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Abstract

In this paper, YOLO4D is presented for Spatio-temporal Real-time 3D Multi-object1

detection and classification from LiDAR point clouds. Automated Driving dynamic2

scenarios are rich in temporal information. Most of the current 3D Object Detection3

approaches are focused on processing the spatial sensory features, either in 2D4

or 3D spaces, while the temporal factor is not fully exploited yet, especially from5

3D LiDAR point clouds. In YOLO4D approach, the 3D LiDAR point clouds are6

aggregated over time as a 4D tensor; 3D space dimensions in addition to the time7

dimension, which is fed to a one-shot fully convolutional detector, based on YOLO8

v2. The outputs are the oriented 3D Object Bounding Box information, together9

with the object class. Two different techniques are evaluated to incorporate the10

temporal dimension; recurrence and frame stacking. The experiments conducted11

on KITTI dataset, show the advantages of incorporating the temporal dimension.12

1 Introduction13

Environmental modeling and perception is a critical component to automated driving pipeline. In order14

to have efficient planning in complex scenarios, 3D object detection is essential, to get information15

about the objects extent and range in the 3D space. Deep Learning is becoming the trend for real-time16

object detection and classification [16][18] [1] [17][10]. LiDAR sensors are used to perceive the17

3D nature of objects, where the sensor provides a 3D point cloud (PCL) representing the range of18

reflected laser beams of the surrounding objects. The task of 3D object detection and classification19

from such a point cloud is challenging. On one hand, the point cloud is sparse, since not all beams are20

reflected, and noisy due to imperfect reflections and echoes. On the other hand, the 3D point cloud21

does not have the color and texture features that characterize the object classes as in the case of 2D22

camera perspective images. Such complexity, in addition to the dynamic nature of the environment,23

motivates our work to incorporate the temporal factor in addition to the spatial features of the input24

3D LiDAR point clouds. In this paper, we present YOLO4D; a Spatio-temporal extension of the work25

done in YOLO3D[1] for real-time multi-object detection and classification from 3D LIDAR point26

clouds, were YOLO3D is extended with Convolutional LSTM [20] for temporal features aggregating.27

The 3D LiDAR point clouds are aggregated over time as a 4D tensor; 3D space dimensions in addition28

to the time dimension. The output is the oriented 3D object bounding Box (OBB) coordinates of the29

center, in addition to its length (L), width (W), height (H) and orientation (yaw), together with the30

objects classes and confidence scores. The evaluation of the Spatio-temporal approach is performed31

on KITTI dataset [4]. We compare two approaches to incorporate the temporal factor; YOLO4D and32

frame stacking. The experimental results show the advantage of adding the temporal aggregation in33

addition to spatial features.34

The rest of the paper is organized as follows; first, we discuss the related work, followed by the Spatio-35
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temporal approach, with the proposed network architecture. Finally, we present the experimental36

results and evaluation of different techniques on KITTI dataset.37

2 Related Work38

3D Object Detection: Recent works in 3D object detection depends on 3D sensors like LiDAR39

to take advantage of accurate depth information. Different data representations are introduced, like40

projecting point cloud in 2D view (Bird Eye View, Front View) such as PIXOR [21] , [8] and MV3D41

[3]. PIXOR assumes that all objects lie on the same ground but in this work, we do not make this42

assumption. We regress the height information freely. Some [2] convert the point cloud to a front view43

depth map. Others like [7] and [22], convert the point cloud to voxels which produce a highly sparse44

representation leading to inefficient object detection. Finally, some work inspired by PointNet [14]45

and PointNet++[15] process the LiDAR PCL as an unordered set like PointCNN [9]. These methods46

suffer from heavy computations. All these methods do not take advantage of the temporal information47

to produce high-quality 3D bounding boxes. In this work we extend the work done in YOLO3D [1]48

using the same input representation for the LiDAR PCL but with the temporal information.49

Object detection based spatial temporal recurrence: While some papers addressed the use of50

recurrence as Spatial-temporal feature extractor alongside with the object detection [19] [13]. They51

focused on improving visual tracking in videos. For example, in ROLO [13] they used the same52

architecture of YOLO v1 [16] with an LSTM [5] layer added at the end. The network consumes as53

input raw videos and returns 2D tracked bounding box. In contrast, our proposed architecture, that54

takes a sequence of 3D LiDAR point cloud processed as introduced in [1] alongside with the temporal55

information from the previous frames by utilizing Convolutional LSTM [20] as a Spatio-temporal56

fusion layer to produce 3D bounding boxes. In [19] they divided the problem into two stages. In57

the first stage, they performed the detection using YOLO v1 [16]. In the second stage, they used58

a combination of fully connected layers and GRUs. In our work, we utilize YOLO v2 [18] with59

Convolutional LSTM as a single fully convolutional neural network. Recently, Fast and Furious60

[11] tried to incubate the time with 3D voxels using multi-task learning. In our work, we are using61

Convolutional LSTM instead of 3D convolutions with much less input processing complexity by62

using a single channeled bird eye view as an input to produce the 3D information which gained us a63

faster inference time of 20ms.64

3 Spatio-temporal 3D object detection approach65

In this section, the approach for Spatio-temporal 3D object detection is described. The main intuition66

behind our work is to leverage not only the spatial but also the temporal information in input sequences67

for more accurate object detection. For encoding temporal sequences, we adopted two different68

approaches, YOLO4D and frame stacking. Both approaches encode the temporal information in69

different ways. Frame stacking is a simple method that depends on the input layer, while, YOLO4D70

employs Convolutional LSTM.71

3.1 Spatial 3D object detection72

Following the work done in YOLO3D, the point cloud is projected into a bird’s eye view (BEV) grid73

map. The orientation of the bounding boxes is normalized and used as a single regressed value. For74

3D bounding box regressions, two regression terms are added to the original YOLO architecture, the z75

coordinate of the center, and the height h of the box. The average 3D box dimensions for each object76

class is calculated on the training dataset and used as anchors. The loss for the 3D oriented boxes is77

an extension to the original YOLO loss for 2D boxes. The total loss is formulated as the weighted78

summation of the mean squared error over the 3D coordinates, dimensions, the mean squared error79

over the angle, the confidence score, and the cross-entropy loss over the object classes.80

3.2 Temporal aggregation81

The dataset T is composed of number of k scenarios {S0, S1, ...Sk−1}, a scenario Si consists of a82

sequence of n frames {Ii0, Ii1, ...Iin−1}, with the corresponding list of 3D bounding boxes targets for83
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Figure 1: Left: Frame stacking architecture; Right: Convolutional LSTM architecture.

each frame, {Di
0, D

i
1, ...D

i
n−1}. Each scenario is divided into a number of short clips of m frames.84

The frames of the clip j from scenario i is defined as Qij = {Iitj , I
i
tj+1, ...I

i
tj+m−1}.85

3.2.1 Frame stacking86

In frame stacking, frames of each clip are stacked in-order together and presented as a single input87

to the object detection network for training. Accordingly, the frame stacking approach encodes the88

temporal information indirectly by reshaping the input by increasing its depth to represent the changes89

over time. During the training process, it is up to the network to learn the temporal information from90

the input stacked frames without encoding hidden state through recurrent layers. The loss is similar91

to the YOLO3D architecture for a single frame input, since the predicted 3D bounding boxes depend92

only on a single stacked input.93

3.2.2 Convolutional LSTM94

In YOLO4D architecture, a Convolutional LSTM layer is injected directly into YOLO3D single95

frame architecture, see section 4.3 for more details. Convolutional LSTM allows the network to learn96

both spatial and temporal information. The network is trained on the same sequences used for frame97

stacking approach, leading to a model that is capable of detecting objects in temporal streams of input98

frames. The prediction model can be considered as a function F , parameterized by θ, that maps an99

input frame and the previous state to a list of 3D bounding boxes as shown in equation 1.100

Fθ(It, st−1) = (Dt, st) (1)

Where, the state st, is used as input for the next time step predictions. The loss in this case is the101

same loss of YOLO3D however the optimization is back-propagated through time via the injected102

Convolutional LSTM layer to maintain the temporal information.103

Figure 1, illustrates the frame stacking and Convolutional LSTM object detection architectures.104

Because of the recurrency, the network generated values depend not only on the current frame at time105

t, but also on the previous m frames. On the other hand, the ground truth values correspond to the106

3



current frame. The ground truth values are defined as v(t), while the network generated values at time107

t are defined as v̂(tm), where tm indicates the value generated based on input m frames, from time t108

back to time t−m− 1. The total loss is calculated as shown in Eq.(2).109

Lθ = λcoor

s2∑
i=0

B∑
j=0
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(
(x

(t)
i − x̂i

(tm))2 + (y
(t)
i − ŷi
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)
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ŵi

(tm))2 + (

√
l
(t)
i −

√
l̂i
(tm)
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√
ĥi
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)
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s2∑
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B∑
j=0

Lobjij (φ
(t)
i − φ̂i

(tm)
)2
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+ λnoobj

s2∑
i=0

B∑
j=0

Lnoobjij (C
(t)
i − Ĉi
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Lobjij

(
−

∑
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p
(t)
i (c)log(p̂

(tm)
i (c))

)
(2)

Where: λcoor : the weight assigned to the loss over the coordinates, λobj , λnoobj : the weights110

assigned to the loss over predicting the confidences for objects and no objects respectively, λyaw : is111

the weight assigned to the loss over the orientation angle, λclasses : the weight assigned to the loss112

over the class probabilities, Lobjij : a variable that takes the value of 1 if there is a ground truth box in113

the ith cell and the jth anchor is the associated anchor, otherwise 0. Lnoobjij : the complement of the114

previous variable, takes the value of 1 if there is no object, and 0 otherwise, xi, yi, zi : the ground truth115

coordinates, x̂i, ŷi, ẑi : the predicted coordinates, φi, φ̂i : the ground truth and predicted orientation116

angle respectively, Ci, Ĉi : the ground truth and predicted confidence respectively, wi, li, hi : the117

ground truth width, length, and height of the box respectively, ŵi, l̂i, ĥi : the predicted width, length,118

and height of the box respectively and pi(c), p̂i(c) : the ground truth and predicted class probabilities119

respectively. B is the number of boxes, and s is the length of one of the sides of the square output120

grid, thus s2 is the number of grids in the output.121

4 Experimental setup122

4.1 Dataset123

All the experiments are conducted on the publicly available KITTI raw dataset [4], which consists124

of sequenced frames, unlike the KITTI benchmark dataset [4]. The dataset consists of 36 different125

annotated point cloud scenarios of variable lengths and a total of 12919 frames. These scenarios are126

divided into clips as described in section 3.2, with m = 4. Moreover, these scenarios have diverse127

driving environments such as highway roads, traffic, city and residential areas. They are also rich128

with dynamic and static objects.129

We study the effect of Spatio-temporal object detection on 5 classes of objects. Our objects of interest130

were: Pedestrians, Cyclists, Cars, Vans, Trucks. 80% of the dataset is used for training, and the131

remaining 20% for evaluation. We choose not to ignore Vans or Trucks or devise a separate model132

for each class, as popular approaches in LiDAR-based object detection do [6][3]. In contrast, we133

are benefiting from YOLO as a single shot detector recognizing all KITTI classes in the same time,134

which makes our approach more practical for automated driving.135
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4.2 Bird Eye View (BEV)136

The same point cloud pre-processing procedure in YOLO3D [1] is followed to generate the BEV137

input. In particular, we project the PCL into a single channel height grid map of size 608x608, at a138

cell resolution of 0.1m. The height grid map encodes the height of the highest PCL point associated139

with that cell. The major difference from YOLO3D’s BEV is using a single channeled input instead140

of two, that is, we discarded the density channel, because we found that training with the height141

channel only did not significantly hurt the performance, while reducing the memory footprint, and142

allows more efficient training.143

4.3 Architectures144

Two fully convolutional object detection architectures are adopted for the experiments: YOLO-v2[18]145

in half precision, following [12] for a mixed precision training and Tiny-YOLO [17] in full precision146

[16]. We extended them for oriented 3D bounding boxes detection as mentioned in section 3.1,147

hence we call them Mixed-YOLO3D and Tiny-YOLO3D respectively. The motivation behind using148

mixed precision training and having the model weights in half precision is because that YOLO4D149

full precision model requires very high memory footprint to train effectively with a reasonable batch150

size. Tiny-YOLO [17] is adopted to experiment the Spatio-temporal effect on shallower models.151

Frame Stacking: as described in section 3.2.1, each clip’s m frames are stacked along the channel152

dimension and the input layer of Mixed-YOLO3D and Tiny-YOLO3D is modified accordingly.153

Convolutional LSTM: as described in section 3.2.2, Mixed-YOLO3D and Tiny-YOLO3D net-154

works are extended to account for the temporal dimension, by injecting a Convolutional LSTM layer155

just before the final output layer, revealing Mixed-YOLO4D and Tiny-YOLO4D respectively. This156

recurrent layer takes the 19× 19× 1024 feature map, produced by the last convolutional hidden layer157

in both models as an input per time step, and outputs 512 channels using a 3× 3 kernel size, which158

encodes the Spatio-temporal features that are fed to the final output layer for object detection and159

classification.160

4.4 Training161

For all Spatio-temporal based models, a clip length m of 4 is used. All models are trained till162

convergence, with a fixed batch size of 4, and a weight decay of 5e− 5. For optimization, scholastic163

gradient descent (SGD) is used with a momentum of 0.99, and a learning rate of 1e−4. Regarding the164

half precision models: Mixed-YOLO3D, Mixed-YOLO4D and Frame Stacking + Mixed-YOLO3D,165

we followed [12] for a mixed precision training, forward pass in half precision, loss computation and166

weights update in full precision. No loss scaling is used for Mixed-YOLO3D and a loss scaling of 8167

is used for the other 2 models.168

4.5 Robustness169

In real-world applications, it is important to test the detection performance in case of noisy sensory170

readings. For simplicity, noisy inputs are conducted by adding Gaussian noise to the BEV input171

frames at different scales g, then the detection performance is examined. Examples of inputs at172

different Gaussian noise scales are shown in Figure 2.173

5 Results174

The performance of frame stacking and YOLO4D models are compared to assess the effect of175

temporal information. As a baseline, Mixed-YOLO3D and Tiny-YOLO3D, are also compared.176

The F1 scores on the validation set are shown in Table 1. Based on the experimental results, the177

deeper Mixed-YOLO models show a better performance than the shallower Tiny-YOLO models. As178

expected, the YOLO4D models outperform the frame stacking models. Frame stacking encodes the179

temporal information only through the reshaping of inputs, while YOLO4D encodes the temporal180

information in a more natural way through the recurrent convolutional LSTM layer allowing a181

better propagation of temporal representations through time. YOLO4D models outperform all other182
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g = 0.0 g = 0.025 g = 0.05 g = 0.075

g = 0.1 g = 0.125 g = 0.15 g = 0.175

Figure 2: BEV inputs at different Gaussian noise scales g

Table 1: Performance Comparisons

Model Mean F1 Score Car Pedestrian Cyclist Truck Van

Mixed Precision:
Mixed-YOLO3D 66.23% 69.82% 5.59% 14.61% 68.69% 64.32%
Frame Stacking + Mixed-YOLO3D 68.59% 71.77% 6.42% 16.93% 71.62% 65.45%
Mixed-YOLO4D 77.73% 82.16% 10.44% 27.19% 81.77% 80.88%

Tiny-YOLO:
Tiny-YOLO3D 36.10% 37.77% 1.53% 2.29% 39.17% 36.26%
Frame Stacking + Tiny-YOLO3D 50.66% 53.69% 2.56% 2.86% 60.32% 43.13%
Tiny-YOLO4D 70.36% 74.24% 10.03% 19.49% 73.00% 69.53%

methods on all classes, achieving 11.5% absolute improvement on Mixed-YOLO3D, and 34.26%183

on Tiny-YOLO3D. Frame stacking provides a 2.36% absolute improvement on the Mixed precision184

baseline model, and a 14.56% absolute improvement on the shallower Tiny-YOLO baseline model.185

As shown in Figure 3, YOLO4D models exhibit more robustness across different scales of noisy186

inputs. The performance of YOLO3D baselines models and frame stacking models drop significantly,187

while YOLO4D models maintain almost the same performance between noise scales of 0.025 and188

0.075. The frame stacking and baseline models have comparable performances. As expected, Frame189

Stacking + Tiny-YOLO3D model shows slightly more robustness compared to the baseline Tiny-190

YOLO3D. Surprisingly, the baseline Mixed-YOLO3D show slightly better robustness than the Frame191

Stacking + Mixed-YOLO3D model.192

6 Conclusion193

In this work, YOLO4D is proposed for Spatio-temporal Real-time 3D Multi-object detection and194

classification from LiDAR point clouds, where the inputs are 4D tensors encoding the spatial 3D195

information and temporal information, and the outputs are the oriented 3D object bounding boxes196

information, together with the object class and confidence score. The experimental results show197

the effect of adding the temporal in addition to the spatial features for achieving better detection.198
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Figure 3: Robustness Performance: Left: Mixed-YOLO; Right: Tiny-YOLO

Recurrence and frame stacking are evaluated to incorporate the temporal dimension on KITTI dataset.199

Both recurrence and frame stacking show better detection performance compared to single frame200

detection. However, and as expected, recurrent YOLO4D achieves a better detection compared to201

frame stacking. Furthermore, robustness of the detection in the presence of noisy inputs is evaluated202

and it is clear that the YOLO4D models are more robust than frame stacking and single frame203

models.204
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