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Abstract

Mitigating the dependence on spurious correlations present in the training dataset1

is a quickly emerging and important topic of deep learning. Recent approaches2

include priors on the explanation, specifically the feature attribution, of a deep3

neural network (DNN) into the training process to reduce the dependence on un-4

wanted features. However, until now we faced a trade-off between high-quality5

explanations satisfying desirable axioms and the time required to compute them.6

This in turn led to long training times or ineffective attribution priors. In this work,7

we break this trade-off by considering a special class of DNNs that we call non-8

negatively homogeneous DNNs (X -DNNs). They can be effortlessly constructed9

from a wide range of regular DNNs by simply removing the bias term of each layer.10

We show that this nonnegative homogeneity is a desirable property and formally11

prove that it implies the DNN being efficiently explainable, i.e. the existence of12

a closed-form solution for axiomatic feature attribution that can be computed ef-13

ficiently. Various experiments demonstrate the advantages of X -DNNs, beating14

state-of-the-art generic attribution methods for learning with attribution priors.15

1 Introduction16

Many traditional machine learning (ML) approaches, such as linear models or decision trees, are17

inherently explainable [4]. Therefore, an ML practitioner can comprehend why a method yields a18

particular prediction and correct the method if the explanation for the result is flawed. The prevailing19

ML architectures in use today [23], namely deep neural networks (DNNs), unfortunately, do not come20

with this inherent explainability. This can cause models to depend on dataset biases and spurious21

correlations. For real-world applications, e.g. credit score and insurance risk assignment, this can22

be fatal and potentially lead to models discriminating against certain demographic groups [3, 19].23

To mitigate the dependence on spurious correlations in DNNs, attribution priors have been recently24

proposed [7, 20, 21]. By enforcing priors on the explanation of a DNN at training time, they allow25

actively controlling its behavior. As it turns out, attribution priors are a very flexible tool, allowing26

even complex model interventions such as making an object recognition model focus on shape [20]27

or less sensitive to high-frequency noise [7]. However, their use brings new challenges over regular28

training. First, computing the attribution of a DNN is a nontrivial task. It is critical to use an29

explanation method that faithfully reflects the true behavior of the model and ideally satisfies the30

axioms proposed by Sundararajan et al. [31]. Otherwise, spurious correlations may go undetected.31

Second, since the explanation is used in each training step, it needs to be efficiently computable.32

Existing work incurs a trade-off between high-quality explanations for which formal axioms hold and33

the time required to compute them. Prior work on attribution priors thus had to choose whether to rely34

on high-quality explanations or allow for efficient training. In this work, we obviate this trade-off.35
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Specifically, we make the following contributions: (i) We propose to consider a special class of36

DNNs, termed efficiently explainable DNNs, for which an efficiently computable axiomatic feature37

attribution method exists.1 (ii) We formally prove that nonnegatively homogeneous DNNs (X -DNNs)38

are efficiently explainable DNNs in that there exists a closed-form solution for an axiomatic feature39

attribution method that fulfills the axioms of Sundararajan et al. [31], requiring only one gradient40

evaluation. This makes the computation of axiomatic explanations for nonnegatively homogeneous41

DNNs two orders of magnitude more efficient than for regular DNNs, which require a costly numerical42

approximation of an integral. (iii) We show how X -DNNs can be instantiated from a wide range of43

regular DNNs by simply removing the bias term of each layer. While this may seem like a significant44

restriction, we show that the impact on the predictive accuracy in two different application domains is45

surprisingly minor. In a variety of experiments, we demonstrate the advantages of X -DNNs, showing46

that they (iv) admit accurate axiomatic feature attributions at a fraction of the computational cost and47

(v) beat state-of-the-art generic attribution methods for training with an attribution prior.48

2 Related work49

Attribution methods can roughly be divided into perturbation-based [12, 34, 36, 37] and50

backpropagation-based [1, 5, 26, 28, 31] methods. The former repeatably perturb individual in-51

puts or neurons to measure their impact on the final prediction. Since each perturbation requires a52

separate forward pass through the DNN, those methods can be computationally inefficient [26] and53

consequently inappropriate for inclusion into the training process. We thus consider backpropagation-54

based methods or, more precisely, gradient-based and rule-based attribution methods. They propagate55

an importance signal from the DNN output to its input using either the gradient or predefined rules,56

making them particularly efficient [26], and thus, well suited for inclusion into the training process.57

Gradient-based methods have the advantage of scaling to high-dimensional inputs, can be efficiently58

implemented using GPUs, and directly applied to any differentiable model without changing it [2].59

The saliency method [28], defined as the absolute input gradient, is an early gradient-based attribution60

method for DNNs. Shrikumar et al. [25] proposed the Input×Gradient method, i.e. weighting the61

(signed) input gradient with the input features, to improve sharpness of the attributions for images.62

Bach et al. [5] introduced the rule-based Layerwise Relevance Propagation (LRP), with predefined63

backpropagation rules for each neural network component. As it turns out, LRP without modifications64

to deal with numerical instability can be reduced to Input×Gradient for DNNs with ReLU [18]65

activation functions [1, 25], hence can be expressed in terms of gradients as well. DeepLIFT [26] is66

another rule-based approach similar to LRP, relying on a neutral baseline input to assign contribution67

scores relative to the difference of the normal activation and reference activation of each neuron.68

Generally, rule-based approaches have the disadvantage that each DNN component requires custom69

modules that may have no GPU support and require a re-implementation of the model.70

Axiomatic attributions. As it is hard to empirically evaluate the quality of attributions, Sundarara-71

jan et al. [31] proposed several axioms that high-quality attribution methods should satisfy:72

Sensitivity (a) is satisfied if for every input and baseline that differ in one feature but have different73

predictions, the differing feature should be given a non-zero attribution.74

Sensitivity (b) is satisfied if the function implemented by the deep network does not depend (mathe-75

matically) on some variable, then the attribution to that variable is always zero.76

Implementation invariance is satisfied if the attributions for two functionally equivalent networks77

are always identical.78

Completeness is satisfied if the attributions add up to the difference between the output of the79

network for the input and for the baseline.80

Linearity is satisfied if the attribution of a linearly composed deep network aF1 + bF2 is equal to81

the weighted sum of the attributions for F1 and F2 with weights a and b, respectively.82

Symmetry preservation is satisfied if for all inputs and baselines that have identical values for83

symmetric variables, the symmetric variables receive identical attributions.84

[31] shows that none of the above methods satisfies all axioms, e.g. the saliency method and85

Input×Gradient suffer from the well-known problem of gradient saturation, which means that even86

1Informally, the attribution of a DNN for a given input yields information about how important an input
feature is for the prediction. As a consequence, it can be used to explain why a certain decision was made. The
terms attributions and explanations will thus be used interchangeably throughout the remainder of this work.
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important features can have zero attribution. To overcome this, [31] introduced Integrated Gradients,87

a gradient-based backpropagation method that provably satisfies these axioms; it is considered a88

high-quality attribution method to date. Its crucial disadvantage over previous methods is that an89

integral has to be solved, which generally requires an approximation based on ∼ 20–300 gradient90

calculations, making it correspondingly computationally more expensive than, e.g., Input×Gradient.91

Attribution priors. The above attribution methods can not only be used for explaining a model’s92

behavior but also to actively control a model’s behavior. To that end, the training objective can be93

formulated as94

θ∗ = arg min
θ

1

|X|
∑

(x,y)∈X

L(Fθ;x, y) + λΩ(A(Fθ, x)), (1)

where a model Fθ with parameters θ is trained on the dataset X . L denotes the regular task loss,95

and Ω is a scalar-valued loss of the feature attribution A, which is called the attribution prior [7]; λ96

controls the relative weighting. For example, by forcing certain values of the attribution to be zero, we97

can mitigate the dependence on unwanted features [21]. But also more complex model interventions98

like making an object recognition model focus on shape [20] or less sensitive to high-frequency99

noise [7] can be formulated using attribution priors.100

An early instance of this concept is the Right for the Right Reasons (RRR) approach of Ross et101

al. [21], which uses the input gradient of the log prediction to mitigate the dependence on unwanted102

features. While this is more stable than simply using the input gradient, it still suffers from the103

problem of saturation. RRR may thus not reflect the true behavior of the model and, therefore,104

miss relevant features. Subsequent work addressed this using axiomatic feature attribution methods,105

specifically Integrated Gradients [6, 13, 31], which however incur significant computational overhead,106

rendering them impractical for many scenarios. Rieger et al. [20] proposed an alternative attribution107

prior based on a rule-based contextual decomposition [17, 29] (CD) as attribution method. This108

allows to consider clusters of features [7] instead of individual features and define attribution priors109

working on feature groups. However, computing the attribution for individual features becomes110

computationally inefficient [7]. Additionally, since CD is a rule-based attribution method, it requires111

custom modules and cannot be applied to all types of DNNs [7]. The very recently proposed112

Expected Gradients [7] method reformulates Integrated Gradients as an expectation, allowing a113

sampling-based approximation of the attribution. Erion et al. argue that similar to batch gradient114

descent, where the true gradient of the loss function is approximated over many training steps, the115

sampling-based approximation allows to approximate the attribution over many training steps. This116

results in better attributions while using fewer approximation steps. Even using as little as one117

reference sample, i.e. only one gradient must be computed, can yield advantages over the regular118

input gradient. However, we show that using only one reference sample still does not yield the same119

attribution quality as an axiomatic feature attribution method. Schramowski et al. [24] proposed a120

human-in-the-loop strategy to define appropriate attribution priors while training. Our attribution121

method is complementary and could be used within their framework.122

3 Efficiently explainable DNNs123

Formally, given a function F : Rn 7→ R representing a single output of a DNN and an input x ∈ Rn,124

the attribution for the prediction at input x relative to a baseline input x′ is a vectorA(F, x, x′) ∈ Rn,125

where each entry ai is the contribution of feature xi to the prediction F (x) [31]. Ideally, we want126

an attribution method that satisfies the axioms proposed by Sundararajan et al. [31], while being127

as efficiently computable as a single input gradient. In general, however, this is not possible for128

arbitrary DNNs. In this work, we consider a special class of DNNs, termed efficiently explainable129

DNNs, that require only a single gradient evaluation to compute Integrated Gradients. We show that130

nonnegatively homogeneous DNNs belong to this class and use this insight to guide the design of a131

concrete instantiation of efficiently explainable DNNs. While there may be several such instantiations,132

we chose this particular one as it can be easily constructed from a wide range of regular DNNs by133

simply removing the bias term of each layer. This ensures comparability to prior work and allows for134

an easy adaptation of existing network architectures.135

Definition 3.1. We call a DNN F : Rn 7→ R efficiently explainable w.r.t. a baseline x′, if there exists136

a closed form solution of the axiomatic feature attribution method Integrated Gradients IGi(F, x, x′)137

along the ith dimension of x, requiring only one gradient evaluation.138
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Note that all differentiable models are efficiently explainable w.r.t. the trivial baseline x′ = x.139

However, using such a baseline is not helpful. Instead, commonly chosen baselines are some kind140

of averaged input features or baselines such that F (x′) = 0, which allow an interpretation of the141

attributions that amounts to distributing the output to the individual input features [31].142

Proposition 3.2. For a DNN F : Rn 7→ R there exists a closed form solution of IGi(F, x,0) w.r.t. the143

zero baseline 0 requiring only one gradient evaluation, if F is strictly positive homogeneous of degree144

k ∈ R≥1, i.e. F (αx) = αkF (x) for α ∈ R>0.145

Proof. We assume k ≥ 1. Sundararajan et al. [31] define the axiomatic feature attribution method146

Integrated Gradients (IG) along the ith dimension for a given model F , input x, baseline 0, and147

straightline path γ(α) = αx as148

IGi(F, x,0) =

∫ 1

0

∂F (γ(α))

∂γi(α)

∂γi(α)

∂α
dα =

∫ 1

0

∂F (αx)

∂αxi

∂αxi
∂α

dα . (2)

Assuming F is strictly positive homogeneous of degree k, we can write Integrated Gradients in149

Eq. (2) as150

IGi(F, x,0) = lim
β→0

∫ 1

β

∂F (αx)

∂αxi
xi dα = lim

β→0

∫ 1

β

αk−1
∂F (x)

∂xi
xi dα =

1

k
xi
∂F (x)

∂xi
. (3)

151

While Ancona et al. [1] already found that Input×Gradient equals Integrated Gradients with the zero152

baseline for linear models or models that behave linearly for a selected task, our Proposition 3.2 is153

more general: We only require strict positive homogeneity of an arbitrary order k ≥ 1. This allows154

us to consider a larger class of models including nonnegatively homogeneous DNNs, which generally155

are not linear.156

Definition 3.3. We call a DNN F : Rn 7→ R nonnegatively homogeneous, if F (αx) = αF (x) for157

all α ∈ R≥0.158

Corollary 3.4. Any nonnegatively homogeneous DNN is efficiently explainable w.r.t. the zero baseline159

0 and a closed form solution of the axiomatic feature attribution method Integrated Gradients160

requiring only one gradient evaluation exists.161

Proof. Corollary 3.4 follows directly from Proposition 3.2 and Definitions 3.1 and 3.3.162

Definition 3.5. We let X -DNN denote a nonnegatively homogeneous DNN. Further, for any X -DNN163

F : Rn 7→ R, we let X -Gradient be an axiomatic feature attribution method relative to the 0 baseline164

defined as165

XGi(F, x) = IGi(F, x,0) = xi
∂F (x)

∂xi
. (4)

Note that while the formulas for the existing attribution method Input×Gradient and our novel166

X -Gradient are equal, X -Gradient is only defined for X -DNNs and provably satisfies axioms that167

are generally not satisfied by Input×Gradient. Additionally, from the nonnegative homogeneity of168

X -DNNs it follows that X -Gradient attributions are also nonnegatively homogeneous. This allows us169

to define another desirable axiom that is in line with intuition about how attribution should work and170

that is satisfied by X -Gradient.171

Definition 3.6. An attribution method A satisfies nonnegative homogeneity if A(F, αx, αx′) =172

α A(F, x, x′) for all α ∈ R≥0.173

For an overview of the axioms that are satisfied by popular gradient-based attribution methods,174

see Table 1. The right-hand side methods use only one gradient evaluation, and therefore, have175

similar computational expense. The left-hand side methods generally require multiple gradient176

evaluations until convergence, making them correspondingly more computationally expensive. Note177

that X -Gradient satisfies all the axioms satisfied by Integrated Gradients and Expected Gradients [7],178

assuming convergence, while requiring only a fraction of the computational cost. Existing methods179

that have similar computational expense as X -Gradient generally do not satisfy all of the axioms.180
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Table 1: Overview of different gradient-based DNN attribution methods and the axioms that they
provably satisfy. The left-hand side methods (Integrated Gradients, Expected Gradients) induce one
to two orders of magnitude computational overhead compared to the methods on the right-hand side,
which require only one gradient evaluation (indicated by (1) for Expected Gradients with one sample).
Note how X -Gradient satisfies all axioms while requiring as little computational cost as a simple
gradient evaluation, however being only defined for X -DNNs.

Integrated Expected Expected (Input ×)
Axiom Gradients Gradients Gradients(1) Gradient X -Gradient

Sensitivity (a) 3 3 7 7 3
Sensitivity (b) 3 3 3 3 3
Implementation invariance 3 3 7 3 3
Completeness 3 3 7 7 3
Linearity 3 3 7 3 3
Symmetry-preserving 3 3 7 7 3

Nonnegative homogeneity 7 7 7 7 3

With this motivation in mind, we will now study concrete instantiations of nonnegatively homogeneous181

DNNs. We define the output of a regular feedforward DNN F : Rn 7→ Ro, for an input x ∈ Rn, as a182

recursive sequence of layers i that are applied to the output of previous layers:183

Fi (x) =

{
ψi (φi (WiFi−1(x) + bi)) if i > 1

x if i = 0,
(5)

withWi and bi being the weight matrix and bias term for layer i, φi being the corresponding activation184

function, and ψi being the corresponding pooling function. Both φi and ψi are optional, in which185

case they are the identity function. For simplicity, we assume that the last task-specific layer, e.g. the186

softmax function for classification tasks, is part of the loss function. Further, for a cleaner notation187

that aligns with [31], we assume that we are only considering one output logit at a time, e.g. the logit188

of the target class for classification tasks. This yields the DNN F : Rn 7→ R we consider and allows189

us to directly compute the derivative of the model w.r.t. an input feature xi. Importantly, the above190

formalization comprises many popular layer types and architectures. For example, fully connected191

and convolutional layers are essentially matrix multiplications [33], and therefore, can be expressed192

by Eq. (5). Skip connections can also be expressed as matrix multiplication by appending the identity193

matrix to the weight matrix so that the input is propagated to later layers [33]. This allows us to194

describe even complex architectures such as the ResNet [9] architecture proposed by [35]. As the195

above definition of a DNN includes models that are generally not nonnegatively homogeneous, we196

have to make some assumptions.197

Assumption 3.7. The activation functions φi and pooling functions ψi in the model are nonnegatively198

homogenous. Formally, for all α ∈ R≥0 :199

αφi(z) = φi(αz) and αψi(z) = ψi(αz). (6)

Proposition 3.8. Piecewise linear activation functions with two intervals separated by zero satisfy200

Assumption 3.7. For z = (z1, . . . , zn) ∈ Rn, these activation functions φi : Rn 7→ Rn are defined as201

φi (z) = (φ′i(z1), . . . , φ′i(zn)) with φ′i(zj) =

{
ai,1zj if zj > 0

ai,2zj if zj ≤ 0
. (7)

Proposition 3.9. Linear pooling functions or pooling functions selecting values based on their202

relative ordering satisfy Assumption 3.7. For z = (z1, . . . , zn) ∈ Rn, these pooling functions203

ψi : Rn 7→ Rm are defined as204

ψi (z) = (ψ′i(z
′
1), . . . , ψ′i(z

′
m)), (8)

with z′j being a grouping of entries in z based on their spatial location and ψ′i : Rm 7→ R being205

linear or a selection of a value based on its relative ordering, e.g. the maximum or minimum value.206

For proofs of Propositions 3.8 and 3.9, please refer to the supplemental material. Activation functions207

in Proposition 3.8 include ReLU [18], Leaky ReLU [15], and PReLU [8]. Linear pooling functions208
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in Proposition 3.9 include average pooling, global average pooling, and strided convolution. Other209

pooling functions in Proposition 3.9 include max pooling and min pooling [30], where the largest210

or smallest value is selected. Therefore, DNN architectures satisfying Assumption 3.7 include,211

inter alia, AlexNet [11], VGGNet [27], ResNet [9] as introduced in [35], and MLPs with ReLU212

activations. They alone have been cited well over one hundred thousand times, showing that we are213

considering a substantial fraction of commonly used DNN architectures. However, these architectures214

are generally still not nonnegatively homogeneous. It is easy to see that even for a simple linear215

model F (x) = ax+ b that can be expressed by Eq. (5) and that satisfies Assumption 3.7, nonnegative216

homogeneity does not hold, because 0F (x) = 0 6= b = F (0x). Therefore, in a final step we set the217

bias term of each layer to zero. As this may seem like a significant restriction, we show in Sec. 4 that218

the impact on the predictive accuracy in two different application domains is surprisingly minor.219

Corollary 3.10. Any regular DNN given by Eq. (5) satisfying Assumption 3.7 can be transformed220

into a X -DNN by removing the bias term of each layer.221

Proof. A DNN F with m layers given by Eq. (5) with all biases bi set to 0 can be rewritten as222

F (x) = ψm(φm(Wm(...(ψ1(φ1(W1x)))))). As all the pooling functions ψi, activation functions φi,223

and matrix multiplicationsWi in F are nonnegatively homogeneous, it follows that F (αx) = αF (x)224

for all α ∈ R≥0.225

Further discussion. We additionally note that our results have interesting consequences for DNNs226

in certain application domains, e.g. in computer vision, as they allow to relate efficient explainability227

to desirable properties of DNNs:228

Remark 3.11. If a DNN F : Rn 7→ R taking an image x ∈ Rn as input is equivariant w.r.t. to the229

image contrast, it is efficiently explainable.230

This observation follows directly from the fact that contrast equivariance implies nonnegative homo-231

geneity. Consequentially, contrast-equivariant DNNs for regression tasks, such as image restoration232

or image super-resolution, are automatically efficiently explainable. For classification tasks, such233

as image classification or semantic segmentation, contrast equivariance of the logits at the output234

implies efficient explainability. If the classification is done using a softmax, then this also implies235

contrast invariance of the classifier output. In other words, there is a close relation between efficient236

explainability and the desirable property of contrast equi-/invariance. We further illustrate this237

experimentally in Sec. 4.4.238

Limitations. So far, we have discussed the advantages of X -DNNs such as being able to efficiently239

compute high-quality attributions. However, we also want to mention the limitations of our method.240

First, our method can only be applied to certain DNNs satisfying Assumption 3.7. Although this is a241

large class of models, our method is not completely model agnostic as other gradient-based attribution242

methods. Second, removing the bias might be disadvantageous in certain scenarios. However, as243

we show in Sec. 4, removing the bias may have less of a negative impact than expected. Third, our244

method uses implicitly the zero baseline 0. As F (0) = 0 this is a reasonable baseline because it can245

be interpreted as being neutral [31]. Nevertheless, other baselines could produce attributions that are246

better suited for certain tasks. Whether the advantages outweigh the disadvantages must be decided247

for each application, individually. In Sec. 4 we demonstrate the advantages of X -DNNs, beating248

state-of-the-art attribution methods for learning with attribution priors.249

4 Experiments250

In the following we evaluate our proposed method and show its benefits on two data domains.251

Experimental setup. For our experiments on models for image classification, i.e. Section 4.1, 4.2252

and 4.4, we use the ImageNet [22] dataset, containing about 1.2 million images of 1000 different253

categories. We train on the training split and report numbers for the validation split. In Sec. 4.2 we254

quantify the quality of attributions for image classification models by adapting the metrics proposed255

by Lundberg et al. [14] to work with image data. The metrics reflect how well an attribution method256

captures the relative importance of features by masking out a progressively increasing fraction of257

the features based on their relative importance. As a mask, we use a Gaussian blur of the original258

image. For a detailed description of the metrics, please refer to [14] and the supplemental material. If259

not indicated otherwise, we assume numerical convergence for Integrated Gradients and Expected260

Gradients, which we found to occur after ∼ 128 approximation steps (see supplemental material).261
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Table 2: Top-5 accuracy on the ImageNet [22] validation split and relative distance of an X -Gradient
attribution to Integrated Gradients. Note how removing the bias (X -DNN) impairs the accuracy only
marginally while reducing the relative attribution distance to Integrated Gradients significantly.

Top-5 accuracy (%, ↑) Relative distance (%, ↓)
Model AlexNet VGG16 ResNet-50 AlexNet VGG16 ResNet-50

Regular DNN 79.2 90.4 92.6 79.0 97.8 93.8
X -DNN 78.5 90.2 91.1 1.2 0.4 0.0

Table 3: Metrics [14] to measure the attribution quality of different attribution methods. We evaluate
Integrated Gradients (IG) [31], random attributions (Random), input gradient attributions (Grad),
Expected Gradients (EG) [7], and our novel X -Gradient (XG) attribution on a regular AlexNet [35]
and the corresponding X -AlexNet. The number in parentheses indicates the required gradient calls.
Our method is on par with IG while requiring two orders of magnitude less computational power.

AlexNet X -AlexNet

Method KPM ↑ KNM ↓ KAM ↑ RAM ↓ KPM ↑ KNM ↓ KAM ↑ RAM ↓
IG (128) 7.57 1.67 25.22 11.12 7.38 2.21 21.79 11.68

Random 3.68 3.68 14.12 14.10 3.81 3.81 13.52 13.50
Grad (1) 3.62 3.88 20.78 11.82 3.87 4.34 19.75 11.25
EG (1) 4.92 2.97 20.49 13.76 5.41 3.19 19.47 13.19
XG (1) N/A N/A N/A N/A 7.38 2.21 21.83 11.68

4.1 Removing the bias term in DNNs262

Historically, the bias term plays an important role and almost all DNN architectures use one. In this263

first experiment, we evaluate how much removing the bias to obtain a X -DNN affects the accuracy of264

different DNNs. To this end, we train multiple popular image classification networks, AlexNet [11],265

VGG16 [27], and the ResNet-50 of [35], as well as their corresponding X -variants obtained by266

removing the bias term, on the challenging ImageNet [22] dataset. The resulting top-5 accuracy on267

the validation split is given in Table 2. As we can observe, removing the bias decreases the accuracy268

of the models only marginally. This is a somewhat surprising result since prior work indicates269

that the bias term in DNNs plays an important role [33]. We hypothesize that when removing the270

bias term, the DNN learns some kind of layer averaging strategy that compensates for the missing271

bias. For an additional comparison between a DNN with bias and its corresponding X -DNN in a272

non-vision domain, see Sec. 4.3, which mirrors our findings here. Additionally, to empirically validate273

our finding that X -Gradient (XG) equals Integrated Gradients for X -DNNs, we report the mean274

relative distance between the attribution obtained from Integrated Gradients [31] and the attribution275

obtained from calculating Input×Gradient for regular DNNs resp. X -Gradient for X -DNNs over276

the ImageNet validation split. For regular models with biases, Integrated Gradients produces a very277

different attribution compared to Input×Gradient. For X -DNNs on the other hand, the two attribution278

methods are virtually identical. The small deviation can be explained by the fact that the result of279

Integrated Gradients [31] is computed via numerical approximation, whereas our method computes280

the exact integral (of course only for X -DNNs). The pre-trained X -DNN models will be made281

publicly available to promote a wide application of efficiently explainable models.282

4.2 Benchmarking gradient-based attribution methods283

To demonstrate that our method not only satisfies several axioms [31] but also produces high-quality284

attributions, we benchmark our method against existing gradient-based attribution methods that285

are commonly used for training with attribution priors, using the metrics of [14]. Table 3 shows286

results for a regular AlexNet and our corresponding X -AlexNet. Due to the axioms satisfied by287

Integrated Gradients, it produces the best attributions for the regular network. However, as it288

approximates an integral where each approximation step requires an additional gradient evaluation,289

it also introduces one to two orders of magnitude of computational overhead compared to the290

other methods (Sundararajan et al. [31] recommend 20–300 gradient evaluations to approximate291
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Figure 1: (left) Average ROC-AUC across 200 randomly subsampled datasets for the same attribution
prior using different attribution methods. (right) Average ROC-AUC across 200 randomly subsampled
datasets of Expected Gradients (EG) over the number of reference samples. The current state-of-the-
art EG requires approximately 32 reference samples, and thus, 32 times more computational power
to outmatch XG. Confidence intervals indicate two times the standard error of the mean.

attributions). For theX -AlexNet, however, ourX -Gradient method is on par with Integrated Gradients292

and produces the best attributions while requiring only one gradient evaluation, and therefore, a293

fraction of the compute power of Integrated Gradients. Since the input gradient and Expected294

Gradients [7] with only one reference sample do not satisfy many of the desirable axioms listed in295

Section 3, they produce clearly lower quality attributions as expected.296

4.3 Training with attribution priors297

To benchmark our method against other attribution methods when training with attribution priors, we298

replicate the sparsity experiment introduced in [7]. To that end, we employ the public NHANES I299

survey data [16] of the CDC of the United States, containing 118 one-hot encoded medical attributes,300

e.g. age, sex, and vital sign measurements, from 13,000 human subjects (no personally identifiable301

information). The objective of the binary classification task is to predict if a human subject will be302

dead (0) or alive (1) ten years after the data was measured. A simple MLP with ReLU activations is303

used as the model. Therefore, it can be transformed into a X -DNN by simply removing the bias terms.304

To emulate a setting of scarce training data and average out variance, we randomly subsample 200305

training and validation datasets containing 100 data points from the original dataset. Erion et al. [7]306

proposed a novel attribution prior that maximizes the Gini coefficient, i.e. minimizes the statistical307

dispersion, of the feature attributions. They show that this allows to learn sparser models, which have308

improved generalizability on small training datasets. The more faithfully the attribution reflects the309

true behavior of the model, the more effective the attribution prior should be.310

Comparing attribution methods. We compare different attribution methods that have previously311

been used for training with attribution priors and require only one gradient evaluation; thus, they312

have comparable computational cost. The results in Fig. 1(left) show that our method (XG w/o bias)313

outperforms all other competing methods. We can also see that for the unregularized model removing314

the bias (Unreg w/o bias) has almost no effect on the average ROC-AUC of the method, once again315

showing that our modification for making attributions efficient, i.e. removing the bias term, is feasible316

in many scenarios.317

Since the attribution quality of Expected Gradients can be improved using more reference samples,318

since this yields a better approximation to the true integral, we plot the average ROC-AUC of319

Expected Gradients over the number of reference samples used in Fig. 1(right). We can clearly see320

that adding more samples improves the ROC-AUC when training with an EG attribution in the prior.321

However, we also find that approximately 32 reference samples are needed, and hence 32 times322

more computational power, to match the quality of our efficient X -Gradient. When using more than323

32 reference samples, Expected Gradients slightly outperform our method in terms of ROC-AUC,324

which is due to the limitations discussed in Sec. 3 (fixed baseline, no bias terms). We argue that it is325

often worth accepting this small accuracy disadvantage in light of the significant gain in efficiency of326

computing high-quality attributions. To put this improvement in efficiency into perspective, consider327

regular DNNs that require days of training using a single GPU, e.g. ResNet on the ImageNet dataset.328

The computational overhead introduced when using Expected Gradients with 32 reference samples329

would turn several days of training into several months of training.330

8



0.250.500.751.00
Scaling factor α

0.0

0.2

0.4

0.6

0.8

1.0

T
op

-1
ac

cu
ra

cy

AlexNet

X -AlexNet

Image XG IG I×G IG
X -AlexNet AlexNet

Figure 2: (left) Top-1 accuracy for AlexNet and X -AlexNet on the ImageNet validation split with
decreasing contrast (scaled by α). Due to the nonnegative homogeneity of X -AlexNet, the accuracy
does not drop when reducing the contrast. (right) Qualitative examples of normalized attributions for
AlexNet and X -AlexNet using the attribution methods X -Gradient (XG) and Integrated Gradients
(IG). For X -AlexNet the attributions from X -Gradient and IG are almost identical. Additionally, the
attribution of the X -AlexNet does not change when scaling the input contrast.

4.4 Homogeneity of X -DNNs331

The fundamental difference between X -DNNs and regular DNNs is the nonnegative homogeneity332

of the former. To show implications on the model and its attributions, we conduct the following333

experiment. Similarly to Hendrycks et al. [10], we reduce the contrast of the ImageNet [22] validation334

split by multiplying each image with varying factors α and report the top-1 accuracy of AlexNet and335

the correspondingX -AlexNet. Results can be found in Fig. 2(left). We can observe that decreasing the336

contrast of the images leads to a strong drop in the accuracy of a regular AlexNet. On the other hand,337

due to the equivariance to contrast of X -DNNs, the accuracy for X -AlexNet is unaffected, showing338

improved robustness towards contrast changes. Additionally, to give some qualitative examples, in339

Fig. 2(right) we plot the attributions for a regular AlexNet and a X -AlexNet for an original image and340

its corresponding low-contrast version obtained by multiplying the normalized image with α = 0.3.341

Note how for the X -AlexNet, our X -Gradient and Integrated Gradients [31] are identical up to a small342

approximation error and how reducing the contrast of the images keeps the attribution unchanged343

up to a scaling factor (not visible due to normalization for display purposes). Additionally, it is344

noteworthy that the input gradient of X -AlexNet seems to be visually more interpretable than that of345

the regular AlexNet. We argue that the above observations reflect generally desirable properties and346

show that X -DNNs behave more predictably with contrast changes than regular DNNs.347

5 Conclusion and broader impact348

In this work, we consider a special class of efficiently explainable DNNs, for which an axiomatic349

feature attribution can be computed with only one gradient evaluation. We show that nonnegatively350

homogeneous DNNs, termed X -DNNs, are efficiently explainable. Moreover, we find that many351

commonly used architectures can be transformed into X -DNNs by simply removing the bias term of352

each layer. Our empirical results indicate that this only marginally impairs accuracy. The resulting353

efficiently computable and axiomatic attributions are particularly well-suited for inclusion into the354

training process. For example, by enforcing priors on the attributions, we can mitigate dependence355

on unwanted features and biases induced by the training dataset, which is a major challenge in356

today’s ML systems. Obermeyer et al. [19] found evidence that a widely used algorithm in the U.S.357

health care system contains racial biases that are attributable to biases in the dataset that was used358

to develop the algorithm. Using our method to generate high-quality explanations that reflect the359

true behavior of a X -DNN and an appropriate attribution prior, such problems could potentially be360

resolved (though more research on attribution priors is necessary). However, allowing biases to be361

controlled by an ML practitioner can also introduce new risks. Just like datasets, humans are also362

not free of biases [32], which can potentially be reflected in such priors. We as a society need to be363

careful that this responsibility is not exploited and used for discriminatory or harmful purposes. One364

way to approach this problem for applications that affect the general public is to introduce an ethical365

review committee, which assesses whether the proposed priors are legitimate or reprehensible.366
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