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ABSTRACT

We propose a unified product embedded representation that is optimized for the
task of retrieval-based product recommendation. We generate this representation
using Content2Vec, a new deep architecture that merges product content infor-
mation such as text and image and we analyze its performance on hard recom-
mendation setups such as cold-start and cross-category recommendations. In the
case of a normal recommendation regime where collaborative information signal
is available we merge the product co-occurence information and propose a sec-
ond architecture Content2vec+ and show its lift in performance versus non-hybrid
approaches.

1 INTRODUCTION

Online product recommendation is now a key driver of demand, not only in E-commerce businesses
that recommend physical products, such as Amazon (Marshall, 2006), TaoBao (Xiang, 2013) and
Ebay (Academy, 2013), but also in online websites that recommend digital content such as news (Ya-
hoo! (Agarwal et al., 2013), Google (Liu et al., 2010)), movies (Netflix (Bell & Koren, 2007)), music
(Spotify (Johnson, 2015)), videos (YouTube (Covington et al., 2016)) and games (Xbox (Koenig-
stein et al., 2012)).

Two of the most challenging aspects of recommendation in general and of product recommendation
in particular, are scalability and freshness. The first one addresses the problem of making fast
recommendations, the second addresses the problem of updating recommendations based on real-
time user interaction. One of the most encountered architecture solutions for recommendation at
scale divides the recommendation process in two stages: a candidate generation stage that prunes
the number of recommendable items from billions to a couple of hundreds, followed by a second
item selection stage that decides the final set of items to be displayed to the user, as shown in Figure
1 (see (Mazare, 2016), (Cheng et al., 2016), (Covington et al., 2016)).

The first stage generally implies the pre-generation of an inverted-index over the set of recommend-
able products, paired with a real-time retrieval module, similarly to a search engine architecture.
In our current paper we focus on the cases where the system supports vectorial product queries.
The sources of the vectorial representations range from the set of co-occurring products, like in the
case of neighborhood-based collaborative filtering, to a low-dimensional representation produced
via matrix factorization or to an embedded representation produced via a deep neural network.

The second stage takes the candidate set and decides the final list of recommendations, usually by
optimizing a ranking metric. This stage has in general a lot more constraints in terms of latency, due
to its use of real-time signal that makes its predictions not cacheable. Therefore, in terms of model
choice, the first stage can be a lot more complex than the second. In terms of impact, the quality of
the candidate set coming from the first stage is crucial, since this constitutes a hard threshold on the
performance of the second stage and of the overall system.

Because of the feasibility of using a more complex model and the potential impact on the final
recommendation performance, we choose to concentrate our efforts on the task of optimal candi-
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Figure 1: 2-Stage Recommender System Architecture.

date generation. We formalize the problem as a link prediction task, where given a set of past
co-purchased products we try to predict unseen pairs of products. Related work in representation
learning for recommendation investigated the use of collaborative filtering (CF), text and product
images, but to our knowledge, there has been no attempt to unify all of these signals in a single rep-
resentation. We see this as an opportunity to investigate the leveraging effect of generating a Unified
Product Representation via a deep-learning approach. In the following, we formally define the set
of associated requirements we would like to satisfy:

• Relevance: the representation should be optimized for product recommendation relevance,
as measured by the associated target metrics (in this case, modeling it as a link prediction
task and optimizing for the AUC of product pair prediction).

• Coverage: the representation should leverage all available product information (in our
case, all product information available in the product catalog together with observed prod-
uct co-occurrences).

• Cross-modality expressiveness: the representation should be able to account for interac-
tions between various information sources such as text and image (can take into account
the fact that the word ”red” and the ”red” color detector are correlated).

• Pair-wise expressiveness: the representation should be able to account for all interactions
between pairs of products.

• Robustness: the representation should operate well (recommendation performance will not
degrade dramatically) in hard recommendation situations such as product cold-start (new
products, new product pairs) and cross-category recommendation. These are important
use-cases in product recommendation, when the product catalog has high churn (as in the
case of flash sales websites or classifieds) or the recommendation needs to leverage cross-
advertiser signal (as in the case of new users and user acquisition advertising campaigns).
This is a different goal from simply trying to optimize for relevance metrics, due to the
inherent limitations of offline metrics in predicting future online performance.

• Retrieval-optimized: the representation should be adapted to a content-retrieval setup,
both on the query and on the indexing side, meaning that the vectors should be either
small, sparse or both.
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We propose a modular deep architecture that leverages state-of-the-art architectures for generating
embedded representations for image, text and CF input, re-specializes the resulting product em-
beddings and combines them into a single product vector. This is a very general architecture that
can plugin any networks in the image and text domain and re-use them for the problem of product
recommendation, along with their gains in representation learning for the two domains. We inves-
tigate multiple ways of merging the modality-specific product information and propose a new type
of residual-inspired unit, which we name Pairwise Residual Unit that can model the joint aspects of
the different product embeddings and show that it leads to good improvements.

We analyze our proposed architecture on an Amazon dataset (McAuley et al., 2015) containing in-
formation on co-purchased products. We report our improvements versus a text and an image-based
baseline, that was introduced in previous work by McAuley et al. (2015) and show improvements
both on normal and hard recommendation regimes such as cold-start and out-of-sample setups.

Our approach is similar with the recent work by Covington et al. (2016), that proposes a solution
for video recommendation at YouTube within a similar architecture. Unlike their proposed solution,
where, in order to support user vector queries, the candidate generation step co-embeds users and
items, we are interested to co-embed just the product pairs, which generally have a much smaller
dimension. In our approach, the personalization step can happen after the per-item candidates are
retrieved.

Our main contributions are the following:

• We propose a novel way of integrating an item embedding model in the context of large
scale recommender system with a 2-stage serving architecture and introduce the new task
of Unified Product Representation for optimal candidate selection.

• We introduce a new deep architecture that merges content and CF signal for the task of
product recommendation and propose the Pairwise Residual Unit, a new component that
models the joint product representations.

• We introduce two novel experimental setups (hard cold start, out-of-category) and test that
the proposed Content2Vec architecture satisfies the requirements we defined.

Though the focus of our work is on improving product recommendation through representation
learning, we believe that simple extensions of our work can be applied to many other recommenda-
tion scenarios.

The rest of paper goes as follows: In Section 2 we cover previous related work and the relationship
with our method. In Section 3 we present the Content2Vec model, followed by a detailed description
of the resulting architecture in Section 4. In Section 5 we present the experimental setup and go over
our results on Section 6. In Section 7 we summarize our findings and conclude with future directions
of research.

2 RELATED WORK

Our work fits in the new wave of deep learning based recommendation solutions, that similarly to
classical approaches can fall into 3 categories, namely collaborative filtering based, content based or
hybrid approaches.

Several approaches use shallow neural networks to build better item representations based on the
co-occurrence matrix. The Prod2Vec algorithm (see (Grbovic et al., 2015)) implements Word2Vec
((Mikolov et al., 2013a), (Shazeer et al., 2016)), an algorithm that is at origin a shallow neural
language model, on sequences of product ids, to reach a low-dimensional representation of each
product. Among other embedding solutions that use the item relationship graph are the more recent
extensions to Word2Vec algorithm such as Glove (Pennington et al., 2014) and SWIVEL (Shazeer
et al., 2016) and the graph embedding solutions proposed in Node2Vec (Grover & Leskovec, 2016)
and SDNE (Wang et al., 2016).

Content-based methods recommend an item to a user based upon an item description and a user
profile ((Pazzani & Billsus, 2007)). This idea was deeply investigated in the information retrieval
literature: in the context of web search, DSSM (Huang et al., 2013) and its extensions (Shen et al.,
2014)(C-DSSM) and (Shan et al., 2016) are some of the most successful methods that specialize
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query and document text embedding in order to predict implicit feedback signal such as document
click-through rate. In the context of product recommendation, in (McAuley et al., 2015) the authors
feed a pre-trained CNN (CNN trained on the ImageNet dataset, which is an image classification task
that is very different from the task of image-based product recommendation) with products images
and use the last layer of the network as the product embedding. This representation is subsequently
used to compute similarities between products. Similarly, the authors in (Van den Oord et al., 2013)
use CNNs to compute similarities between songs.

The performance of Collaborative Filtering (CF) models is often higher than that of content-based
ones but it suffers from the cold-start problem. To take advantage of the best of both worlds, hybrid
models use both sources of information in order to make recommendations. One possible way to
incorporate product information is using it as side information in the product sequence model, as
proposed in Meta-Prod2Vec (Vasile et al., 2016), leading to better product embeddings for products
with low signal (low number of co-occurrences). In this work we continue the investigation of using
both types of signal, this time both at training and product recommendation time.

Specializing content representation to recommendation Yosinski et al. (2014), the authors show
that the low layers of DNNs trained on different tasks are often similar and that good performance
can be reached by fine-tuning a network previously trained on another task. In the case of rec-
ommendation systems, this fine tuning was implemented by (Veit et al., 2015), where the authors
specialize a GoogLeNet to the task of predicting co-view events based on product pictures.

3 CONTENT2VEC MODEL

Our proposed approach takes the idea of specializing the input representations to the recommenda-
tion task and generalizes it for multi-modality inputs, in order to leverage all product information
and in particular, product images and product description text.

The main criteria for the Content2Vec architecture is to allow us to easily plugin new sources of
signal and to replace existing embedding solutions with new versions. Also, we want to separate
product-level embeddings and pair-level embeddings, such that the network can generate product
vectors that are readily indexable. As a result, the Content2Vec architecture has three types of
modules, as shown in Figure 2:

• Content-specific embedding modules that take raw product information and generate the
associated vectors. In this paper we cover embedding modules for text, image, categorical
attributes and product co-occurrences (for an example, see Figure 3).

• Overall product embedding modules that merge all the product information into a unified
product representation.

• Pair embedding module that merges the product-to-product interactions and computes
the final prediction. In the case of retrieval-optimized product embeddings, this module
becomes the inner-product between the two items and all interactions between them are to
be approximated within the product-level embedding modules.

Content2Vec training follows the architecture, learning module-by-module: In the first stage, we
initialize the content-specific modules with embeddings from proxy tasks (classification for image,
language modeling for text) and re-specialize them to the task of product recommendation. For the
specialization task, as mentioned in Section 1, we frame objective as a link-prediction task where,
given an incomplete set of pairs of products that were purchased together, we try to predict which
pairs of products from a hold-out set were truly purchased together. We describe the loss function
in Section 3.1.
In the second stage, we stack the modality-specific embeddings generated in the first stage into a
general product vector and learn an additional residual vector using the same learning objective as
in the specialization step. This will be described in depth in Section 4.2.
Finally, in the third stage, given the updated product vectors from stage two, we learn the linear
combination between the similarities of the product vectors and make the final prediction.
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Figure 2: Content2Vec Architecture.

3.1 LOSS FUNCTION

The previous work on learning pair-wise item distances concentrated on using ranking (McFee &
Lanckriet, 2010), siamese (Hadsell et al., 2006) or logistic loss (Zheng et al., 2015). For optimizing
the link prediction objective we choose the logistic similarity loss (eq. 1), that has the advantage of
having a fast approximation via Negative Sampling loss (Mikolov et al., 2013b), shown in eq. 2.
By using Negative Sampling, the prediction step can scale up to large number of items, by using all
positive pairs and sampling the negatives on the fly.

L(θ) =
∑
ij

−XPOS
ij log σ(sim(ai, bj))−XNEG

ij log σ(−sim(ai, bj)) (1)

LNS(θ) =
∑
ij

−XPOS
ij (log σ(sim(ai, bj)) +

k∑
l=1

Enl∼PD
log σ(−sim(ai, nl)) (2)

where:
θ = (ai, bj) is the set of model parameters, where ai and bj are the embedding vectors for the prod-
ucts A and B.
sim(ai, bj) = α < ai, bj > +β is the similarity function between ai and bj .
XPOS

ij is the frequency of the observed item pair ij (e.g. the frequency of the positive pair ij)
XNEG

ij = Xi − XPOS
ij is the frequency of the unobserved item pair ij (we assume that all unob-

served pairs are negatives)
PD probability distribution used to sample negative context examples nl
k is a hyper parameter specifying the number of negative examples per positive example

5



Under review as a conference paper at ICLR 2017

Figure 3: An example of using the content-specific modules to create embedded representations of
two products with images, text and CF signal.

4 CONTENT2VEC MODULES

4.1 CONTENT-SPECIFIC EMBEDDING MODULES

Content-specific modules can have various architectures and are meant to be used separately in order
to increase modularity. Their role is to map all types of item signal into embedded representations.
In Figure 3 we give an illustrative example of mapping a pair of products to their vectorial represen-
tations.

In the following we analyze four types of input signal and embedding solutions for each one of them.

4.1.1 EMBEDDING PRODUCT IMAGES: ALEXNET

Model and proxy task: CNNs for Image Classification For generating the image embeddings
we propose reusing a model trained for image classification, as in previous work by () and (He &
McAuley, 2015). In (He & McAuley, 2015), the authors have shown how to use the Inception DNN
architecture (Szegedy et al., 2015) and specialize it for the product recommendation task. However,
the Inception architecture is very deep and requires extensive training time. For ease of experimen-
tation we use AlexNet (), which is a simpler architecture that was also a winner on the ImageNet
task (Krizhevsky et al., 2012) previously to Inception NN. In section 6 we will show that, even if
simpler, when combined with additional product text information, the AlexNet-based solution can
perform very well on the recommendation task.
For our experiments, we use the pretrained version of AlexNet available on Toronto’s university web-
site. We experimented with two different ways to specialize the representation in order to compute
product similarities. In the first one, we learn a weighted inner product between the two representa-
tion (fc7 layer of ImageNet). In the second one, we back-propagate the error until the fc7 layer in
order to specialize the layer to detect product similarities. The second approach lead to much better
performance and is the one for which we report final results.
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4.1.2 EMBEDDING PRODUCT TEXT: WORD2VEC AND CNNS ON SENTENCES

Model and proxy task: Word2Vec for Product Language Modeling For generating text
embeddings, we propose reusing Word2Vec, a model for generating language models that has
been employed in a various of text understanding tasks such as analogy detection (), sentiment
analysis (), text classification (), translation () leading to state-of-the-art results while being
conceptually simple. More recently, it has been shown in (Pennington et al., 2014) that Word2Vec
is closely linked with matrix factorization techniques applied on the word co-occurence matrix. For
Content2Vec, we chose to pretrain Word2Vec on the entire product catalog text information and not
use an available set of word embeddings such as the one created on the Google Corpus (). The main
reason is that the text distribution within product descriptions is quite different from the general
distribution. For example the word ’jersey’ has a very different conditional distribution within the
product description corpus versus general online text.
Text CNNs (Kim, 2014) offer a simple solution for sentence-level embeddings using convolutions.
The convolutions act as a form of n-gram filters, allowing the network to embed sentence-level
information and specializing word embeddings to higher-order tasks such as text classification or
sentiment analysis. To the best of our knowledge, this is the first attempt to employ them for the
task of product recommendation. For our task, we generate sentences based on the product titles
and descriptions.

4.1.3 EMBEDDING PRODUCT CO-OCCURRENCES: PROD2VEC

Prod2Vec (Grbovic et al., 2015) is an extension of the Word2Vec algorithm to product shopping
sequences. As a result, Prod2Vec can be seen as a matrix factorization technique on the product
co-occurence matrix. In Content2Vec, the Prod2Vec-based similarity contains all of the information
that can be derived simply from the sequential aspect of the user behavior, without taking into
account the per-product meta-data.

4.1.4 EMBEDDING CATEGORICAL PRODUCT META-DATA: META-PROD2VEC

Meta-Prod2Vec (Vasile et al., 2016) improves upon Prod2Vec by using the product meta-data side
information to regularize the final product embeddings. In Content2Vec, we can use the similar tech-
nique of co-embedding product categorical information with product ids to generate the embedding
values for the categorical features. We did not use category embeddings in our experiments, because
the training datasets contain only pairs from the same category.

4.2 JOINT PRODUCT EMBEDDING: PAIRWISE RESIDUAL UNIT

As stated in Section 1, the function of the product embedding module is two-fold: one, to model all
interactions that exist between the modality-specific embeddings with respect to the final optimiza-
tion objective, and second, to approximate the interaction terms between the products. With this in
mind, we introduce a new type of learning unit, the Pairwise Residual Unit (eq. 4), which similarly
to the original residual unit (eq. 3), allows the layers to learn incremental, i.e. residual representa-
tions (see Figure 4). In Section 6 we compare its performance (see Content2Vec-res, with similarity
eq. 6), against the linear combination of the modality-specific similarities (denoted by Content2Vec-
linear, with similarity eq. 5) and two models that take into model explicitly pair interactions, which
are described in detail in Section 4.3). We show that the proposed architecture surpasses the perfor-
mance of the linear model and has similar performance with the other two models, while allowing
for a retrieval-based candidate scoring solution.

y = F (x) + x (3)

y = SIM(F (x1), F (x2)) + SIM(x1, x2) (4)

where:
x1 and x2 are the two product embedding vectors (obtained by stacking the modality-specific vec-
tors)
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Figure 4: Pairwise Residual Unit

SIM(., .) is a similarity function over two embedding vectors x1, x2
F (x) is a Rectified Linear Unit

SIMc2v(ai, bj) =
∑

m∈Modalities

wmσ(SIMm(ai, bj)) (5)

SIMc2v−res(ai, bj) =
∑

m∈(Modalities+Residual)

wmσ(SIMm(ai, bj)) (6)

4.3 PAIR EMBEDDING MODULE

In a retrieval-based architecture, the pair embedding module cannot support more than a simple
linear combination of the product embedding vectors, such that the final score can be computed
via innerproduct. However, we are still interested in knowing what is the trade-off in performance
between an innerproduct-based candidate scoring and a model that allows for explicit interaction
terms between the items. To this end, we introduce two explicit interaction models: Content2Vec-
crossfeat - a model where we discretize the text and image-specific similarity scores and create
explicit cross-features between them and Content2Vec-embedpairs - a model where we use a similar
technique with Paiwise Residual Unit, in this case modeling the residual of the linear similarity
directly as a vector in the pair embedding layer, as shown in Figure 5. In Section 6 we show that two
models have as expected better performance than the linear model and that the non-linear embedding
is slightly better.

5 EXPERIMENTAL SETUP

Dataset We perform our evaluation on the publicly available Amazon dataset (McAuley et al.,
2015) that represents a collection of products that were co-bought on the Amazon website. Each
item has a rich description containing product image, text and category (any of the modalities can
be missing). In terms of dimensionality, the dataset contains around 10M pairs of products. We
concentrate on the subgraph of Book and Movie product pairs, because both categories are large and
they have a reasonable sized intersection. This allows us to look at recommendation performance on
cross-category pairs (to evaluate a model trained only on Book pairs on predicting Movie co-bought
items) and mixed category pairs (to evaluate the models on Book-Movie product pairs).

Based on the full Book & Movies data we generate two datasets with different characteristics:
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Figure 5: The two types of Pairwise Residual Units. By comparison with the first version that
outputs a scalar, the second one outputs a vector that goes directly into the final prediction layer

The first dataset simulates a hard cold start regime, where all product pairs used in validation and
testing are over products unseen in training. This tests the hardest recommendation setup, where all
testing data is new. We decided to bench all of our hyperparameters on this regime and use the best
setup on all datasets, since tuning on the harder dataset ensures the best generalization error.

The second dataset simulates a non-cold start regime, where the vast majority of the products in the
test set are available at training time. The dataset is generated by taking the top 100k most connected
products in the original dataset and keeping the links between them. This dataset tests for increase
of performance of Content2Vec+ over a CF method on the most advantageous conditions for CF.

Evaluation task We evaluate the recommendation methods on the product link prediction task,
similar to (He & McAuley, 2015). We consider the observed product pairs as positive examples
and all unknown pairs as negatives. We generate negative pairs according to the popularity of the
products in the positive pairs (negative examples between popular products are more likely to be
generated) with a positive to negative ratio of 1:2.

Success metrics For the link prediction task, we use the Area Under Curve (AUC) of the Preci-
sion/Recall curve as our evaluation metric.

Competing methods

• ImageCNN: prediction based on specialized image embeddings similarity.

• TextCNN: prediction based on specialized text embeddings similarity.

• Content2Vec-linear: prediction based on the linear combination of text and image similar-
ities.

• Content2Vec-crossfeat: prediction based on the linear combination of discretized image
and text similarities and the crossfeatures between them.

• Content2Vec-res: prediction based on the linear combination of text and image similarities
plus product-level residual vectors similarities.

• Content2Vec-embedpairs: prediction based on the linear combination of text and image
similarities and a pair-level residual component.

• Prod2Vec: prediction based on the product vectors coming from the decomposition of the
co-purchase matrix.
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Recommendation Model Books Movies Mixed
Models trained on Books dataset
Book ImageCNN specialized 81% 78% 64%
Book TextCNN 72% 79% 76%
Book Content2Vec-linear 83% 83% 76%
Book Content2Vec-crossfeat 86% 83% 83%
Book Content2Vec-res 89% 83% 77%
Book Content2Vec-embedpairs 90% 82% 77%
Models trained on Movies dataset
Movie ImageCNN specialized 59% 92% 60%
Movie TextCNN 63% 90% 65%
Movie Content2Vec-linear 64% 94% 65%
Movie Content2Vec-crossfeat 62% 94% 63%
Movie Content2Vec-res 60% 95% 66%
Movie Content2Vec-embedpairs 64% 94% 65%

Table 1: AUC results of Image and Text-based embeddings on Hard Cold Start dataset on Book,
Movie and Mixed category test product pairs.

Cluster Unigrams
Cluster 1: mystic, qabalah, gnostic, qabalistic, kabbalah
Cluster 2: puzzlers, backgammon, pathem, crossword, chess
Cluster 3: mozilla, netscape, win32, perl, applescript
Cluster 4: widowmaker, starfire, warhammer, drow
Cluster 5: queueing, analogical, leibnitz, formalization, empiric
Cluster 6: batman, kaiju, heavies, wolverine, joker
Cluster 7: knot, sweater, placemats, pillowcase, napkin
Cluster 8: furnishings, sotheby, junkmarket, house, furniture
Cluster 9: beadwork, embroidery, quilt, bead, quilting
Cluster 10: investing, diversify, stocks, markets, market

Table 2: Clusters of unigrams created by activating the trained TextCNN unigram convolutions.

• Content2Vec+: the method of predicting co-bought products based on the blend off all spe-
cialized embedding representations of each available product signal, namely ImageCNN,
TextCNN and Prod2Vec.

6 RESULTS

In the following we analyze how Content2Vec satisfies the requirements outlined in Section 1. We
have already shown through the architecture diagram in Figure 2 that Content2Vec can plug in easily
any new product signal and defined embedding solutions for most popular product signal available
for physical products. We go over the 5 other requirements and show experimentally that our pro-
posed solution achieves good results on all of them.

Relevance The results in Table 1 show that the Content2Vec architectures (Content2Vec-
linear,crossfeat,res,embedpairs) clearly outperform the models based on just one single type of
signal (ImageCNN and TextCNN) on all evaluation scenarios (same category, different category,
mixed).

Robustness In terms of robustness, the results on cross-category pairs show that model generalizes
well and that the representations are sufficiently robust and improve even on out-of-sample data. As
expected, the mixed category pairs proved to be hardest prediction task to improve. To further verify
the universality of the resulting representations we ranked the word embeddings that activate the
most the 100 unigram convolutions in the final TextCNN model. The results were very compelling,
as show in in Table 2.
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Product embedding expressivity In Table 1 we observe that the architecture choices that contain
a product embedding layer (Content2Vec-res and Content2Vec-embedpairs) have the best perfor-
mance on same-category evaluation, showing that we can model efficiently the interaction terms
between modalities.

Pair embedding expressivity Adding pair-specific terms in Content2Vec-crossfeat and
Content2Vec-embedpairs outperforms the simple baseline model Content2Vec-linear in the harder
Books dataset and gives similar performance on Movies dataset.

Retrieval-ready The Content2Vec-crossfeat successfully approximates the pair-specific terms and
shows better results than Content2Vec-linear in both datasets for the same category evaluation task.

7 CONCLUSIONS

This work has several key contributions. We show how to use all product signal for the task of prod-
uct recommendation using a modular architecture that can leverage fast evolving solutions for each
type of input modality. We define a set of requirements for evaluating the resulting product embed-
dings and show that our method leads to significant improvements over the single signal approaches
on hard recommendation situations such as cold-start and out-of-sample evaluation. Finally, in or-
der to model the join aspects of the product embeddings we introduce a new type of learning unit,
named Pairwise Residual Unit and show the resulting gains on a real product co-purchases dataset.

8 NEXT STEPS

For the next steps, we want to pursue more aggressively for sparser and more compressed product
representations, in order to help the performance of the final product retrieval system.
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