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ABSTRACT

Machine learning models of music typically break down the task of composition
into a chronological process, composing a piece of music in a single pass from
beginning to end. On the contrary, human composers write music in a nonlin-
ear fashion, scribbling motifs here and there, often revisiting choices previously
made. We reformulate musical composition as an inpainting task and introduce
COCONET, a convolutional neural network in the NADE family of generative mod-
els. However, the NADE ancestral sampling procedure produces poor samples,
and we explore two alternative sampling procedures based on blocked Gibbs sam-
pling. We demonstrate the versatility of our method on three generative tasks:
conditioned rewriting, partial score completion, and unconditioned polyphonic
music generation. Performance is evaluated based on likelihood estimates and
user studies.

1 INTRODUCTION

Machine learning can be used to create compelling art. This was shown recently by Deep-
Dream (Mordvintsev et al., 2015), an optimization process that created psychedelic transformations
of images. A similar idea underlies a variety of style transfer algorithms (Gatys et al., 2015), which
impose textures and colors from one image onto another. More recently, the multistyle pastiche gen-
erator (Dumoulin et al., 2016) exposes adjustable knobs that allow users of the system fine-grained
control over style transfers. Neural doodle (Champandard, 2016) further closes the feedback loop
between algorithm and artist.

We wish to bring similar artistic tools to the domain of music. Whereas previous work in music has
relied mainly on sequence models such as Hidden Markov Models (HMMs, Baum & Petrie (1966))
and Recurrent Neural Networks (RNNs, Rumelhart et al. (1988)), we instead employ convolutional
neural networks due to their emphasis on capturing local structure and their invariance properties.
Moreover, convolutional neural networks have shown to be extremely versatile once trained, as
shown by a variety of creative uses in the literature (Mordvintsev et al., 2015; Gatys et al., 2015;
Almahairi et al., 2015; Lamb et al., 2016).

∗Work done while the author was at Google.
†Work done while the author was at Google.
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Figure 1: Highlights of pianoroll predictions of various steps in an unconditioned generation of a
musical fragment by Coconet

We formulate musical composition as an inpainting task and introduce COCONET, a deep convolu-
tional model trained to reconstruct partial scores. Once trained, COCONET provides direct access to
all conditionals of the form p(x¬C | xC) where xC is a fragment of a musical score x and x¬C is
its complement.

We show that this inpainting setup is closely related to deep orderless NADE Uria et al. (2014),
which learns an ensemble of factorizations of the joint p(x). However, the sampling procedure for
orderless NADE is not orderless. Sampling from an orderless NADE involves (randomly) choosing
an ordering, and sampling ancestrally according to the chosen ordering. We have found that this
produces poor results for the highly structured and complex domain of musical counterpoint.

Instead, we propose a novel sampling procedure that wraps ancestral sampling in blocked Gibbs,
essentially improving sample quality through rewriting. This approach is related to that of Yao et al.
(2014) where a NADE is employed in the transition operator for a Markov Chain, which yields a
Generative Stochastic Network (GSN). The transition consists of a corruption process that masks
out a subset x¬C of variables, followed by a process that independently resamples each variable
xi, i /∈ C according to the distribution pθ(xi | xC) emitted by the NADE. The effects of independent
sampling are amortized by annealing the probability with which variables are masked out. In our
method, on the other hand, we always resample from the joint pθ(x¬C | xC) through ancestral
sampling. This is much more expensive, but yields much better samples.

We show the versatility of our method through examples and human evaluations on three gener-
ative tasks: conditioned rewriting, partial score completion, and unconditioned polyphonic music
generation.

Section 2 discusses previous work in the area of automatic musical composition. Section 3 intro-
duces the musical equivalent of image inpainting, the task we train our model to solve. The details
of our convolutional model are laid out in Section 4. In Section 5 we show that our approach is
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equivalent to that of deep and orderless NADE Uria et al. (2014). We discuss sampling from our
model in Section 6. Results of quantitative and qualitative evaluations are reported in Section 7.
Finally, Section 8 concludes.

2 RELATED WORK

Sequence models such as HMMs and RNNs are a natural choice for modeling music. However,
one of the challenges in adapting such models to music is that music generally consists of multiple
interdependent streams of events. This can be most clearly seen in the notion of counterpoint,
which refers to the relationships between the movement of individual instruments in a musical work.
Compare this to typical sequence domains such as speech and language, which involve modeling a
single stream of events: a single speaker or a single stream of words.

Successful application of sequence models to music hence requires serializing or otherwise re-
representing the music to fit the sequence paradigm. For instance, Liang (2016) serialize four-part
Bach chorales by interleaving the parts, while Allan & Williams (2005) construct a chord vocabulary.
Boulanger-Lewandowski (2014) adopt a piano roll representation, which is a binary matrix X such
that xit is hot if some instrument is playing pitch i at time t. To model the joint probability distribu-
tion of the multi-hot pitch vector xt, they employ a Restricted Boltzmann Machine (RBM (Smolen-
sky, 1986; Hinton et al., 2006)) or Neural Autoregressive Distribution Estimator (Uria et al., 2016)
at each time step.

Moreover, the behavior of human composers does not fit the chronological mold assumed by previ-
ous authors. A human composer might start his work with a coarse chord progression and iteratively
refine it, revisiting choices previously made. Sampling according to xt ∼ p(xt|x<t), as is common,
cannot account for the kinds of timeless dependencies that composers employ. Hadjeres et al. (2016)
sidestep the choice of causal factorization and instead employ an undirected Markov model to learn
pairwise relationships between neighboring notes up to a specified number of steps away in a score.
Sampling involves Markov Chain Monte Carlo (MCMC) using the model as a Metropolis-Hastings
(MH) objective. The model permits constraints on the state space to support tasks such as melody
harmonization. However, the Markov assumption severely limits the expressivity of the model.

We opt instead for a convolutional approach that avoids many of these issues and naturally captures
both relationships across time and interactions between instruments.

3 MUSICAL COMPOSITION AS INPAINTING

We consider the musical equivalent of inpainting, a versatile setting that generalizes popular tasks
such as melody harmonization, partial score completion and composition from scratch. Inpaint-
ing (Bertalmio et al., 2000) is the task of restoring damaged or missing parts of an image. In machine
learning, image inpainting has found popularity as an unsupervised learning task, where a model is
trained to reconstruct an image after it has been corrupted by a random process (Pathak et al., 2016).

Inpainting readily carries over to music when we view it as a stack of piano rolls represented by the
binary three-tensor x ∈ {0, 1}I×T×P . Here I denotes the number of instruments, T the number of
time steps, P the number of pitches, and xi,t,p = 1 iff the ith instrument plays pitch p at time t. We
will assume each instrument plays exactly one pitch at a time, that is,

∑
p xi,t,p = 1 for all i, t.

For the present work we will restrict ourselves to the study of four-part Bach chorales as used
in prior work (Allan & Williams, 2005; Boulanger-Lewandowski, 2014; Goel et al., 2014; Liang,
2016; Hadjeres et al., 2016). Hence we assume I = 4 throughout. We discretize pitch according to
equal temperament, but constrain ourselves to only the range that appears in our training data (MIDI
pitches 36 through 88). Time is discretized at the level of 16th notes for similar reasons.

Given a training example x ∼ p(x), we present the model with the values of only a strict subset
of its elements xC = {x(i,t) | (i, t) ∈ C} and ask it to reconstruct its complement x¬C . The loss
function is given by
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L(x;C, θ) = −
∑

(i,t)/∈C

log pθ(xi,t | xC , C) (1)

= −
∑

(i,t)/∈C

∑
p

xi,t,p log pθ(xi,t,p | xC , C) (2)

where pθ refers to the probability under the model parameterized by θ. We wish to minimize the
expected loss

Ex∼p(x)EC∼p(C)L(x;C, θ). (3)

4 COUNTERPOINT BY CONVOLUTION

We approach the task outlined above using a deep convolutional neural network (Krizhevsky et al.,
2012). This choice is motivated by the locality of contrapuntal rules and their near-invariance to
translation, both in time and in the frequency spectrum.

The input to the model is obtained by masking the piano rolls x to obtain the context xC and
concatenating this with the corresponding mask:

h0
i,t,p = 1(i,t)∈Cxi,t,p (4)

h0
I+i,t,p = 1(i,t)∈C (5)

where the first dimension ranges over channels and the time and pitch dimensions are convolved
over.

al = BN(Wl ∗ hl−1; γl, βl) (6)

hl = ReLU(al + hl−2) for 3 < l < L− 1 and l = 0 mod 2 (7)

hL = aL (8)

With the exception of the first and final layers, all of our convolutions preserve the size of the input.
That is, we use “same” padding throughout and all activations hl, 1 < l < L have 128 channels.
The network consists of 64 layers with 3× 3 filters on each layer. After each convolution we apply
batch normalization Ioffe & Szegedy (2015) (denoted by BN(·)) with statistics tied across time and
pitch. After every second convolution, we introduce a skip connection from the hidden state two
levels below to reap the benefits of residual learning He et al. (2015).

Finally, we obtain predictions for the pitch at each instrument/time pair:

p̂θ(xi,t,p | xC , C) =
exp(hLi,t,p)∑
p exp(h

L
i,t,p)

(9)

Based on the predictions, we compute the loss (Equation 1) and optimize it with respect to the
parameters θ = W1, γ1, β1, . . . ,WL−1, γL−1, βL−1 by stochastic gradient descent with step size
determined by Adam (Kingma & Ba, 2014).

5 EQUIVALENCE TO ORDERLESS NADE

Our inpainting approach is equivalent to an orderless and deep Neural Autoregressive Distribution
Estimator (NADE, Uria et al. (2016)). NADE models a d-variate distribution p(x) through a factor-
ization
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pθ(x) =
∏
d

pθ(xod | xo<d
) (10)

where o is a permutation, and the parameters θ are shared among the conditionals. NADE can be
trained for all orderings o simultaneously using the orderless NADE (Uria et al., 2014) training
procedure. This procedure relies on the observation that, thanks to parameter sharing, computing
pθ(xod′ | xo<d

) for all d′ ≥ d is no more expensive than computing it only for d′ = d. Hence for a
given o and d we can simultaneously obtain partial losses for all orderings that agree with o up to d:

LNADE(x; o<d, θ) = −
∑
od

log pθ(xod | xo<d
, o<d, od) (11)

(12)

Letting o<d = C, we obtain our loss from Equation 1

LCOCONET(x;C, θ) = −
∑

(i,t)/∈C

log pθ(xi,t | xC , C) (13)

For any one sample (x, C), this loss consists of |¬C| terms of the form log pθ(xi,t | xC , C). We let
p(C) be uniform in the size of the mask and reweight the sample losses according to

L̃(x;C, θ) = 1

|¬C|
L(x;C, θ). (14)

This correction, due to Uria et al. (2014), ensures consistent estimation of the negative log-likelihood
of the joint pθ(x).

For the task of inpainting, we might wish to increase the difficulty by choosing p(C) so as to fre-
quently mask out large contiguous regions, as otherwise the model might learn only superficial local
relationships. This is discussed in Pathak et al. (2016) for the case of images, where a model might
learn only that pixels are similar to their neighbors. Similar low-level relationships hold in our case,
as our piano roll representation is binary and very sparse. For instance, if we mask out only a single
sixteenth step in the middle of a long-held note, reconstructing the masked out step does not require
any deep understanding of music. To this end we also consider choosing the context C by inde-
pendent Bernoulli samples, such that each variable has a low probability of being included in the
context.

6 SAMPLING

We can sample from the model using the NADE ancestral ordering procedure. However, we find that
this yields poor samples, and we propose instead to use Gibbs sampling.

6.1 NADE SAMPLING

To sample according to NADE, we start with an empty (zero everywhere) piano roll x0 and context
C0 and populate them iteratively by the following process. We feed the piano roll xs and context
Cs into the model to obtain a set of categorical distributions pθ(xi,t|xsCs , Cs) for (i, t) /∈ Cs. As
the xi,t are not conditionally independent, we cannot simply sample from these distributions inde-
pendently. However, if we sample from one of them, we can compute new conditional distributions
for the others. Hence we randomly choose one (i, t)s+1 to sample from, and let xs+1

i,t equal the
one-hot realization. Augment the context with Cs+1 = Cs ∪ (i, t) and repeat until the piano roll is
populated. This procedure is easily generalized to tasks such as melody harmonization and partial
score completion by starting with a nonempty piano roll.
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Unfortunately, samples thus generated are of low quality, which we surmise is due to accumulation
of errors. While the model provides conditionals pθ(xi,t|xC , C) for all (i, t) /∈ C, some of these
conditionals may be better modeled than others. We suspect in particular those conditionals used
early on in the procedure, for which the contextC consists of very few variables. Moreover, although
the model is trained to be order-agnostic, different orderings invoke different distributions, which is
another indication that some conditionals are poorly learned.

6.2 GIBBS SAMPLING

To remedy this, we allow the model to revisit its choices: we repeatedly mask out some part of
the piano roll and then repopulate it. This is a form of blocked Gibbs sampling (Liu, 1994), where
each block is itself sampled sequentially using ancestral sampling as described above. The complete
procedure is specified by Algorithm 1.

Algorithm 1 Sampling from the model by blocked Gibbs.
Given an initial piano roll x and context C
loop n times

if not the first iteration then
Choose C ∼ p(C) . Determine a block to resample
xi,t ← 0 ∀(i, t) /∈ C

end if
while ¬C nonempty do . Sample from the joint distribution of x¬C

Choose (i, t) ∼ Uniform(¬C)
Choose p ∼ pθ(xi,t,p|xC , C)
xi,t,p ← 1
C ← C ∪ (i, t)

end while
end loop

Blocked sampling is crucial for mixing, as the high temporal resolution of our representation causes
strong correlations between consecutive notes. For instance, without blocked sampling, it would
take many steps to snap out of a long-held note. Similar observations hold for the Ising model from
statistical mechanics, leading to the development of the Swendsen-Wang algorithm (Swendsen &
Wang, 1987) in which large clusters of variables are resampled at once.

Our blocked Gibbs sampling procedure resembles that of Yao et al. (2014), except that they sample
the variables within a block independently. To ensure the Gibbs process produces samples from the
model distribution pθ(x), they anneal the masking probability. Initially, when the masking probabil-
ity is high, the chain mixes fast but samples are poor due to independent sampling. As the masking
probability reduces, fewer variables are sampled at a time, until finally variables are sampled one at
a time and conditioned on all the others. We on the other hand always sample variables one by one
within the block.

7 EVALUATION

We evaluate our approach on a corpus of four-part Bach chorales. The literature features many vari-
ants of this dataset (Allan & Williams, 2005; Boulanger-Lewandowski, 2014; Liang, 2016; Hadjeres
et al., 2016), and we follow the unfortunate tradition of introducing our own adaptation. Although
this complicates comparisons against earlier work, we feel justified in doing so as our approach re-
quires instruments to be separated, and other authors’ eighth-note temporal resolution is too coarse
to accurately convey counterpoint.

We rebuilt our dataset from the Bach chorale musicXML scores readily available through (Cuthbert
& Ariza, 2010), which was also the basis for the dataset used in (Liang, 2016). The scores included
357 four-part Bach chorales. We excluded scores that included note durations less than sixteenth
notes, resulting in 354 pieces. These pieces were split into train/valid/test in 60/20/20% ratios.
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We compare with Liang (2016) based on note-level likelihood and Boulanger-Lewandowski (2014)
based on frame-level likelihood. Note that train/valid/test differs among both prior work and also
with our work, and that Liang (2016) uses a 80/10/10% split instead.

However, evaluation of generative models is hard (Theis et al., 2015). The gold standard for eval-
uation is qualitative comparison by humans, and we therefore report results of a human evaluation
study. Our model is able to achieve compelling results on three tasks: conditioned rewriting, partial
score completion, and unconditioned polyphonic generation.

Conditioned rewriting refers to the case where the initial piano roll x0 is taken from the validation
set, and the piece is iteratively rewritten using Algorithm 1. In partial score completion, we similarly
initialize the initial piano roll with an existing piece, but mask out part of it and repopulate it using
ancestral sampling. Finally, unconditioned generation starts with an empty piano roll and mask, and
populates using Algorithm 1.

7.1 EVALUATING LOG-LIKELIHOOD

To estimate the log-likelihood of a datapoint x, we follow the orderless NADE approach. That is,
we uniformly sample a random ordering (i1, t1), (i2, t2), . . . (iIT , tIT ), and compute the notewise
log-likelihood according to

log p̂θ(x) =
1

IT

IT∑
d=1

log pθ(xid,td | xCd−1
, Cd−1) (15)

where Cd =
⋃d
c=1{(ic, tc)}. Note that we randomly crop each datapoint to be T time steps long

before processing it, as this facilitates batch processing.

We repeat this procedure k times and average across all point estimates. The numbers for our models
in Table 1 were obtained with k = 5.

The process for computing the notewise log-likelihood is akin to teacher-forcing, where at each step
of the way the model observes the ground truth for all its previous predictions. To compute the
framewise log-likelihood, we instead let the model run free within each frame t. This results in a
more representative measure of the model’s quality as it is sensitive to accumulation of error.

Table 1 lists notewise and framewise likelihoods of the validation data under variants of our model,
as well as comparable results from other authors. We include four variants of COCONET that differ
in the choice of the distribution p(C) over contexts during training. By importance sampling we
refer to the orderless NADE strategy discussed in Section 5, in which p(C) is uniform over |C| and
the sampled losses are reweighted by 1/|¬C|. We also evaluate three variants where the contexts
are chosen by biased coin flips, that is, Pr((i, t) ∈ C) = α, for α ∈ 0.5, 0.25, 0.1. The framewise
log-likelihood for α = 0.5 is listed as∞ as its estimation repeatedly overflowed.

Overall, COCONET seems to underperform in terms of notewise likelihood, yet perform well in terms
of framewise likelihood. Estimating the loss by importance sampling appears to work significantly
better than determining the context using independent Bernoulli variables, as one might expect.
However, the choice of Bernoulli probability α strongly affects the resulting loss, which suggests
that some of the conditionals benefit from more training.

7.2 HUMAN EVALUATIONS

We are carrying out listening tests on Amazon’s Mechanical Turk (MTurk) to assess the capacity of
our models in generating musical samples. Please note the results below are still preliminary, and
we will update this section as soon as new results come in.

A natural question to answer in a listening test is if music generated by our model can be indistin-
guishable from music composed by Bach. As the musical background of participants on MTurk is
quite varied, we opt for another question, “which musical fragment do you prefer?” to assess the
quality of the generated fragments.
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Table 1: Negative log-likelihood (NLL) on the test set for the Bach corpus. As discussed in the text,
our numbers are not directly comparable to those of other authors due to the use of different splits.
Results from Boulanger-Lewandowski (2014) were based on an eighth-note temporal resolution (our
resolution is sixteenth notes). Please note that our results are preliminary validation likelihoods.

Model Notewise NLL Framewise NLL

Bachbot (Liang, 2016) 0.477 –
NADE (Boulanger-Lewandowski, 2014) – 7.19
RNN-RBM (Boulanger-Lewandowski, 2014) – 6.27
RNN-NADE (Boulanger-Lewandowski, 2014) – 5.56
COCONET, i.i.d Bernoulli(0.50) 0.924 ∞
COCONET, i.i.d Bernoulli(0.25) 0.655 4.48
COCONET, i.i.d Bernoulli(0.10) 0.812 4.66
COCONET, importance sampling 0.569 3.73

The study design is as follows: we compare between samples generated by our early models and
Bach chorales. The model variants include BERNOULLI(0.5) and BALANCED BY SAMPLING which
differ in the choice of the distribution p(C) over contexts used during training, and a DENOISING
model that was trained to reconstruct piano rolls from their noisy versions. Noise was introduced
by a corruption process that randomly perturbs the pitch at locations in the piano roll generated by
a Bernoulli(0.5) distribution. For each of our models, we generate four samples from empty piano
rolls. For the Bach set, we randomly crop four samples from the chorale validation set. Resulting in
four sets of four sounds each. All of the samples are two measures long, lasting twelve seconds.

For each MTurk hit, two random sounds are presented. These sounds are selected by first randomly
choosing two sets, and then randomly choosing one sample from each set. Participants are then
asked to rate which one of the two samples they prefer on a Likert scale. The study resulted in 192
ratings, where each model was involved in 92 pairwise comparisons. Figure 2 reports the number of
times in a pairwise comparison a model/Bach was more preferred.

We performed post-hoc pairwise comparisons using Wilcoxon Signed Rank test. Bach was preferred
over our balanced by sampling model. The pairs that did not show a statistically significant differ-
ence include BERNOULI(0.5) vs Bach, DENOISING vs Bach, and BERNOULI(0.5) vs DENOISING.

Figure 2: MTurk results from human evaluations on unconditioned generation.
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8 CONCLUSION

We introduced a convolutional approach to modeling musical scores based on the NADE (Uria et al.,
2016) framework and image inpainting Pathak et al. (2016). We’ve shown that the NADE ancestral
sampling procedure yields poor samples for our domain, and argued that this is because some con-
ditionals are not captured well by the model. Our novel Gibbs sampling scheme improves sample
quality. Participants in a user study preferred musical fragments generated by our model and those
composed by Bach about equally often.
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Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. arXiv preprint arXiv:1511.01844, 2015.

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator. In ICML,
pp. 467–475, 2014.
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