimal policy hierarchy below level i, Π∗i−1. Without Π∗i−1, we do not know
the transition function, Ti|Π∗i−1

(s, a). Without the transition function, we would not not be able to
judge whether a transition [state, action, reward, next state, goal violates the transition function
and thus the expectation within Qπi|Π∗i−1

. But one aspect of the transition function Ti|Π∗i−1
(s, a) is

known. If the subgoal action ai is achievable within H actions by the policy below πi−1, then when
ai is proposed in current state si, Ti|Π∗i−1

(si, ai) = ai (i.e., the agent will successfully move to state
ai). Further, a level can discover subgoal states that require at most H actions, by simply having the
level below follow some exploratory behavior policy, πi−1b

, for at most H actions and then note the
state that was achieved in hindsight shind.

The strategy for training the level i function Qπi|Π∗i−1
is now almost complete. Level i can propose

some subgoal state ai in its current state si for level i− 1 to achieve. Level i− 1 can then use some
behavior policy for at mostH actions to try to achieve its goal gi−1 = ai and then note the state shind
that was achieved in hindsight. Level i can then create a transition that replays its previous action as
if it had proposed the state achieved in hindsight shind as its original subgoal: [state = s, action =
shind, reward = TBD, next state = shind,goal = gi]. The last component that needs to be completed
is the reward value. The major requirement for the reward is that it must be independent of the path
that level i − 1 followed before landing in state shind because that path is likely different than had
the optimal policy hierarchy Π∗i−1 been followed exactly. Instead the reward should depend on the
state achieved in hindsight shind and level i’s goal gi. We will use the reward function Ri(s′,g) that
grants a reward of 0 if the next state maps to the goal and -1 otherwise: Ri(s′i, gi) = 0,∀s′i : s′i ∈ gi
and Ri(s′i, gi) = −1,∀s′i : s′i /∈ gi. In addition, we will also set the discount rate γi = 0, when the
hindsight action also achieves the goal. The full transition used to train Qπi|Π∗i−1

is now: [state = s,

4

Under review as a conference paper at ICLR 2019

action = shind, reward = ∈ {−1, 0}, nextstate =shind, goal = gi]. This transition is valid because
if level i− 1 had followed Π∗i−1, the same transition would have been created.

This strategy of replaying actions with the action executed in hindsight can be scaled to all k levels,
enabling all levels to learn in parallel. All that is required is some k-level hierarchical behavior
policy Πkb . In our experiments, we use a noisy version of the hierarchical policy Πk that has been
learned so far for the hierarchical behavior policy. Hindsight actions transitions are then created for
level i as soon as H actions have been executed by level i − 1 or earlier if a goal gn, n ≥ i − 1
is achieved. In addition, not how learning via hindsight actions has also overcome the exploration
obstacle. Because we are training the level i policy with respect to an optimal lower-level policy
hierarchy Π∗i−1 instead of the current lower-level policy hierarchy Πi−1, exploration noise can be
added to any level.

3.4 FLAWS OF LEARNING VIA HINDSIGHT ACTIONS

Learning via hindsight actions does enable all policies πi ∈ Πk to be trained in parallel, but the
strategy does have some serious shortcomings. The most significant flaw is that the strategy only
enables a level to learn about a restricted set of subgoal states. A level iwill only execute in hindsight
subgoal actions that can be achieved with at most H actions from level i−1. As a result, level i will
only learn Q-values for subgoal actions that are relatively close to its current state and will ignore
the Q-values for all subgoal actions that require more than H actions. This is problematic because
the action space for all subgoal levels should be the full state space in order for the framework to be
end-to-end. If the action space is the full state space and the Q-function is ignoring large regions of
the action space, significant problems will occur if the learned Q-function assigns higher Q-values to
distant subgoals than to feasible subgoals that can be achieved with at most H actions from the level
below. πi may adjust its policy to output these distant subgoals that have relatively high Q-values.
Yet the lower level policy hierarchy Πi−1 has not been trained to achieve distant subgoals so the
agent may act erratically as a result.

A second shortcoming is that level imay be able to learn goal-conditioned policies more quickly if it
took into account the capabilities of the current lower level policy hierarchy Πi−1. Consider a k = 2
level agent attempting to learn a task that requires 16 primitive actions when H = 8. When learning
from hindsight actions, the path with the highest Q-values would be the two-action sequence that
first moves the agent halfway between the initial state and goal, which requires 8 primitive actions
from π0. The second subgoal action in this optimal path would then move the agent from the halfway
state to the goal, which also requires 8 primitive actions. However, it may be the case that when this
optimal path has been found at level 1, the level 0 policy has not fully learned the sequences of 8
actions to achieve each of these subgoals. As a result, the current hierarchical policy Π1 may not
result in a sequence of actions that brings the agent the initial state to the goal state. On the other
hand, the level 0 policy may have already learned the 4 consecutive subgoal tasks, each of which
contains 4 primitive actions, that lead from the initial state to the goal. If the Q-function at level 1
also penalized subgoals that cannot be achieved with the current iteration of π0, then acting greedily
with respect to this Q-function may produce the path of 4 subgoals that can actually lead the agent
from the initial state to the goal.

In order to overcome both of these flaws but still enable agents to learn policies in parallel, we will
make the following changes to our approach. First, we will have all levels i > 0 at times execute
a process we will refer to as subgoal testing. After level i proposes a subgoal ai, a certain fraction
of the time λ, the lower level behavior policy hierarchy, Πi−1b

, used to achieve that goal must be
the current lower level policy hierarchy Πi−1. That is, instead of a level being able to explore when
trying to achieve its goal, the current lower level policy hierarchy must be followed exactly. In our
experiments, we set λ = 0.2. Second, when subgoal testing is executed, a different reward function
is used to evaluate an action. This other reward function will have a third term. Ri(a, s′, g) will
now issue a penalty reward if the next state s′i does not map to the original subgoal action ai (i.e.,
subgoal action ai was not achieved by level i − 1 in H actions). The updated reward function is
now Ri(ai, s

′
i, gi) = penalty,∀s′i : s′i /∈ ai, Ri(ai, s′i, gi) = −1,∀s′i : (s′i ∈ ai) ∧ (s′i /∈ gi), and

Ri(ai, s
′
i, gi) = 0,∀s′i : (s′i ∈ ai) ∧ (s′i ∈ gi). In our experiments, we set the penalty reward to

−H . In addition, in the situation in which a subgoal is tested and missed, we set the discount rate
γi=0. This will ensure that the Bellman target resulting from the transition describing the missed

5

Under review as a conference paper at ICLR 2019

subgoal will be a fixed low value and will not depend on the next state term, which will vary as πi−1

changes.

Subgoal testing overcomes the issue of a level ignoring distant subgoals when updating the Q-
function. Whenever level i proposes and then tests a subgoal ai that requires more than H actions
from the level below, the following transition is guaranteed to be created: [state = si,action =
ai,reward = −H , next state = ignore, goal=gi]. The next state is ignored because the discount rate
γi = 0 when a subgoal is tested and missed. This transition in turn will incentivize the Q-function to
assign a low Q-value to the unfeasible subgoal.

At the same time, integrating subgoal testing still enables agents to learn the policies within the
hierarchy in parallel. Whereas before the Q-function was trying to estimate the action-value func-
tion that assumed an optimal lower level policy hierarchy, qπi|Π∗i−1

(s, a) = Eπi|Π∗i−1
[Rit+1 +

γiVi(s
′)|sit = s, ait = a]. Now the Q-function is trying to estimate the action-value func-

tion that is a weighted combination of the action-value function using the current lower level
policy hierarchy and the action-value function using the optimal lower level policy hierarchy:
qπi

(s, a) = λ · qπi|Πi−1
(s, a) + (1 − λ) · qπi|Π∗i−1

(s, a). In other words, the Q-value of a sub-
goal action will now take into account whether the subgoal can actually be achieved by the current
lower level policy hierarchy because the only difference between the reward functions is the penalty
term. This updated Q-function still enables policies to be learned in parallel because subgoal actions
a that had higher Q-values than other subgoal actions b under the former Q-function using Π∗i−1
should still have higher Q-values under the weighted Q-function, except potentially in the case in
which the current lower level policy hierarchy can achieve subgoal b but not a. This overcomes the
second shortcoming mentioned previously as the weighted Q-function incentivizes the policy to find
paths to the goal that can actually be executed given the current lower level policy hierarchy Πi−1.

3.5 UMDP TRANSFORMATION

We now formally define our strategy to learn policies in parallel in terms of the Universal MDP
(UMDP) introduced earlier. Given the UMDP provided by the task Uoriginal = (S,G,A, T,R, γ),
we convert Uoriginal into a hierarchy of k UMDPS Ui = (Si,Gi,Ai, Ti, Ri, γi). These UMDP
tuples are defined as follows:

U0: This is the lowest level of the hierarchy. It has the same state set, action set, and state transition
function as Uoriginal: S0 = S,A0 = A, and T0 = T . The goal states for which U0 will be
responsible for learning will be dictated by the UMDP one level higher, U1. However, given that
every state is potentially a goal, the goal space is defined to be the state space: G0 = S. The
framework is flexible as to the reward function used at level 0, but we will use the shortest path
reward function, in which a reward of 0 is granted if the next state, s′, maps to the goal and -1
otherwise: R0(s′0, g0) = 0,∀s′0 : s′0 ∈ g0 and R0(s′0, g0) = −1,∀s′0 : s′0 /∈ g0. In addition, the
discount rate is set to 0 if the goal has been achieved, but remains γ otherwise: γ0(s′0, g0) = 0,∀s′0 :
s′0 ∈ g0, γ0(s′0, g0) = γ,∀s′0 : s′0 /∈ g0. The objective in U0 is to find the policy π0 : S0,G0 → A0

that maximizes the value function vπ0
(s, g) = Eπ0

[
∑∞
n=0 γ

n
0R0t+n+1

|s0t
= s, g0t

= g] for the
initial state and goal combinations that the policy π1 from U1 requires.

Ui, 1 ≤ i < k: These UMDPs represent the remainder of the hierarchy. The state space is the same
as the state space in Uoriginal: Si = S. For all levels except for the top level, the set of goals is
dictated by the level above. These goals can potentially be any state: Gi:1≤i<k−1 = S. For the
top level, the goal set is provided by the task: Gk−1 = G. The action space is the state space as
these policies will output subgoal states for the next level to achieve: Ai = S. The state transition
function consists of two transition functions: Ti(s, a) = {(i) Ti|Πi−1

(s, a), (ii) Ti|Π∗i−1
(s, a)}. The

first transition function will be used for subgoal testing and will follow the current lower level policy
hierarchy exactly. The second transition function will be used to generate hindsight transitions.
Note that the hindsight action a passed to the second transition function must be generated by some
other hierarchical behavior policy Πib . The reward function is Ri(a, s′, g) = penalty,∀s′ : s′ /∈ a,
Ri(a, s

′, g) = −1,∀s′ : (s′ ∈ a) ∧ (s′ /∈ g), and Ri(a, s′, g) = 0,∀s′ : (s′ ∈ a) ∧ (s′ ∈ g). The
penalty reward is only issued during subgoal testing. γi is set to 0 if a subgoal is tested and missed
or if an action achieves the goal, but is otherwise γ from Uoriginal : γi(a, s

′, g) = 0,∀s′ : (s′ /∈
a) ∨ (s′ ∈ g). The objective in each Ui is to learn a policy πi : Si,Gi → Ai that maximizes the
weighted value function vπi(s, g) = λ · vπi|Πi−1

(s, g) + (1− λ) · vπi|Π∗i−1
(s, g).

6

Under review as a conference paper at ICLR 2019

3.6 INTEGRATING HINDSIGHT EXPERIENCE REPLAY

The UMDP transformation operation does enable agents to learn to solve a set of UMDPs in parallel,
but each UMDP remains difficult due to the sparsity of the reward. The hindsight actions help each
level discover feasible subgoal actions, but these subgoal actions do not necessarily help the level
achieve its goal. As currently constructed, each level would need to its behavior policy to randomly
achieve the goal in order to receive the sparse reward, but this can be unlikely in difficult tasks.

To make it easier for each level to learn a goal-conditioned policy in the sparse reward environments,
we integrated Hindsight Experience Replay (HER)(Andrychowicz et al. (2017)) into every level of
the hierarchy. This is implemented as follows. When a level i is given a goal from level i+ 1, level i
will create a hindsight action transition for each action executed. Assuming thatH hindsight actions
were executed, these transitions will be of the form [state = sit , action = shindt , reward = rit , next
state = sit , goal = git], in which t ∈ {0, . . . ,H − 1}. To incorporate HER, one or more copies of
these transitions will be created and the reward and goal components will be erased. For each set of
copies, a new goal will be selected from the set of next state transition elements and inserted into
the set of copied transitions as the goal component. The reward Ri(ai, s′i, gi) element will also be
updated to reflect the new goal.

HER should significantly help each level learn an effective goal-conditioned policy because it guar-
antees that after every sequence of actions, at least one transition will be created that contains the
sparse reward (in our case a reward of 0). These transitions containing the sparse reward will in turn
incentivize the UVFA critic function to assign relatively high Q-values to the (state, action, goal)
tuples described by these transitions. The UVFA can then potentially transfer these high Q-values
to the actions that could help level i solve its tasks.

Algorithm 1 Hierarchical Actor-Critic (HAC)

for M episodes do . Train for M episodes
s← Sinit, g← Gk−1 . Sample initial state and task goal
train− level(k − 1, s, g) . Begin training
Update all actor and critic networks

end for

function TRAIN-LEVEL(i :: level, s :: state, g :: goal)
si ← s, gi ← g . Set current state and goal for level i
for H attempts or until gn, i ≤ n < k achieved do

ai← πi(si, gi) + noise (if not subgoal testing) . Sample (noisy) action from policy
if i > 0 then

Determine whether to test subgoal ai
s
′

i ← train− level(i− 1, si, ai) . Train level i− 1 using subgoal ai
else

Execute primitive action a0 and observe next state s
′

0
end if

. Create replay transitions
if i > 0 and ai missed then

if ai was tested then . Penalize subgoal ai
Replay Bufferi ← [s = si, a = ai, r = Penalty, s

′
= s

′

i, g = gi]
end if
ai ← s

′

i . Replace original action with action executed in hindsight
end if

. Evaluate executed action on current goal and hindsight goals
Replay Bufferi ← [s = si, a = ai, r = {−1, 0}, s′ = s

′

i, g = gi]

HER Storagei ← [s = si, a = ai, r = TBD, s
′

= s
′

i, g = TBD]

si ← s
′

i
end for
Replay Bufferi ← Perform HER using HER Storagei transitions
return s

′

i . Output current state
end function

7

Under review as a conference paper at ICLR 2019

g3

s0

s1

s2

s3g0

g1

g2

s4

Figure 2: Figure shows an example episode trajectory for a simple toy example. The tic marks along the
trajectory show the next states for the robot after each atomic action is executed. The gray spheres show the
subgoal states reached in hindsight after at most T actions. The pink spheres show the original subgoal actions.

3.7 HIERARCHICAL ACTOR-CRITIC ALGORITHM

Algorithm 1 shows the procedure used to train policy hierarchies in continuous domains, which we
refer to as Hierarchical Actor-Critic (HAC).

3.8 EXAMPLE

This section walks through a simple toy example showing how our frameworks helps agents learn a
set of policies in parallel by replacing both actions and goals. The agent in this task is a robot and
its goal is to reach the yellow flag. The agent has two levels in its hierarchy and a maximum subgoal
horizon parameter H = 5 actions. Thus, the agent’s goal is to learn both a low and high-level policy
that focus on action sequences that contain no more than 5 actions.

Figure 2 shows an example episode trajectory. Please note that all subscript numbers in the figure
refer to the iteration number of the high-level policy. The episode begins with the robot in state
s0 when the high-level policy π1 proposes its first subgoal state g0. The robot decides that during
this iteration, subgoal g0 will not be tested. As a result, the low-level policy, π0, is free to add
exploration noise to the primitive actions it proposes. Level 0 then has at most H = 5 primitive
actions (i.e., joint torques in this case) to achieve g0. After each action, a transition will be created
showing how the action from π0 performed given the goal state it was provided. For instance, the
first transition in this example may look like [s = s0, a = Joint Torques, r = −1, s′ = first
tick mark, g = g0]. In addition, a separate transition will be created and temporarily stored in
order to be used for level 0’s Hindsight Experience Replay. This transition will be of the form
[s = s0, a = Joint Torques, r = TBD, s′ = first tick mark, g = TBD]. Per the example
in Figure 2, the robot fails to achieve state g0 after 5 attempts and lands in state s1 instead. After
this sequence of primitive actions, HER is performed for layer 0. The state s1 can replace the TBD
goal component in the extra hindsight transitions that were created and the reward would then be
replaced with its appropriate value.

The completion of level 0’s for loop represents a single action by level 1’s policy π1. Because its
original subgoal g0 was not achieved, π1 will then record the hindsight state s1 as the actual action
that was taken. The transition [s = s0, a = s1, r = −1, s′ = s1, g = Y ellow F lag] will be added
to level 1’s replay buffer. The additional transition [s = s0, a = s1, r = TBD, s′ = s1, g = TBD]
will be stored until HER is performed for level 1.

Skipping ahead to when the robot is in state s2, the high-level policy proposes subgoal g2 and then
decides to test the subgoal. The low-level policy then has H = 5 attempts without exploration noise
to try to achieve g2. In this scenario, the robot fails to achieve g2. Indeed, state g2 is too far away from
s2 to ever be achieved in 5 attempts. Because the subgoal was tested and the robot failed to achieve
it, a penalty transition is created and passed to the replay buffer for level 1. Assuming the penalty
is −H = −5, the transition would be of the form [s = s2, a = g2, r = −5, s′ = s3, g = Y ellow

8

Under review as a conference paper at ICLR 2019

Flag]. The robot will also create the regular and hindsight transitions showing that state s3 is a
possible subgoal state from s2. The regular transition is again of the form [s = s2, a = s3, r =
−1, s′ = s3, g = Y ellow F lag]. The episode then finishes with the agent achieving its goal. After
the episode, HER is performed for level 1 and then all actor-critic networks are updated using an
off-policy RL algorithm, such as DDPG (Lillicrap et al. (2015)).

From this single episode, both levels have learned important information. Using HER, level 0 has
learned the joint torques that can achieve a variety of states. Similarly, by replacing the original
proposed subgoals with the subgoal actions achieved in hindsight, level 1 has learned a sequence
of subgoal states (s1 → s2 → s3 → s4) that fits its time scale and can lead the robot to a certain
area in the goal space. The sequences of actions that each level is provided is short and thus can
potentially be learned more quickly than a flat policy trying to learn a long sequence of atomic
actions. Moreover, through subgoal testing, level 1 has also learned about subgoals that may be
too ambitious. Using its UVFA, each level should be able to use this new information to better
generalize to different goal states.

4 EXPERIMENTS

4.1 ENVIRONMENTS

We evaluated our framework in a variety of discrete and continuous tasks. The discrete tasks
consisted of grid world environments. The continuous tasks consisted of the following simulated
robotics environments developed in Mujoco (Todorov et al. (2012)): (i) Inverted Pendulum, (ii) UR5
Reacher, (iii) Cartpole, and (iv) Pick-and-Place. A video showing our experiments can is available
at https://www.youtube.com/watch?v=i04QF7Yi50Y.

4.2 RESULTS

For each task we compared the performance of agents using policy hierarchies with 1 (i.e., flat), 2,
and 3 levels. The flat agents used Q-learning with HER in the discrete tasks and DDPG with HER
in the continuous tasks.

In all tasks, our approach significantly outperformed the flat agent. Figure 4 shows the performance
graphs for each agent in each task. Each chart plots the average episode success rate for a given
level of training for the 3 level agent (Red), 2 level agent (Blue), and 1 level agent (Green). For the
discrete tasks, inverted pendulum, and UR Reacher task, the level of training is expressed in terms
of the actual number of training episodes that have taken place. For the remaining tasks, the level of
training is expressed in terms of test periods, in which each test period is separated by around 250
training episodes. For the discrete tasks, the charts averages data from 50 trial runs. The continuous
tasks use data from 5-10 trial runs. Each chart also plots the areas that are 1 standard deviation from
the mean success rate.

Our empirical results also support our claim that additional layers of hierarchy can improve sample
efficiency because they can shorten the action sequence length that each policy needs to learn. In
all of the discrete tasks and in the more challenging continuous tasks, such as UR5 Reacher and
Cartpole, the agent using 3 levels outperformed the agent 2 levels.

4.2.1 BASELINE COMPARISON

We compared our approach HAC against another HRL technique, HIRO (Nachum et al. (2018))
because HIRO has shown it can outperform the other leading HRL techniques that can work in
continuous state and action spaces: FeUdal Networks(Vezhnevets et al. (2017)) and Option-Critic.
HIRO enables agents to a 2-level hierarchical policy. Like our approach, these policies are goal-
conditioned and can be trained off-policy. In addition to being limited to 2 levels, the other major
differences are that (i) HIRO does not use HER at either of the 2 levels and (ii) HIRO uses a differ-
ent approach for handling the non-stationary transition functions. Instead of replacing the original
proposed action with the hindsight action as in our approach, HIRO inserts the action from a set of
actions that would most likely cause the sequence of (state, action) tuples that originally occurred
at level 0, when the level 0 policy was trying to achieve the original subgoal. The set of potential
replacement actions include the original proposed subgoal action, the hindsight action, and 8 other

9

https://www.youtube.com/watch?v=i04QF7Yi50Y

Under review as a conference paper at ICLR 2019

10 x 10 Grid World

Number Training Episodes

A
vg

. S
uc

ce
ss

 R
at

e

UR 5 Reacher
Number Training Episodes Number Training Episodes

Number Training Episodes Test Period Test Period

A
vg

. S
uc

ce
ss

 R
at

e

A
vg

. S
uc

ce
ss

 R
at

e

A
vg

. S
uc

ce
ss

 R
at

e

A
vg

. S
uc

ce
ss

 R
at

e

A
vg

. S
uc

ce
ss

 R
at

e

Four Rooms Inverted Pendulum

Cartpole Pick-and-Place

Figure 3: Figure presents results of our experiments. For each task, the average success rate is
shown over time for a 3-level agent (Red), a 2-level agent (Blue), and a 1-level (Green). The error
bars represent 1 standard deviation.

Inverted Pendulum UR5 Reacher

Number of Training EpisodesNumber of Training Episodes

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
(%

)

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
(%

)

Figure 4: Figure compares the performance of HAC (2 Levels) and HIRO. The charts show the
average success rate over 5 trials for each algorithm. The error bars represent 1 standard deviation.

actions sampled from a Gaussian around the hindsight action. We believe that although this is a
clever way to enable the agent to learn using off-policy methods, it does not enable an agent to learn
the policies within a hierarchy in parallel. When HIRO makes updates to the level 1 policy, these
are still in respect to the current level 0 policy. When the level 0 policy inevitably changes, prior
updates to the level 1 policy will become obsolete.

We compared the 2-level version of HAC to HIRO on the easier Inverted Pendulum task and the more
difficult UR5 Reacher task. In both experiments, HAC outperformed HIRO. The out-performance
was substantial in the UR5 Reacher task, as HIRO was unable to maintain a success rate ¿ 0%, while
the 2-level version of HAC could achieve around a 90% average success rate in around 900 episodes.
Figure 4 shows the results of the comparison. We attribute HAC’s better performance to the use of
HER, which can accelerate learning in sparse reward tasks, and our approach for learning policies
in parallel.

5 RELATED WORK

There have been a wide range of hierarchical reinforcement learning approaches
that have been implemented. Most of these approaches either only work in dis-
crete domains, require low-level controllers, or require a model of the environment
[Suttonet al. (1999), Dietterich (1998), McGovern&Barto (2001), Kulkarniet al. (2016),

10

Under review as a conference paper at ICLR 2019

Menacheet al. (2002), Simseket al. (2005), Bakker&Schmidhuber (2004),
Wiering&Schmidhuber (1997)]

There are a few other automated hierarchical RL techniques that can work in continuous domains.
Konidaris & Barto (2009) proposed Skill-Chaining, a method that iteratively chains options from the
end goal state to the start state. A key advantage that our framework has relative to Skill-Chaining
is that our approach learns the subgoal options needed to reach a more distant goal state in parallel
rather than incrementally, which can lead to improved sample efficiency. For instance, in the toy
robot example provided above, agents using Skill-Chaining may use the experience to only learn an
option to move from state s3 to s4. On the other hand, our approach can immediately begin to learn
all of the low-level subgoal policies (i.e., s0 → s1, s1 → s2, s2 → s3, s3 → s4) in parallel. A key
advantage of HAC relative to Option-Critic architecture (Bacon et al. (2016)) and FeUdal Networks
(FUN) (Vezhnevets et al. (2017)) is that these methods are limited to hierarchies with only two
levels, whereas our framework can support an arbitrary number of levels. This enables agents using
our approach to divide the original task into a parallel set of even shorter action sequences.

6 CONCLUSION

We propose a new framework for effectively scaling reinforcement learning to long time horizon
tasks involving sparse rewards. Instead of learning a single lengthy policy, our approach learns a
hierarchy of limited policies that operate at different time scales. The policies are trained in parallel
and end-to-end using a combination of a particular UMDP transformation and Hindsight Experience
Replay. Our results show that our approach can significantly improve sample efficiency in both
discrete and continuous domains.

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NIPS, 2017.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. CoRR,
abs/1609.05140, 2016. URL http://arxiv.org/abs/1609.05140.

Bram Bakker and Jürgen Schmidhuber. Hierarchical reinforcement learning with subpolicies spe-
cializing for learned subgoals. In Neural Networks and Computational Intelligence, pp. 125–130.
IASTED/ACTA Press, 2004.

Thomas G. Dietterich. The maxq method for hierarchical reinforcement learning. In In Proceedings
of the Fifteenth International Conference on Machine Learning, pp. 118–126. Morgan Kaufmann,
1998.

George Dimitri Konidaris and Andrew G. Barto. Skill chaining : Skill discovery in continuous
domains. 2009.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep
reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 29, pp. 3675–3683. Curran Associates, Inc., 2016.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. CoRR,
abs/1509.02971, 2015. URL http://arxiv.org/abs/1509.02971.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In ICML, volume 1, pp. 361–368, 2001.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut - dynamic discovery of sub-goals in
reinforcement learning. In ECML, 2002.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. CoRR, abs/1805.08296, 2018.

11

http://arxiv.org/abs/1609.05140
http://arxiv.org/abs/1509.02971

Under review as a conference paper at ICLR 2019

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference
on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1312–1320,
Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/
schaul15.html.

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. Artificial Neural Net-
works, pp. 967–972, 1991.

Özgür Simsek, Alicia P. Wolfe, and Andrew G. Barto. Identifying useful subgoals in reinforce-
ment learning by local graph partitioning. In Machine Learning, Proceedings of the Twenty-
Second International Conference (ICML 2005), Bonn, Germany, August 7-11, 2005, pp. 816–
823, 2005. doi: 10.1145/1102351.1102454. URL http://doi.acm.org/10.1145/
1102351.1102454.

R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: a framework for temporal
abstraction in reinforcement learning. Artificial Intelligence Journal, 112:181–211, 1999.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning : An Introduction. MIT Press,
1998.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based con-
trol. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
2012.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. CoRR,
abs/1703.01161, 2017. URL http://arxiv.org/abs/1703.01161.

Marco Wiering and Jürgen Schmidhuber. Hq-learning. Adaptive Behaviour, 6(2):219–246, 1997.

7 APPENDIX

7.0.1 UMDP STATE TRANSITION FUNCTION

Algorithm 2 UMDP Ui Transition Function: Ti|Πi−1
(state, action)

Input: state s, action a,
Output: next state

return Execute−H −Actions(s, a, i− 1, H) . Execute ≤ H actions using policy πi−1

function EXECUTE-H-ACTIONS(s :: state, a :: action, i :: level, itr :: iteration)
s′ = Ti(s, πi(s, a)) . Execute 1 action using policy πi
itr -= 1 . Decrement iteration counter
if itr == 0 or s′ ∈ g,∀g ∈ {gi, ..., gk−1} then

return s′ . Return next state if out of iterations or goal achieved
else

return Execute−H −Actions(s′, a, i, itr) . Execute another action from πi
end if

end function

7.1 SAMPLE EPISODE SEQUENCES

12

http://proceedings.mlr.press/v37/schaul15.html
http://proceedings.mlr.press/v37/schaul15.html
http://doi.acm.org/10.1145/1102351.1102454
http://doi.acm.org/10.1145/1102351.1102454
http://arxiv.org/abs/1703.01161

Under review as a conference paper at ICLR 2019

Figure 5: Episode sequences from the four rooms (Top) and inverted pendulum tasks (Bottom). In the four
rooms task, the agent is the blue square, the goal is the yellow square, and the learned subgoal is the purple
square. In the inverted pendulum task, the goal is the yellow sphere and the subgoal is the purple sphere.

13

	Introduction
	Background
	Approach
	Desired Hierarchical Policy
	Challenges with Learning Policies in Parallel
	Learning Policies Simultaneously via Hindsight Actions
	Flaws of Learning via Hindsight Actions
	UMDP Transformation
	Integrating Hindsight Experience Replay
	Hierarchical Actor-Critic Algorithm
	Example

	Experiments
	Environments
	Results
	Baseline Comparison

	Related Work
	Conclusion
	Appendix
	UMDP State Transition Function
	Sample Episode Sequences

